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Abstract. In this paper we investigate the following functional inequality

‖f (x − y − z) − f (x − y + z) + f (y) + f (z)‖ ≤ ‖f (x + y − z) − f (x)‖

in Banach spaces, and employing the above inequality we prove the generalized Hyers–
Ulam stability of derivations in Hilbert C∗-modules.
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1. Introduction and preliminaries. A classical question in the theory of functional
equations is the following: ‘When is it true that a function, which approximately satisfies
a functional equation E , must be close to an exact solution of E?’ If the problem has
a solution, we say that the equation E is stable. Such a problem was formulated by
Ulam [31] in 1940 and solved in the next year by Hyers [11] for the Cauchy functional
equation. It gave rise to the stability theory for functional equations. In 1950, the
result of Hyers [11] was extended by Aoki [3] by considering the unbounded Cauchy
differences. In 1978, Rassias [27] proved that the additive mapping T , obtained by
Hyers [11] or Aoki [3], is linear if, in addition, for each x ∈ E the mapping f (tx) is
continuous in t ∈ �. Găvruta [7] generalized Rassias’ result. Following the techniques
of the proof of the corollary of Hyers [11], we observed that Hyers introduced (in 1941)
the Hyers continuity condition about the continuity of mapping for each fixed, and
then he proved homogeneity of degree one and therefore the famous linearity. This
condition has been assumed till now through the complete Hyers direct method to prove
linearity for generalized Hyers–Ulam stability problem forms (see [15]). Beginning
around 1980, the stability problems of several functional equations and approximate
homomorphisms have been extensively investigated by a number of authors and there
are many interesting results concerning this problem (see [1, 4, 5, 14, 16–22, 26, 28,
29]).

Rassias [24] following the spirit of the innovative approach of Hyers [11], Aoki
[3] and Rassias [27] for the unbounded Cauchy difference proved a similar stability
theorem in which he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ � with
p + q �= 1 (see also [23, 25] for a number of other new results). Gilányi [9] showed that
if f satisfies the functional inequality

‖2f (x) + 2f (y) − f (x − y)‖ ≤ ‖f (x + y)‖, (1.1)
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then f satisfies the Jordan-von Neumann functional equation

2f (x) + 2f (y) = f (x + y) + f (x − y).

See also [30]. Fechner [6] and Gilányi [10] proved the generalized Hyers–Ulam stability
of the functional inequality (1.1).

Hilbert C∗-modules provide a natural generalization of Hilbert spaces arising
when the field of scalars C is replaced by an arbitrary C∗-algebra. This generalization
was introduced by Kaplansky in [13] (see also [2, 8]).

DEFINITION 1.1. A pre-Hilbert A-module is a (right) A-module M equipped with
a sesquilinear form 〈., .〉 : M × M → A with the following properties:

1. 〈x, x〉 ≥ 0 for any x ∈ M.

2. 〈x, x〉 = 0 implies that x = 0.
3. 〈y, x〉 = 〈x, y〉∗ for any x, y ∈ M.

4. 〈x, ya〉 = 〈x, y〉a for any x, y ∈ M and any a ∈ A.
The map 〈., .〉 is called an A-valued inner product.

DEFINITION 1.2. A pre-Hilbert A-module M is called a Hilbert C∗-module if it is
complete with respect to the norm ‖x‖ = ‖〈x, x〉‖ 1

2 .

DEFINITION 1.3. A linear mapping d : M → M is called a derivation on the
Hilbert C∗-module M if it satisfies the condition d(〈x, y〉z) = 〈d(x), y〉z + 〈x, d(y)〉z +
〈x, y〉d(z) for every x, y, z ∈ M.

In this paper we investigate an �-linear mapping associated with the following
functional inequality:

‖f (x − y − z) − f (x − y + z) + f (y) + f (z)‖ ≤ ‖f (x + y − z) − f (x)‖, (1.2)

and prove the generalized Hyers–Ulam stability of �-linear mappings in Banach spaces
associated with the functional inequality (1.2). These results are applied to investigate
derivations in Hilbert C∗-modules and to prove the generalized Hyers–Ulam stability
of derivations in Hilbert C∗-modules.

Throughout this paper X is a Banach space, Y is a Banach space with norm ‖.‖Y

and M denotes a Hilbert C∗-module with norm ‖.‖.

2. Functional inequalities in Banach spaces.

LEMMA 2.1. Let f : X → Y be a mapping such that
‖μf (x − y − z) − f (μx − y + z) + μf (y) + f (z)‖Y ≤ ‖f (x + y − μz) − f (x)‖Y (2.1)

for all x, y, z ∈ X and all μ ∈ �1 := {μ ∈ � : |μ| = 1}. Then f is �-linear.

Proof. Letting x = y = z = 0 and μ = 1 in (2.1), we get

‖f (0)‖Y ≤ 0.

So f (0) = 0. Letting μ = 1 and z = y in (2.1), we have

‖f (x − 2y) − f (x) + 2f (y)‖Y ≤ 0
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for all x, y ∈ X . Hence,

f (x − 2y) = f (x) − 2f (y) (2.2)

for all x, y ∈ X . By replacing x by x + y in (2.2), we have

f (x − y) = f (x + y) − 2f (y) (2.3)

for all x, y ∈ X . Letting x = 0 in (2.2), we get f (−y) = −f (y) for all y ∈ X , therefore f
is an odd function. Interchanging x and y in (2.3), we have

−f (x − y) = f (x + y) − 2f (x) (2.4)

for all x, y ∈ X . Adding (2.3) and (2.4), we conclude that f is additive. Letting y = z = 0
in (2.1), we get

f (μx) = μf (x) (2.5)

for all x ∈ X and all μ ∈ �1.
Now let μ ∈ � and K be a natural number greater than 4|μ|. Then | μ

K | < 1
4 <

1 − 2
3 = 1

3 . By Theorem 1 of [12] there exist three numbers μ1, μ2 and μ3 ∈ �1 such
that 3( μ

K ) = μ1 + μ2 + μ3. So by additivity of f and (2.5)

f (μx) = K
3

f
(

3
μ

K
x
)

= K
3

f (μ1x + μ2x + μ3x)

= K
3

(f (μ1x) + f (μ2x) + f (μ3x))

= K
3

(μ1 + μ2 + μ3)f (x)

= μf (x)

for all x ∈ X . Therefore, f : X → Y is �-linear. �
Now we prove the generalized Hyers–Ulam stability of �-linear mappings in

Banach spaces.

THEOREM 2.1. Let f : X → Y be a mapping for which there exists a control function
ϕ : X3 → [0,∞) such that

lim
k→∞

2kϕ
( x

2k
,

y
2k

,
z
2k

)
= 0, (2.6)

ϕ̃(x, y, y) =
∞∑

k=0

2kϕ
( x

2k
,

y
2k

,
y
2k

)
< ∞ (2.7)

and

‖μf (x − y − z) − f (μx − y + z) + μf (y) + f (z)‖Y

≤ ‖f (x + y − μz) − f (x)‖Y + ϕ(x, y, z) (2.8)
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for all x, y, z ∈ X and all μ ∈ �1 = { λ ∈ � : |λ| = 1 }. Then there exists a unique �-linear
mapping L : X → Y such that

‖f (x) − L(x)‖Y ≤ ϕ̃
(

x,
x
2
,

x
2

)
(2.9)

for all x ∈ X.

Proof. It follows from (2.6) and (2.8) that f (0) = 0. Letting μ = 1 and z = y in
(2.8), we get

‖f (x − 2y) − f (x) + 2f (y)‖Y ≤ ϕ(x, y, y) (2.10)

for all x ∈ X . Replacing x and y by 2x and x in (2.10) respectively, we have

‖f (2x) − 2f (x)‖Y ≤ ϕ(2x, x, x)

for all x ∈ X . So

‖f (x) − 2f
(x

2

)
‖Y ≤ ϕ

(
x,

x
2
,

x
2

)
for all x ∈ X . Hence,

‖2l f
( x

2l

)
− 2mf

( x
2m

)
‖Y ≤

m−1∑
j=l

‖2jf
( x

2j

)
− 2j+1f

( x
2j+1

)
‖Y

≤
m−1∑
j=l

2jϕ
( x

2j
,

x
2j+1

,
x

2j+1

)
(2.11)

for all non-negative integers m and l with m > l and all x ∈ X . It follows from (2.7)
that the sequence {2nf ( x

2n )} is Cauchy for all x ∈ X . Since Y is complete, the sequence
{2nf ( x

2n )} converges. So one can define the mapping L : X → Y by

L(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (2.11), we get
(2.9).

It follows from (2.6) and (2.8) that

‖μL(x − y − z) − L(μx − y + z) + μL(y) + L(z)‖Y

= lim
n→∞ 2n‖μf

(
x − y − z

2n

)
− f

(
μx − y + z

2n

)
+ μf

( y
2n

)
+ f

( z
2n

)
‖Y

≤ lim
n→∞ 2n‖f

(
x + y − μz

2n

)
− f

( x
2n

)
‖Y + lim

n→∞ 2nϕ
( x

2n
,

y
2n

,
z
2n

)
= ‖L(x + y − μz) − L(x)‖Y

for all x, y, z ∈ X and all μ ∈ �1. So

‖μL(x − y − z) − L(μx − y + z) + μL(y) + L(z)‖Y ≤ ‖L(x + y − μz) − L(x)‖Y

for all x, y, z ∈ X and all μ ∈ �1. By Lemma 2.1, the mapping L : X → Y is �-linear.
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Now let L′ : X → Y be another �-linear mapping satisfying (2.9). Then we have

‖L(x) − L′(x)‖Y = 2n
∥∥∥L

( x
2n

)
− L′

( x
2n

)∥∥∥
Y

≤ 2n
(∥∥∥L

( x
2n

)
− f

( x
2n

)∥∥∥
Y

+
∥∥∥L′

( x
2n

)
− f

( x
2n

)∥∥∥
Y

)

≤ 2n+1ϕ̃
( x

2n
,

x
2n+1

,
x

2n+1

)
= 2

∞∑
k=n

2kϕ
( x

2k
,

x
2k+1

,
x

2k+1

)
,

which tends to zero as n → ∞ for all x ∈ X . So we can conclude that L(x) = L′(x) for
all x ∈ X . This proves the uniqueness of L. Thus, the mapping L : X → Y is a unique
�-linear mapping satisfying (2.9). �

COROLLARY 2.3. Let θ ≥ 0 and {pi}3
i=1 be real numbers such that pi > 1 for all

i = 1, 2, 3. Assume that a mapping f : X → Y satisfying

‖μf (x − y − z) − f (μx − y + z) + μf (y) + f (z)‖Y

≤ ‖f (x + y − μz) − f (x)‖Y + θ (‖x‖p1 + ‖y‖p2 + ‖z‖p3 )
(2.12)

for all x, y, z ∈ X and all μ ∈ �1. Then there exists a unique �-linear mapping L : X → Y
such that

‖f (x) − L(x)‖Y ≤ θ

(
2p1

2p1 − 2
‖x‖p1 + 1

2p2 − 2
‖x‖p2 + 1

2p3 − 2
‖x‖p3

)

for all x ∈ X.

Proof. It is clear from (2.12) that f (0) = 0. By taking ϕ(x, y, z) := θ (‖x‖p1 +
‖y‖p2 + ‖z‖p3 ) in Theorem 2.1, we get the desired result. �

COROLLARY 2.4. Let θ ≥ 0 and {pi}3
i=1 be positive real numbers such that p1 + p2 +

p3 > 1. Let f : X → Y be a mapping such that

‖μf (x − y − z) − f (μx − y + z) + μf (y) + f (z)‖Y

≤ ‖f (x + y − μz) − f (x)‖Y + θ (‖x‖p1‖y‖p2‖z‖p3 )
(2.13)

for all x, y, z ∈ M and all μ ∈ �1. Then there exists a unique �-linear mapping L : X →
Y such that

‖f (x) − L(x)‖Y ≤ θ

(
2p1

2p1+p2+p3 − 2

)
‖x‖p1+p2+p3

for all x ∈ X.

Proof. It follows from (2.13) that f (0) = 0. By defining ϕ(x, y, z) :=
θ (‖x‖p1‖y‖p2‖z‖p3 ), and applying Theorem 2.1, we get the desired result. �

3. Stability of derivations in Hilbert C∗-modules. Now we prove the generalized
Hyers–Ulam stability of derivations in Hilbert C∗-modules.
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THEOREM 3.1. Let f : M → M be a mapping for which there exist a control function
ϕ : M3 → [0,∞) satisfying (2.6), (2.7) and

‖μf (x − y − z) − f (μx − y + z) + μf (y) + f (z)‖
≤ ‖f (x + y − μz) − f (x)‖ + ϕ(x, y, z) (3.1)

and

‖f (< x, y > z)− < f (x), y > z− < x, f (y) > z− < x, y > f (z)‖ ≤ ϕ(x, y, z) (3.2)

for all x, y, z ∈ M and all μ ∈ �1. Then there exists a unique derivation d : M → M
such that

‖f (x) − d(x)‖ ≤ ϕ̃
(

x,
x
2
,

x
2

)
(3.3)

for all x ∈ M.

Proof. By Theorem 2.1, there exists a unique �-linear mapping d : M → M
satisfying (3.3). The mapping d : M → M is given by

d(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ M.

By the assumption, we have

‖d(< x, y > z)− < d(x), y > z − < x, d(y) > z− < x, y > d(z)‖
≤ lim

k→∞
2k

∥∥∥f
(
<

x
2k

,
y
2k

>
z
2k

)
− < f

( x
2k

)
,

y
2k

>
z
2k

− <
x
2k

, f
( y

2k

)
>

z
2k

− <
x
2k

,
y
2k

> f
( z

2k

) ∥∥∥
≤ lim

k→∞
2kϕ

( x
2k

,
y
2k

,
z
2k

)
= 0

for all x, y, z ∈ M. So

d(< x, y > z) =< d(x), y > z+ < x, d(y) > z+ < x, y > d(z)

for all x, y, z ∈ M. Therefore, the mapping d : M → M is a derivation on M. �

COROLLARY 3.2. Let θ ≥ 0 and {pi}3
i=1 be real numbers such that pi > 1 for all

i = 1, 2, 3. Assume that a mapping f : M → M satisfying

‖μf (x − y − z) − f (μx−y + z) + μf (y) + f (z)‖Y

≤ ‖f (x + y − μz) − f (x)‖Y + θ (‖x‖p1 + ‖y‖p2 + ‖z‖p3 )

and

‖f (< x, y > z)− < f (x), y > z− < x, f (y) > z− < x, y > f (z)‖
≤ θ (‖x‖p1 + ‖y‖p2 + ‖z‖p3 )
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for all x, y, z ∈ M and all μ ∈ �1. Then there exists a unique derivation d : M → M
such that

‖f (x) − d(x)‖Y ≤ θ

(
2p1

2p1 − 2
‖x‖p1 + 1

2p2 − 2
‖x‖p2 + 1

2p3 − 2
‖x‖p3

)

for all x ∈ M.

Proof. The result follows from Theorem 3.1. �
COROLLARY 3.3. Let θ ≥ 0 and {pi}3

i=1 be real numbers such that p1 + p2 + p3 > 1.
Assume that a mapping f : M → M satisfying

‖μf (x − y − z) − f (μx−y + z) + μf (y) + f (z)‖Y

≤ ‖f (x + y − μz) − f (x)‖Y + θ (‖x‖p1‖y‖p2‖z‖p3 )

and

‖f (< x, y > z)− < f (x), y > z− < x, f (y) > z− < x, y > f (z)‖ ≤ θ (‖x‖p1‖y‖p2‖z‖p3 )

for all x, y, z ∈ M and all μ ∈ �1. Then there exists a unique derivation d : M → M
such that

‖f (x) − d(x)‖Y ≤ θ

(
2p1

2p1+p2+p3 − 2

)
‖x‖p1+p2+p3

for all x ∈ M.
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