
The Bulletin of Symbolic Logic

Volume 30, Number 1, March 2024

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS

JAN KRAJÍČEK

Abstract. Cook and Reckhow [5] pointed out that NP �= coNP iff there is no
propositional proof system that admits polynomial size proofs of all tautologies. The theory
of proof complexity generators aims at constructing sets of tautologies hard for strong and
possibly for all proof systems. We focus on a conjecture from [16] in foundations of the theory
that there is a proof complexity generator hard for all proof systems. This can be equivalently
formulated (for p-time generators) without a reference to proof complexity notions as follows:

• There exists a p-time function g stretching each input by one bit such that its range rng(g)
intersects all infinite NP sets.

We consider several facets of this conjecture, including its links to bounded arithmetic
(witnessing and independence results), to time-bounded Kolmogorov complexity, to feasible
disjunction property of propositional proof systems and to complexity of proof search. We
argue that a specific gadget generator from [18] is a good candidate for g. We define a new
hardness property of generators, the

∨
-hardness, and show that one specific gadget generator

is the
∨

-hardest (w.r.t. any sufficiently strong proof system). We define the class of feasibly
infinite NP sets and show, assuming a hypothesis from circuit complexity, that the conjecture
holds for all feasibly infinite NP sets.

§1. Introduction. A propositional proof system (to be abbreviated pps) in
the sense of Cook and Reckhow [5] is a polynomial time (p-time, shortly)
binary relation P(x, y) such that ∃xP(x, y) defines exactly TAUT, the set
of propositional tautologies (in the DeMorgan language for definiteness).
The efficiency of a pps P is measured by the lengths-of-proofs function sP :
for � ∈ TAUT put

sP(�) := min{|�| | P(�, �)}.
A pps P for which sP(�) is bounded above by |�|c for some independent c ≥ 1
is called p-bounded. As pointed out by Cook and Reckhow [5], the NP vs.
coNP problem (asking whether the computational complexity class NP is

Received February 2, 2023.
2020 Mathematics Subject Classification. Primary 03F20, 68Q11, 68Q15.
Key words and phrases. proof complexity generators, bounded arithmetic, weak pigeonhole

principle, time-bounded Kolmogorov complexity, proof search, feasible disjunction property.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic
Logic. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1079-8986/24/3001-0002
DOI :10.1017/bsl.2023.40

20

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://orcid.org/0000-0003-0670-3957
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/bsl.2023.40
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/bsl.2023.40&domain=pdf
https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 21

closed under complementation) can be equivalently restated as a question
whether a p-bounded pps exists. The existence of a p-bounded pps is thus a
fundamental problem of proof complexity.

A pps P is not p-bounded iff there exists an infinite subsetH ⊆ TAUT such
that for any c ≥ 1, for only finitely many � ∈ H it holds that sP(�) ≤ |�|c .
Any such set H will be said to be hard for P.

There are essentially only two classes of formulas known that make
plausible candidates for being hard for strong pps: reflection principles and
�-formulas coming from proof complexity generators. The former class is
a classic topic of proof complexity and its exposition can be found in [22,
Section 19.2].

The latter formulas are constructed as follows. Take a function g :
{0, 1}∗ → {0, 1}∗ that stretches all size n inputs to size m = m(n) > n
(and hence the complement of its range rng(g) is infinite) and such that
its restriction gn to {0, 1}n is computed by a size mO(1) circuit Cn. For
each b ∈ {0, 1}m \ rng(gn) encode naturally (as in the proof of the NP-
completeness of SAT) the statement

|x| = n → Cn(x) �= b

by a size mO(1) tautology �(g)b . A function g is said to be hard for P iff the
set

⋃
n≥1{�(g)b | b ∈ {0, 1}m(n) \ rng(gn)} is hard for P, and we speak of

the function g as of a proof complexity generator in this context.
We shall actually restrict ourselves here1 to the rudimentary case of

generators g computed in time polynomial in n (except the example of
function tts,k defined below that is computed in time polynomial in m) and,
in fact, Lemma 4.2 shows that the question whether g could be non-uniform
(i.e., computed by a family of circuits that need not to come from a common
algorithm) is to some extent irrelevant.

The �(g)b-formulas were defined in [14] motivated by problems in
bounded arithmetic and independently (and with an apparently different
motivation) in Alekhnovich et al. [1]. Unfortunately the authors of [1] did
not pursue the topic2 and developing the theory was a rather lonely affair
until recently. The theory of proof complexity generators has now a number
of facets and it is linked not only to bounded arithmetic and proof complexity
but also to various topics in computational complexity theory. To give the

1Note that one can allow that the output bits of the generator g are computed in non-
uniform NTime(mO(1)) ∩ coNTime(mO(1)) and still get tautologies of size polynomial in m
expressing that b /∈ rng(gn) (cf. Razborov [28, Conjecture 2], [21, Conjecture 1], and [17,
20]). There are quite a few facts known about such generators and the interested reader may
start with [17, 20, 21].

2With the sole exception of [28] (although published in 2015 it was written in 2002/03).

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

22 JAN KRAJÍČEK

reader an idea let us mention (just by key words and phrases) some topics
that have a non-trivial contact with the theory:

• lengths-of-proofs lower bounds, feasible interpolation, implicit proof
systems, proof search,

• circuit complexity, the minimum circuit size problem, natural proofs,
non-deterministic circuits,

• bounded arithmetic, Gödel’s incompleteness theorem, provability of
upper and lower bounds, forcing with random variables,

• Nisan–Wigderson generators, structural complexity, NP search
problems, Kolmogorov complexity, learning theory,

• pseudo-randomness, one-way functions, indistinguishability obfusca-
tion.

A more detailed presentation of key points of the theory and of the necessary
background requires a text of a book length but the interested reader may
look at [22, Section 19.4-6] (or at older [19, Chapters 29 and 30]) for an
overview and further references. The introduction to Razborov’s [28] is an
interesting presentation of his ideas about the topic (including a formulation
of a conjecture that stimulated some of my own work).

Be it as it may, the theory as it is now grew out of the motivation for
the formulas in [14]: a logic question about the provability of the dual weak
PHP principle (dWPHP) for p-time functions in a weak bounded arithmetic
theory S1

2 (cf. [14, Problem 7.7]). The dWPHP(f) says that function f does
not map any interval [0, a] onto [0, 2a] (the term 2a can be altered to
various other values, e.g., to a2, without changing the logical strength of
the principle over S1

2). Denote the theory resulting from adding to S1
2 all

instances of dWPHP(f) for all (suitably defined) p-time functions f by
S1

2 + dWPHP(Δb1). The problem (cf. [14, Problem 7.7]) is:

• Is S1
2 + dWPHP(Δb1) equal to S1

2 ? If not, is it at least Σb1-conservative
over it?

This problem has a rather rich background and let me try to outline it
in one paragraph. A task inherently difficult for bounded arithmetic (and
for feasible algorithms) is to count a number of elements of a finite set.
It was discovered by Woods [31] that explicit counting may be replaced
in many arguments in combinatorics or number theory by the pigeonhole
principle PHP for bounded formulas, a statement that no bounded formula
defines the graph of a function mapping [0, a + 1] injectively into [0, a].
It is still unknown whether this principle (denoted Δ0-PHP) is provable in
bounded arithmetic (the problem is due to MacIntyre). Then Paris, Wilkie
and Woods [27] found out that the weak PHP (no bounded formula defines
the graph of a function mapping [0, 2a] injectively into [0, a]), denoted
Δ0-WPHP, often suffices and that this principle is provable in bounded

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 23

arithmetic (they used theory IΔ0 + Ω1, nowadays it is replaced by a more
convenient Buss’s theory S2). In a parallel development Buss [3] defined a
subtheory S1

2 of S2 and proved that functions with NP graphs provably
total in this theory are exactly those that are p-time computable. A final
twist before the formulation of our problem was a theorem by A. Wilkie
(unpublished but presented in [13, Theorem 7.3.7]) that functions with
NP graphs provably total in theory S1

2 + dWPHP(Δb1) are computable in
randomized p-time. It occurred to me that one may turn the table around
and take the theoryS1

2 + dWPHP(Δb1) as a basis for formalizing randomized
algorithms and to establish its link with randomized p-time analogous
to the link between S1

2 and deterministic p-time. Because randomized
algorithms, and probabilistic constructions and arguments more generally,
are ubiquitous in combinatorics and complexity theory I denoted in [14] the
theory BT for “basic theory.” The link was eventually established by Jeřábek
in his PhD Thesis and in a subsequent series of papers [9–12]. In order not to
interfere with his work I decided to focus on the provability/conservativity
problem above and on the related propositional logic side of things, and this
led me to proof complexity generators.

Right from the beginning there were two working conjectures:

1. There are generators pseudo-surjective for Extended Frege systems EF
(cf. [14, Conjecture 7.9 and Corollary 7.10] and [15, Conjecture 4.1
and Corollary 4.2]).
This conjecture is related to the provability problem mentioned above
and the notion of pseudo-surjectivity implies the hardness as defined
earlier. We shall touch upon it in Section 2; the reader can find details
in [15, 16].

2. There is a generator hard for all proof systems (cf. [16, Section 2]).

We shall concentrate here on the second conjecture and we shall restrict
our formulation to uniform generators (i.e., computed by algorithms not
just by sequences of circuits) having the minimal required stretch m(n) =
n + 1. It is easy to see that truncating any p-time generator to output-size
n + 1 preserves the hardness over any pps simulating resolution (e.g., such
a truncation can be applied to generators tts,k and Ut defined later). It
also allows for a particularly simple formulation of Conjecture 1.1: by [16,
Section 1] (or [22, Lemma 19.4.1]) the second conjecture can be then restated
without any reference to proof complexity notions as follows.

Conjecture 1.1. [16, Section 2] There exists a p-time function g stretching
each input by one bit such that its range rng(g) intersects all infinite NP
sets. That is, the complement of rng(g) is NP-immune.

A fundamental question of proof complexity is, in my view, whether
the hardness of proving a tautology can be traced back to the hardness

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

24 JAN KRAJÍČEK

of computing some computational task associated with the formula. A
paradigm of such a reduction is the method of feasible interpolation that
applies to a wide range of proof systems albeit not to strong ones (cf. [22,
Chapters 17 and 18]). One can interpret Conjecture 1.1 as stating a reduction
of provability hardness to computational hardness for all proof systems in
the following sense:

• short proofs, here witnesses to the membership in an infinite NP set A,
• imply an upper bound on compression for some strings in A, using g as

the decompressing algorithm.

With a bit of imagination a direct parallel between the conjecture and feasible
interpolation may be seen when we restrict the conjecture. The conjecture
can be equivalently stated as asserting that all NP sets disjoint with rng(g)
are finite. A restriction of the conjecture may state the finiteness just for a
subclass of all NP sets. A natural restriction of Conjecture 1.1 in this sense,
given a specific proof system P, is the restriction to NP sets A from the
class of those sets for which P can prove in polynomial size (the tautologies
expressing for all lengths n ≥ 1) thatA ∩ rng(g) = ∅. This class of NP set is
the resultantResPg of [16] and the reader can find details there. Conjecture 1.1
restricted to P then says that ResPg contains only finite sets. This looks in
form similar to feasible interpolation: there we deduce feasible separability
of two NP sets whose disjointness can be proved efficiently in P, here we
deduce the finiteness of an NP set if it can be proved efficiently in P that
it is disjoint from a particular NP set, namely rng(g). Note also that the
conjecture restricted to P implies that P is not p-bounded.

Let us give two examples of potential generators (a third one will be
discussed in Section 4). An illuminating example of a possibly strong
generator is the truth-table function tts,k sending a size s circuit in k inputs to
its truth-table (a size 2k string), cf. [16] or [22, Section 19.5]. Circuits of size
s can be coded by 10s log s bits and so to make the function stretching we
assume that n := 10s log s < m(n) := 2k (hence size s circuits are coded by
n < m bits). It is computed in (uniform) timeO(sm) = 2O(k), so it is p-time
if s = 2Ω(k).

The �-formulas determined by this generator state circuit lower bounds
for particular Boolean functions: �(tts,k)b ∈ TAUT iff the function with
truth-table b has circuit complexity bigger than s. This makes the formulas
attractive but also hard to approach as we know very little about the size of
general circuits.

It is known that the first working conjecture above implies that the
�-formulas determined by the truth table function tts,k (with s = 2�k for
any 0 < � < 1) are hard for EF (cf. [16] or [19, Section 30.1]). On the other
hand, unless NE ∩ coNE has size s(k) circuits, the generator tts,k cannot

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 25

be hard for all proof systems3 and hence it is not a good candidate for
Conjecture 1.1 (cf. [19, p. 198]).

Our second example follows [24, Remark 6.1] and concerns time-bounded
Kolmogorov complexity. Recall that the complexity measure Kt(w) is the
minimal size of a program that prints w in time at most t(|w|) (cf. [2]).
The point is that a proof complexity generator with stretch m ≥ n + �(1)
produces strings w of Kt complexity smaller than m = |w|. For example,
if g stretches n bits to m = 2n bits and runs in p-time t(m) (which is also
polynomial in n) then for all size m strings w ∈ rng(gn) and n >> 0,

Kt(w) ≤ n +O(1) < 2m/3.

In fact, as discussed in [24, Section 6.1], for a fixed polynomial time t(n)
sufficient for the computation of g one can consider the universal Turing
machine Ut underlying the definition of Kt as a generator itself.4 Then for
any pps P simulating EF, if some �(Ut)-formulas have short P-proofs (e.g.,
by proving tautologies expressing the lower bound Kt(w) ≥ 2m/3), so do
some �(g)-formulas. That is, if there is any g computable in time t and hard
for P then Ut must be hard as well.

The paper is organized as follows. In Section 2 we consider the possibility
of disproving (or at least of limiting possible g in) Conjecture 1.1 by finding
a feasible way to witness that the complement of rng(g) is not empty.

In Section 3 we discuss a new definition of hardness, the
∨

-hardness,
that strengthens (presumably) the hardness as defined above (but is weaker,
also presumably, than the notion of pseudo-surjectivity mentioned earlier).
The reason for introducing the new notion is that a particular generator
from the class of gadget generators introduced in [18] and recalled here in
Section 4 is the

∨
-hardest5 among all generators but (presumably) not the

hardest under the definition of the hardness as given above: in [18] we used
for this result the notion of iterability that is in strength between hardness
and pseudosurjectivity mentioned in Section 2, as it was at hand but that is
not good for Conjecture 1.1. Namely, it is known (cf. [16]) that if there is
any iterable map for a given pps (containing resolution) then tts,k is iterable
for it too and hence hard. But by the remark above tts,k is unlikely to be
hard for all proof systems.

This new notion of
∨

-hardness is equivalent to the hardness as defined
above for a class of pps satisfying the strong feasible disjunction property

3But to find a pps for which it is not hard with any super-polynomial s(k) is likely to be a
hard task itself (cf. [19, Lemma 29.2.2]).

4A similar observation was made recently in [29].
5Ren, Santhanam and Wang [29] speak informally about the hardest proof complexity

generator but what they define is formally an infinite family of generators.

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

26 JAN KRAJÍČEK

(Section 3). This class has the property that all pps not in it are automatically
not p-bounded.

Section 2 is complemented in Section 5 where we link possible limitations
to the stretch g can have to the task of proving lower bounds on time-
bounded Kolmogorov complexity. We argue that known results imply
that these approaches are not likely to work without proving first super-
polynomial lower bounds for (uniform and non-uniform) computations.

We also indicate in Section 6 how to modify the notion of a generator
(and the conjecture and results in Sections 2 and 5) to address the hardness
of proof search instead of lengths-of-proofs.

In Section 7 we discuss a way how to restrict Conjecture 1.1 and we show,
under a hypothesis, that the conjecture holds relative to all feasibly infinite
NP sets: sets for which there is a p-time function picking arbitrarily large
elements of the set. The paper is concluded by some remarks in Section 8.

Basic proof complexity background can be found in [22, Chapter 1]; the
topic of hard formulas (including a brief introduction to the theory of proof
complexity generators) is in [22, Chapter 19]. When we use some proof
complexity notions and facts in a formal statement we define them first (and
give a reference). But we also use proof complexity background in various
informal remarks and there we only refer to the original source and/or to a
place in [22] where it can be found.

§2. Witnessing the dWPHP. The dWPHP for a function g extending n
bits to m = m(n) bits is formalized by the formula

∀1(n)∃y(|y| = m)∀x(|x| = n) g(x) �= y.

Notation ∀1(n) means that the universal quantifier ranges over all strings
1 ... 1 of any length n. To witness this formula means to find a witness y
for the existential quantifier given 1(n) as input. This task became known
recently in complexity theory as the range avoidance problem.6

Witnessing is a classic notion of proof theory7 and, in particular, many
fundamental results in bounded arithmetic are formulated as follows: if a
theory T proves a formula of a certain syntactic complexity then it can
be witnessed (i.e., its leading ∃ can be witnessed) by a function from a
certain computational class C. Such statements are known for many basic
bounded arithmetic theories, many natural syntactic classes of formulas and
computational classes of functions.

6That problem deals with functions computed by circuits and the input to the task is the
circuit itself; that is included in the formulation above as g can have parameters (not shown
in the notation).

7In particular, witnessing of dWPHP is discussed in [16, Section 7].

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 27

Unprovability results are generally difficult and usually conditional, and
we shall use one below. But in the relativized setup (in our situation this
would mean that g is given by an oracle) many unconditional unprovability
results are known and they are usually derived by showing that a principle
at hand cannot be witnessed by a function in some particular class C (for
dWPHP see the end of this section).

We now give an application of the conditional unprovability result of [23].
Consider theory TPV whose language has a k-ary function symbol fM
attached to every p-time clocked machine M with k inputs, all k ≥ 1. The
symbol fM is naturally interpreted on N by the function M computes. The
axioms of TPV are all universal sentences in the language true in N under
this interpretation.

The hypothesis used in the unprovability result is this.

Hypothesis (H). There exists a constant d ≥ 1 such that every language
in P can be decided by circuits of size O(nd): P ⊆ Size(nd).

The possibility that (H) is true with d = 1 is attributed to Kolmogorov, but
it is not a hypothesis accepted by mainstream complexity theory. However,
there are no technical results supporting the skepticism. In fact, (H) has
a number of interesting consequences such as P �= NP or E ⊆ Size(2o(n))
(the latter is bad for universal derandomization, but it is good for proof
complexity; cf. [17, 23]).

The following theorem uses g := tts,k with s = 2�k for a fixed 0 < � < 1
for our p-time function. The dWPHP for this function can be expressed by
the formula

∀1(m)(m = 2k > 1)∃y ∈ {0, 1}m∀x ∈ {0, 1}n, tts,k(x) �= y, (1)

where n = n(m) := 10s log s . We chose m as the natural parameter: m and n
are polynomially related and determine each other, so this indeed expresses
dWPHP.

Theorem 2.1. [23] Assume hypothesis (H). Then for every 0 < � < 1 and
s = s(k) := 2�k the theory TPV does not prove the sentence (1).

The proof of this theorem in [23] goes by showing that (1) cannot be
witnessed in a particular interactive way discussed below. However, we
want to stress that the unprovability result itself, perhaps proved from other
hypotheses (or unconditionally) not using witnessing methods (but using
model theory instead, for example) implies the impossibility to witness (1)
in a particular way.

To illustrate the idea simply we start by showing that (1) cannot be
witnessed by a p-time function f, assuming (H). The property that f witnesses
(1) is itself a universal statement

∀1(m)∀x(|x| = n) (|f(1(m))| = m ∧ g(x) �= f(1(m)))

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

28 JAN KRAJÍČEK

and hence, if true, an axiom of TPV. As this axiom easily implies (1) we get
a contradiction with Theorem 2.1.

In fact, it is easy to see (as pointed out by one of the referees) that for any
specific 0 < � < 1 the existence of a p-time witnessing function f for (1) with
s = 2�k is equivalent to the existence of a language in E \ Size(2�n): the set

{f(1(2�)) | � ≥ 1}
for any potential p-time f consists of the collection of characteristic functions
of a language in E for input lengths � ≥ 1, and vice versa.

Consider now an interactive model of witnessing via Student–Teacher
computation. In this model of computation (cf. [25, 26]) p-time student S,
given 1(n), produces his candidate solution b1 ∈ {0, 1}m. A computationally
unlimited teacher T either acknowledges the correctness or she produces a
counter-example: x1 ∈ {0, 1}n s.t. g(x1) = b1. S then produces his second
candidate solution b2 using also x1, T either accepts it or gives counter-
example x2 etc. The requirement is that within a given bound t on the
number of rounds S always succeeds. This can be written in a universal
way as

g(x1) �= S(1(n)) ∨ g(x2) �= S(1(n), x1) ∨ ··· ∨ g(xt) �= S(1(n), x1, ... , xt–1).
(2)

The witnessing theorem for TPV implies that dWPHP(g) is provable in TPV

iff (2) holds for some p-time student S and some constant t. We remark that
the witnessing for TPV + S1

2 yields S–T protocol with polynomially many
rounds t = mO(1); this relates to the notion of pseudo-surjectivity mentioned
in the Introduction (the universal statement (2) can be represented by an
infinite family of p-size tautologies and pseudo-surjectivity requires that
these tautologies do not have short proofs; cf. [15, 16] for details).

Let us state the conclusion of this discussion formally.

Theorem 2.2. Assume hypothesis (H). Then dWPHP for function tts,k
with parameters as in Theorem 2.1 cannot be witnessed by a Student–Teacher
computation with p-time Student and constantly many rounds.

Hence, to witness the non-emptiness of the complement of tts,k with
parameters as in Theorem 2.1 by a constant round S–T protocol with
p-time student would imply arbitrarily high polynomial lower bounds for
circuits computing a language in P .

Recently, Ilango, Li, and Williams [8] proved that the dWPHP for the
circuit value function CV (cf. Section 4) is not provable in TPV by showing
that it cannot be witnessed by an S–T computation with parameters as
in Theorem 2.2, assuming a couple of hypotheses of a different nature:
that coNP is not infinitely often in the Arthur–Merlin class AM and a
heuristically justified conjecture in cryptography about the security of the

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 29

indistinguishability obfuscation iO. Both these hypotheses appear to be
accepted by majority of experts (as opposed to hypothesis (H)). However,
one may wonder whether the hypothesis that the dWPHP cannot be in
general witnessed by a constant-round (or even with polynomially many
rounds) S–T protocol with a p-time student is not more fundamental, in the
sense of being closer to basic concepts, than the hypotheses above used to
derive it.

If we manage to extend the unprovability to theory TPV ∪ S1
2 then we

would rule out witnessing by S–T computation with polynomially many
rounds. Extending it further to theory TPV ∪ T 1

2 (or equivalently to TPV ∪
S2

2) would rule out witnessing by p-time machines accessing an NP oracle.
All these statements need to be conditional as they imply (unconditionally)
that P differs from NP : if P = NP then this is implied by a true universal
statement in the language of TPV (saying that a particular p-time algorithm
solves SAT) and hence all true universal closures of bounded formulas are
equivalent over TPV to universal statements which are axioms of TPV.

Further note that in the relativized world we have a number of
unconditional results about the impossibility to witness dWPHP. As an
example let us mention that we cannot witness dWPHP by a non-uniform
p-time machine (i.e., using a sequence of polynomial size circuits; cf. [30])
with an access to an NPR oracle where R is the graph of g that g is not a
bijection between [0, a] and [0, 2a]. Another example is that even if we have
oracle access to g and to another function f we cannot witness by a PLS
problem with base data defined by p-time machines with oracle access to
f, g that g is not a bijection between [0, a] and [0, 2a] with f being its inverse
map. The interested reader can find these results (and all background) in
[13, Sections 11.2 and 11.3] and in references given there.

§3. Feasible disjunction property and
∨

-hardness. We shall propose in this
section a notion of hardness that is preserved by more constructions (and,
in particular, by the construction underlying gadget generators in Section 4)
than is the original hardness but is presumably weaker than a stronger notion
of iterability (mentioned in the introduction) used in [18].

Definition 3.1. A function g : {0, 1}∗ → {0, 1}∗ that for any n ≥ 1
stretches all size n inputs to size m := m(n) > n and such that gn (the
restriction of g to {0, 1}n) is computed by sizemO(1) circuits is

∨
-hard for a

pps P is for any c ≥ 1, only finitely many disjunctions

�(gn)b1 ∨ ··· ∨ �(gn)br , (3)

with n, r ≥ 1 and all bi ∈ {0, 1}m, have P-proof of size at most mc .

Note that the definition can be formulated equivalently as saying that the
set of all valid disjunctions of the form (3) is hard for P.

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

30 JAN KRAJÍČEK

A pps P has the feasible disjunction property (abbreviated fdp) iff whenever
a disjunction α0 ∨ α1 of two formulas having no atoms in common has a
P-proof of size s then one of αi has a P-proof of size sO(1). The strong fdp
is defined in the same way, but the starting disjunction can have any arity
r:

∨
i<rαi . The strong fdp plays a role in analysis of a proof complexity

generator in [20] (see also [22, Section 17.9.2]). It is an open problem [22,
Problem 17.9.1] whether, for example, Frege or Extended Frege systems have
the (strong) fdp. Let us note that Garlı́k [6] proved that the proof systems
R(k) of [14] have no fdp.

Lemma 3.2. Assume a pps P has the strong fdp. Then any generator hard
for P is also

∨
-hard for P.

Lemma 3.3. Assume that g is a function stretching size n inputs to size n + 1
and such that gn (the restriction of g to {0, 1}n) is computed by size nO(1)

circuits and is
∨

-hard for a pps P.
Then for all � > 0 there is g ′ computed by size nO(1) circuits and stretching

size n inputs to size n + n1–� that is
∨

-hard for P.

Proof. Let g ′ compute g in parallel on nc many different inputs of size
n: it stretches nc+1 bits into nc+1 + nc bits. As the �-formulas for g ′ are
disjunctions of the �-formulas for g, the lemma follows by taking c ≥ 1
large enough. �

A strategic choice: use
∨

-hardness
As it was pointed out in [20], for the purpose of proving lengths-of-proofs

lower bounds for some pps P we may assume w.l.o.g. that P satisfies the strong
fdp: otherwise it is not p-bounded and we are done. This observation, together
with Lemma 3.2, justifies the use of

∨
-hardness rather than mere hardness.

The reader skeptical about the choice may interpret the statements contra-
positively as sufficient conditions refuting the strong fdp for a particular pps
(cf. Lemma 5.4). In particular, it may happen that no strong pps has the
strong fdp: but then we can celebrate as NP �= coNP .

§4. The gadget generator. The class of gadget generators was introduced
in [18] and it is defined as follows. Given any p-time function

f : {0, 1}� × {0, 1}k → {0, 1}k+1,

define a gadget generator based on f

Gadf : {0, 1}n → {0, 1}m,
where

n := � + k(� + 1) and m := n + 1

as follows:

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 31

1. The input x ∈ {0, 1}n is interpreted as � + 2 strings

v, u1, ... , u�+1,

where v ∈ {0, 1}� and ui ∈ {0, 1}k for all i.
2. The output y = Gadf(x) is the concatenation of � + 1 strings ws ∈

{0, 1}k+1 where we put

ws := f(v, us).

Clearly we may fix f w.l.o.g. to be the circuit value functionCV�,k(v, u) which
from a size � description v of a circuit (denoted also v) with k inputs and
k + 1 outputs and from u ∈ {0, 1}k computes the value of v on u, an element
of {0, 1}k+1.

It was shown in [18] (see also [22, Lemma 19.4.6]) that if we replace the
hardness of a generator by a stronger condition then it suffices to consider
circuits v of size ≤ k1+� , any fixed � > 0. The proof of this fact in [18] used
the notion of iterability mentioned earlier, as it was at hand. However, the
same argument gives Theorem 4.1 using the presumably weaker notion of∨

-hardness from Section 3; the proof in [18] was only sketched, so we give
it here. Recall that a pps P simulates Q iff for all 	 ∈ TAUT it holds that
sP() ≤ sQ()c .

Notation:
In the rest of paper we shall ease on the notation and we will denote the

gadget generator Gadf based on f = CVk2,k by Gadsq(sq stands for square).

Theorem 4.1 (ess. [18]). Let P be a pps simulating EF and having the
following properties. There is c ≥ 1 such that:

• whenever 	 ∈ TAUT and 	 ′ is obtained from 	 by substituting for some
atoms constants 0 or 1 then sP(′) ≤ sP()c , and

• for all α,
 : sP(
) ≤ (sP(α) + sP(α →
))c .

Assume that there exists a p-time function g : {0, 1}∗ → {0, 1}∗ that stretches
all size n inputs to size m := m(n) > n and is

∨
-hard for P.

Then the gadget generator based on CVk2,k is
∨

-hard (and hence also hard)
for P as well.

Proof. Assume P and g satisfy the hypotheses of the theorem; w.l.o.g.
we may assume that m(n) = n + 1. Let Ck be a canonical circuit of size
polynomial in k that computes gk and let Ck be encoded by a string �Ck� of
size � ≤ ka , some constant a ≥ 1.

Claim 1. Gadf with f := CVka,k is
∨

-hard for P. �
Note that the � formula for Gadf and b = (b1, ... , bt) ∈ {0, 1}n+1 is a t-size

disjunction, t = ka + 1, of �-formulas for CVka,k and bi , i ≤ t. Substitute

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

32 JAN KRAJÍČEK

there for (atoms defining) the gadget v := �Ck�. Using that EF has p-size
proofs8 of

CVka,k(�Ck�, u) = Ck(u)

and P ≥ EF , any proof of the original disjunction for Gadf is turned
into a polynomially longer P-proof of a disjunction of �-formulas for g,
contradicting the hypothesis.

Claim 2. Gadsq is
∨

-hard for P.

Note that Gadf in Claim 1 is computed in time O(k2a) which is ≤ n2–�

for some � > 0. Hence we may perform the same construction as in Claim 1
but using Gadf instead of g now.

Note that a circuit of size s can be encoded by 10s log s bits, so Gadsq uses
as gadgets circuits of size a little bit less than quadratic. Observe also that
Gadsq is computed in time smaller than n3/2.

The next statement shows that non-uniformity is irrelevant in the presence
of strong fdp. It is proved analogously as Theorem 4.1 by taking for gadgets
circuits needed to compute the generator.

Lemma 4.2. Assume a pps P satisfies the hypotheses of Theorem 4.1 and
that it admits a

∨
-hard proof complexity generator computed in non-uniform

p-time (i.e., by p-size circuits). Then Gadsq is
∨

-hard for P.

It is known that gadget generators (and Gadsq in particular) are hard
for many proof systems for which we know any super-polynomial lower
bound (cf. [22]). Our working hypothesis is that the generator Gadsq satisfies
Conjecture 1.1. But when working with the generator we encounter the
same difficulty as in the case of the truth-table generator tts,k : we know
nothing non-trivial about circuits of sub-quadratic size. Furthermore, the
experience with lengths-of-proofs lower bounds we have so far suggests that
it is instrumental to have hard examples with some clear combinatorial
structure. Hence to study the hardness of Gadsq it may be advantageous to
consider gadgets (i.e., sub-quadratic circuits) of a special form (technically
that would be a substitution instance of Gadsq).

One such specific generator was defined in [22, pp. 431–432] and denoted
nwk,c there; its gadget is essentially a slightly over-determined system of
sparse equations for a generic function h. Namely the gadget consists of:

• k + 1 sets J1, ... , Jk+1 ⊆ {x1, ... , xk}, each of size 1 ≤ c ≤ log k,
• together with 2c bits defining truth table of a Boolean function h with

c inputs.

8When CV�,k is defined naturally by induction on the size of the circuit and the encoding
�Ck� uses log-size addresses of subcircuits it would suffice to assume P ≥ R(log) (cf. [22] for
the proof system).

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 33

Given gadget v and u ∈ {0, 1}k , f(v, u) ∈ {0, 1}k+1 are the k + 1 values
h computes on values that u gives to variables in sets J1, ... , Jk+1. This
generator for one fixed, non-uniform gadget was the original suggestion for
Conjecture 1.1 in [16], but the gadget generator construction allows to avoid
the non-uniformity and consider generic case.

§5. Stretch and the Kt-complexity. The main aim of proof complexity
generators is to provide hard examples and for this purpose the stretch
n + 1 of g in Conjecture 1.1 suffices (and it yields the shortest �-formulas).
A larger stretch is of interest in a connection9 with the truth-table function
tts,k discussed earlier.

We may try to limit possible stretch of generators via some considerations
involving time-bounded Kolmogorov complexity as we touched upon in the
Introduction. We shall use Levin’s measure Kt(w): the minimum value of
|d | + log t, where program d prints w in time t (cf. [2]). Its advantage overKt

is that it does not require to fix the time in advance. Although a statement like
Kt(w) ≥ 2m/3 can presumably not be expressed by a p-size (in m) tautology,
certificates for the membership in an NP set A such that all w ∈ A satisfy
Kt(w) ≥ 2|w|/3 can be interpreted as proofs of Kt(w) ≥ 2m/3.

Let us consider a function with an extreme stretch: tts,k with s = 100k.
This generator sends n = 10s log s ≤ O(logm log logm) bits tom = 2k bits
and is computed in time t = O(sm) < m3/2. Hence both Kt and Kt are
bounded above on rng(tts,k) ∩ {0, 1}m by O(logm log logm).

Notation (Allender [2]):
For any set A ⊆ {0, 1}∗ define function KtA : N+ → N+ by

KtA(m) := min{Kt(w) | w ∈ {0, 1}m ∩A}
if the right-hand side is non-empty, and we leaveKtA(m) undefined otherwise.

Hence we could rule out a generator with the extreme stretch (as in the
above tts,k) being hard for all proof systems if we could find an infinite
NP set A such that KtA(m) ≥ �(logm · log logm). Unfortunately the next
theorem suggests that this is likely not an easy task. Following Allender [2]
we define an NE search problem to be a binary relation R(x, y) such that
R implicitly bounds |y| by 2O(n) for |x| = n and which is decidable in time
2O(n) (think of y as an accepting computation of an NE machine on input
x). The search task is: given x, find y such that R(x, y), if it exists. As an
example related to our situation let A be an NP set defined by condition

u ∈ A iff ∃v(|v| ≤ |u|c)S(u, v)

9In fact, the need for larger stretch even in this connection seems to be eliminated by the
notion of iterability (cf. [16]).

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

34 JAN KRAJÍČEK

with S a p-time relation, and consider R(x, y) with y = [y1, y2] defined by

|y1| = x ∧ |y2| ≤ |y1|c ∧ S(y1, y2).

Note that |y1| = x expresses that the length of y1 is exponential in the length
of x.

Theorem 5.1 (Allender [2, Corollary 7 and Theorem 8]). There exists
an infinite NP set A s.t. KtA(m) = �(logm) iff there exists an NE search
problem s.t.:

• ∃yR(x, y) is satisfied for infinitely many x,
• every algorithm running in time 2O(n) solves the search problem for a finite

number of inputs x only.

Hence ruling out generators with even very large stretch means likely to
prove significant computational lower bounds. The following seems to be a
natural test question.

Problem 5.2. Is it true that any infinite NP set A contains a stringw ∈ A
with Kt(w) < |w|? That is, is it true that the set {w | Kt(w) ≥ |w|} is NP-
immune?

Theorem 5.3.

1. If Problem 5.2 has the negative answer then the range of no p-time
generator g stretching n bits to n + �(log n) bits can intersect all infinite
NP sets.

2. If Problem 5.2 has the affirmative answer then NP is a proper subclass
of EXP .

Proof. For the first part note that all strings in the range of gn (g restricted
to {0, 1}n) have Kt-complexity at most n +O(log n).

For the second part note that there is a function g computable in time
2O(n) such that the range of gn is the set of w ∈ {0, 1}n+1 with Kt(w) ≤ n.
We have that rng(g) ∈ E and hence {0, 1}∗ \ rng(g) is also in E but it cannot
be—assuming the affirmative answer to the problem—in NP . This implies
that E �⊆ NP and hence also EXP �⊆ NP . As NP ⊆ EXP we have NP ⊂
EXP . �

We would rather like to see the affirmative answer; not only does it have
nice corollary by the previous theorem, but it is also in the spirit of a potential
reduction of provability hardness to computational hardness discussed after
Conjecture 1.1. Note that the problem has the affirmative answer for all
NP sets defined in the CSP (constraint satisfaction problem) format: if an
instance X of size n has a solution, so do instances obtained by taking t
disjoint copies (i.e., in disjoint sets of variables) of X, and these have Kt-
complexity at mostO(n + log t + log tn) which is less than the size tn of the
new instance if t > 1 and n >> 1.

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 35

Let us consider the stretch of gadget generators. By default it was taken
in the definition to be the minimal required stretch, but there are other
options. One could use as gadgets circuits that map k bits to k′ bits where
k′ >> k; for example, k′ = 2k or k′ = k2 (allowing accordingly a bigger
size of gadgets, still polynomial in k). The resulting generator would send n
bits to approximately (k′/k)n bits which is about n1+� for some � > 0, for
k′ = k2.

However, we want to be conservative with requirements on gadgets. Note
that the stretch of gadget generators can be influenced also by taking more
strings ui in the construction of Gadf than is the minimal number needed,
i.e., more than � + 1. In particular, assume we perform the construction of
Gadf but taking t >> � strings ui and wi . We still want to maintain, as in
Theorem 4.1, that the generator is the

∨
-hardest generator; hence we allow

only t polynomial in k. Then

n := � + kt and m := (k + 1)t.

For � ≤ kO(1) (as in Gadsq) and taking t := kc for very large c ≥ 1 we can
arrange that

m ≥ n + n1–�

for as small � > 0 as wanted. Denote the generator which extends the
definition of Gadsq in this way by Gadcsq .

Lemma 5.4. Assume that there is an infinite NP set A such that for some
� > 0,

KtA(m) ≥ m – m1–� .

Assume further that Conjecture 1.1 is true.
Then there is a pps P such that no pps Q simulating P has the strong fdp.

Proof. Choose c ≥ 1 so large that the stretch of Gadcsq is n1–� , � = �(c),
where

m1–� = (n + n1–�)1–� < n1–� + 2 log n

for n >> 0 (taking c ≥ 1 such that 0 < �(c) < � suffices).
Given an infinite NP set A satisfying the hypothesis define a pps P to be,

say, resolution but accepting also witnesses to the membership of b ∈ A as
proofs of �(Gadcsq)b . It is sound as A must be disjoint from the range of
Gadcsq .

If Conjecture 1.1 was true for some g and some Q simulating this P, and Q
would satisfy the strong fdp, it would follow by Lemma 3.2 that g is

∨
-hard

for Q and hence by Theorem 4.1 (modified trivially for Gadcsq) that Gadcsq
is

∨
-hard (and hence also hard) for Q. That is a contradiction with how P

was defined. �

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

36 JAN KRAJÍČEK

§6. Modifications for proof search hardness. Proof complexity generators,
and Conjecture 1.1 in particular, aim primarily at the problem to establish
lengths-of-proofs lower bounds. It is easy to modify the concept to aim at
time complexity of proof search. Essentially this means to replace everywhere
in the previous sectionsNP sets byP sets. To give a little more detail we shall
use the definition of a proof search algorithm from [24]: it is a pair (A,P) such
that A is a deterministic algorithm that finds for every tautology its P-proof.
How much time any algorithm (A,P) has to use on a particular tautology
is measured by the information efficiency function iP : TAUT → N+; it is
an inherently algorithmic information concept. For each pps P there is a
time-optimal (AP,P) (it has at most polynomial slow-down over any other
proof search algorithm) which is also information-optimal. The reader can
find definitions and proofs of these facts in [24].

Define a set S ⊆ TAUT to be search-hard for P iff for any c ≥ 1 algorithm
AP finds a proof of 	 in time bounded above by |	|c for finitely many
formulas 	 ∈ S only. Then analogously with the definition of hardness we
define g (in the format as in Conjecture 1.1, i.e., p-time stretching each
input by one bit) to be search-hard for P iff the set of tautologies �(g)b ,
b /∈ rng(g), is search-hard for P. It can be shown that the conjecture that
there is a uniform generator search-hard for all pps is then equivalent to the
following conjecture.

Conjecture 6.1 (Proof search version of Conjecture 1.1). There exist a
p-time function g extending each input by one bit such that its range rng(g)
intersects all infinite P sets. That is, the complement of rng(g) is P-immune.

There are some more facts known about KtA measure for sets in P (note
that Theorem 5.1 was about NP sets); for example, [2, Theorems 6 and 8]
or [7, Theorem 3.11]. These results seem to suggest that Conjecture 6.1 may
not be any easier to prove than Conjecture 1.1.

Let us conclude this section by noticing that the fdp can be naturally
modified for proof search as well: the modification requires that the time
AP needs on α0 or α1 is bounded above by a polynomial in time it needs on
α0 ∨ α1. However, such a property implies the usual feasible interpolation
property. Namely, if � is a P-proof of a disjunction

�0(x, y) ∨ �1(x, z)

(the disjuncts are not required to have disjoint sets of variables this time)
consider disjunction
 ∨ (�0 ∨ �1) where
 is a propositional sentence that
is the conjunction of 0 with all bits of �. Then AP (recall from Section 6
that (AP,P) is time-optimal) when given this disjunction reads � and hence
proves �0 ∨ �1 and thus also
 ∨ (�0 ∨ �1). By the search version of fdp AP
must find in time polynomial in |�| a proof of �0 ∨ �1 (as
 is false) and thus
also of any instance �0(a, y) ∨ �1(a, z) (this requires that P-proofs are closed

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 37

under substitution of constants as in Theorem 4.1). By the new property
again algorithm AP , for each a succeeds on either �0(a, y) or on �1(a, z) in
time polynomial in |�|. That yields feasible interpolation. This observation
means that the proof search variant of fdp cannot hold for any strong proof
systems and is subject to the same limitations as is feasible interpolation and,
in particular, cannot hold for any strong proof systems unless some standard
cryptographic assumptions fail. The reader can find all background in [22].

§7. Feasibly infinite NP sets. Two natural ways how to make Conjecture
1.1 weaker and hence more tractable are either to allow generator g from
a larger class of functions than just p-time computable or to restrict the
requirement of the finiteness only to a subclass of all NP sets. The proof of
part 2 of Theorem 5.3 shows that finding g : {0, 1}n → {0, 1}n+1 computable
in exponential time would imply NP ⊂ EXP (it would be that rng(g) ∈
EXP and hence also {0, 1}∗ \ rng(g) ∈ EXP , but by choice of g this is not
in NP), so such a weakening is definitely interesting although it may not
advance proof complexity. In this section we look at how to restrict sensibly
the class of NP sets in the conjecture.

We have seen one such restriction in the Introduction (classes ResPg).
There is, however, another natural restriction of the class of NP sets in the
conjecture possible. Take a sound theory T whose language extends that of
TPV consider the class of all NP sets A such that the infinitude of A

InfA := ∀x∃y(y > x ∧ y ∈ A)

can be proved in T, representing y ∈ A by a formula in the language of TPV

of the form

∃z(|z| ≤ |y|c)A0(y, z)

with c ≥ 1 a constant and A0 open and defining a p-time relation. Hence
InfA is a ∀∃-sentence.

Knowing that a particular T proves InfA yields, in principle, non-trivial
information about A. For example, if TPV proves the sentence then by
applying Herbrand’s theorem we get a p-time function f witnessing it. That
is, f finds elements of A:

∀x(f(x) > x ∧ f(x) ∈ A).

We shall call sets A for which such p-time function f exists feasibly infinite.
This remains true (by Buss’s theorem) if TPV is augmented by S1

2 . If TPV

is extended by some stronger bounded arithmetic theory then InfA will
be witnessed by a specific NP search problem attached to the theory. For
example, if we add to TPV induction axioms for NP sets (theory T 1

2) then
InfA is witnessed by a PLS problem (by the Buss–K. theorem [4]). The
reader can find the bounded arithmetic background in [13].

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

38 JAN KRAJÍČEK

It is easy to see that Problem 5.2 has the affirmative answer for feasibly
infinite NP sets. Namely applying function f(x) to x := 1(n) produces
y := f(x) ∈ A with |y| > n but Kt(y) ≤ O(log n). For the conjecture we
need to work a bit.

Theorem 7.1. Assume hypothesis (H) from Section 2. Then Conjecture 1.1
holds relative to the class of feasibly infinite NP sets: there is a generator g
whose range intersects every feasibly infinite NP set.

Proof. The proof is a special case of the construction from [23]. We shall
show that generator tts,k with s = s(k) := 2k/2 satisfies the statement.

Let A be a feasibly infinite NP set as it is witnessed by a p-time function
f. Let d ≥ 1 be the constant from (H) and put m′ := m1/(3d) where m :=
|f(1(n))| and n >> 1, and put also k := logm.

Define the function f̂ that has m′ + k variables and on inputs 1(m′) and
i ∈ {0, 1}k computes the i-th bit of f(1(n)); it is a p-time function.

Take a circuit Ĉ (z, i) that computes f̂ of size guaranteed by hypothesis
(H) and define new circuit C by substituting 1(m′) for z in Ĉ and leaving
only the k variables for bits of i. Note that C has size O((m′ + k)d) < 2k/2.
Further, by its definition, tts,k(C) = f(1(n)); i.e., rng(tts,k) ∩ A �= ∅. �

Corollary 7.2. Assume hypothesis (H) from Section 2. Then there exists
a model M of TPV in which Conjecture 1.1 holds: there is a p-time generator
g such that for any standard NP set A (i.e., defined without parameters from
M) it holds:

M |= rng(g) ∩A = ∅ → ¬InfA.

Proof. Take the function g from Theorem 7.1. The statement rng(g) ∩
A = ∅ is universal for any A ∈ NP , so it is true in the standard model N iff
it is true in all models of TPV. It thus suffices to show that TPV together with
all sentences ¬InfA for these sets A is consistent.

Assume not; then the Compactness theorem and the fact that a finite
number of Ai are all disjoint from rng(g) iff their union is imply that for
some NP set A such that rng(g) ∩A = ∅ theory TPV proves InfA. But then
it is feasibly infinite and that contradicts Theorem 7.1. �

§8. Concluding remarks. I think that it is fundamental for the devel-
opment of the theory to make a progress on the original problem of
the unprovability of dWPHP for p-time functions in S1

2 discussed in the
Introduction. For a start we may try to show the unprovability in TPV (or
some of its extension as mentioned at the end of Section 2) under a more
mainstream hypothesis than is (H) and more theoretically fundamental than
are those used in [8]. Note that this presumably requires a different function
than tts,k we used in Section 2: by remarks before and after Theorem 2.1

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.40

ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS 39

the unprovability of dWPHP for this function implies E ⊆ Size(2o(k)) which
contradicts the hypothesis that E �⊆ Size(2�k) for some � > 0 which is—in
the eyes of many complexity theorists at least—considered plausible.

However, in my view a real progress will result only from unconditional
results. For reasons discussed in the next-to-last paragraph of Section 2
to have a chance to succeed we need to leave theory TPV aside and work
with theories PV or S1

2 . This implies that an argument cannot rely just on
witnessing theorems as they do not change if TPV is added. The problem
becomes essentially propositional and it is exactly this what led in [15, 16]
to the notions of freeness and pseudo-surjectivity (of generators for EF)
mentioned in Section 2: to show that a p-time generator has this property
is essentially equivalent to the unprovability of dWPHP for it in PV or S1

2 ,
respectively (cf. [15, Section 6] and [16]).

Acknowledgments. I thank Igor C. Oliveira (Warwick U.) and Jan Pich
(Oxford U.) for discussions about the topic. I am indebted to the two
anonymous referees for their detailed comments and suggestions.

REFERENCES

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson, Pseudo-
random generators in propositional proof complexity. SIAM Journal on Computing, vol. 34
(2004), no. 1, pp. 67–88.

[2] E. Allender, Applications of time-bounded Kolmogorov complexity in complexity
theory, Kolmogorov Complexity and Computational Complexity (O. Watanabe, editor),
Monographs in Theoretical Computer Science, EATCS Series, Springer, Berlin–Heidelberg,
1992, pp. 4–22.

[3] S. R. Buss, Bounded Arithmetic, Bibliopolis, Naples, 1986.
[4] S. R. Buss and J. Krajı́ček, An application of Boolean complexity to separation

problems in bounded arithmetic. Proceedings of the London Mathematical Society, vol. 69
(1994), no. 3, pp. 1–21.

[5] S. A. Cook and R. A. Reckhow, The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, vol. 44 (1979), no. 1, pp. 36–50.

[6] M. Garlı́k, Failure of feasible disjunction property for k-DNF resolution and NP-
hardness of automating it, preprint, 2020, https://doi.org/10.48550/arXiv.2003.10230.

[7] S. Hirahara, Unexpected hardness results for Kolmogorov complexity under uniform
reductions, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), Association for Computing Machinery, New York, 2020, pp. 1038–
1051.

[8] R. Ilango, J. Li, and R. Williams, Indistinguishability obfuscation, range avoidance,
and bounded arithmetic, electronic colloquium on computational complexity, Report No. 38,
2023.

[9] E. Jeřábek, Dual weak pigeonhole principle, Boolean complexity, and derandomization.
Annals of Pure and Applied Logic, vol. 129 (2004), pp. 1–37.

[10] ———, Weak pigeonhole principle, and randomized computation, Ph.D. thesis, Charles
University, Prague, 2005.

[11] ———, Approximate counting in bounded arithmetic. Journal of Symbolic Logic, vol.
72 (2007), no. 3, pp. 959–993.

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

https://doi.org/10.48550/arXiv.2003.10230
https://doi.org/10.1017/bsl.2023.40

40 JAN KRAJÍČEK

[12] ———, Approximate counting by hashing in bounded arithmetic. Journal of Symbolic
Logic, vol. 7493 (2009), pp. 829–860.

[13] J. Krajı́ček, Bounded Arithmetic, Propositional Logic, and Complexity Theory,
Encyclopedia of Mathematics and Its Applications, vol. 60, Cambridge University Press,
Cambridge, 1995.

[14] ———, On the weak pigeonhole principle. Fundamenta Mathematicae, vol. 170 (2001),
nos. 1–3, pp. 123–140.

[15] ———, Tautologies from pseudo-random generators, this Journal, vol. 7 (2001), no.
2, pp. 197–212.

[16] ———, Dual weak pigeonhole principle, pseudo-surjective functions, and provability
of circuit lower bounds. Journal of Symbolic Logic, vol. 69 (2004), no. 1, pp. 265–286.

[17] ———, Diagonalization in proof complexity. Fundamenta Mathematicae, vol. 182
(2004), pp. 181–192.

[18] ———, A proof complexity generator, Proceedings from the 13th International
Congress of Logic, Methodology and Philosophy of Science (Beijing, August 2007) (C.

Glymour, W. Wang, and D. Westerstahl, editors), Studies in Logic and the Foundations
of Mathematics, King’s College Publications, London, 2009, pp. 185–190.

[19] ———, Forcing with Random Variables and Proof Complexity, London Mathematical
Society Lecture Note Series, vol. 382, Cambridge University Press, Cambridge, 2011.

[20] ———, On the proof complexity of the Nisan–Wigderson generator based on a hard
NP ∩ coNP function. Journal of Mathematical Logic, vol. 11 (2011), no. 1, pp. 11–27.

[21] ———, On the computational complexity of finding hard tautologies. Bulletin of the
London Mathematical Society, vol. 46 (2014), no. 1, pp. 111–125.

[22] ———, Proof Complexity, Encyclopedia of Mathematics and Its Applications, vol.
170, Cambridge University Press, Cambridge, 2019.

[23] ———, Small circuits and dual weak PHP in the universal theory of p-time algorithms.
ACM Transactions on Computational Logic, vol. 22 (2021), no. 2, Article no. 11, pp. 1–4.

[24] ———, Information in propositional proofs and algorithmic proof search. Journal of
Symbolic Logic, vol. 87 (2022), no. 2, pp. 852–869.

[25] J. Krajı́ček, P. Pudlák, and J. Sgall, Interactive computations of optimal solutions,
Mathematical Foundations of Computer Science (B. Rovan, editor), Lecture Notes in
Computer Science, vol. 452, Springer, Berlin–Heidelberg, 1990, pp. 48–60.

[26] J. Krajı́ček, P. Pudlák, and G. Takeuti, Bounded arithmetic and the polynomial
hierarchy. Annals of Pure and Applied Logic, vol. 52 (1991), pp. 143–153.

[27] J. Paris, A. J. Wilkie, and A. Woods, Provability of the pigeonhole principle and
the existence of infinitely many primes. Journal of Symbolic Logic, vol. 53 (1988), no. 4, pp.
1235–1244.

[28] A. A. Razborov, Pseudorandom generators hard for k-DNF resolution polynomial
calculus resolution. Annals of Mathematics, vol. 181 (2015), no. 2, pp. 415–472.

[29] H. Ren, R. Santhanam, and Z. Wang, On the range avoidance problem for circuits,
ECCC Report No. 48, 2022.

[30] M. Sipser, Introduction to the Theory of Computation, third ed., Cengage Learning,
Boston, 2005.

[31] A. Woods, Some problems in logic and number theory, and their connections, Ph.D.
thesis, University of Manchester, 1981.

FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY

SOKOLOVSKÁ 83
PRAGUE 186 75 THE CZECH REPUBLIC

E-mail: krajicek@karlin.mff.cuni.cz

https://doi.org/10.1017/bsl.2023.40 Published online by Cambridge University Press

mailto:krajicek@karlin.mff.cuni.cz
https://doi.org/10.1017/bsl.2023.40

	1 Introduction
	2 Witnessing the dWPHP
	3 Feasible disjunction property and -hardness
	4 The gadget generator
	5 Stretch and the Kt-complexity
	6 Modifications for proof search hardness
	7 Feasibly infinite NP sets
	8 Concluding remarks
	REFERENCES

