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REMARKS ON THE ANGULAR DERIVATIVE®

S.E. WARSCHAWSKI

Introduction. Suppose that 2 is a simply connected domain in the
w-plane, w = u + iv, and that w. is an accessible boundary point of
located at w = co. Suppose w=W(z) = U(z) + iV(z) maps the strip

2={z=2+iy: —co<az<o, 0<y<az} conformally onto 2 such that
lirf w x+i%)=wm. If in any sub-strip {z = 2 + iy: —o° <z <oo,
X~ 400
i=y=r—3}, o<5<.g_,
lim [W(z) — z] = £ exists and is finite, (1)
Z—>4~00

then W(z) is said to have an angular derivative at z = + . The problem
of finding geometrical conditions on £ which ensure the existence of the
angular derivative has received considerable attention ever since Carathéo-
dory introduced this notion in the study of the boundary behavior of con-
formal maps in 1929 (cf. [5], Chapter III, [4], Chapter VI, in particular
pp. 204-217, and [6], Theorem 6). In this note we present another such
criterion, which for a wide class of domains yields a sharper sufficient
condition than the earlier results. The basis for this criterion is the follow-
ing more special result.
Suppose {#,}, {v,}, {vi} are sequences of real numbers such that

Ups1 — U, =d >0, limv, =0, limv, ==z (2)

n—co Nn—>00
and let S denote the interior of the union of the rectangles
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D If 2 is mapped conformally onto a domain D such that w. corresponds to a finite
boundary point of D and >} onto the unit disk {|{| <1} such that 2=+ corresponds to
{=1, then the conformal mapping of the disk onto D has a non-vanishing finite derivative
at {=1 for approach in a Stolz angle.
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20 S.E. WARSCHAWSKI

Sp={w=u+iv: 4, SUStpry, Voy=v=v;}, n=1,2,¢+
and the half-strip
So={w=u-+iv: —co<u=zu, v,<v=vi},
ie.

S=1Int U S,. 3)

Suppose w = W(z) = (Uz) + iV(z) maps 3! conformally onto S such that
lirf Ulw + ¢ —’25— =+ oo and lim U(m + i —;—) = — o, Then we prove first

the following theorem:

THEOREM 1. Let 0, = vi—v, and 2, = Max[|v,e: — v,], |05y — vi]]

If
(a) 317 = Oty = ) <
and
(b) 32 log —1-“— < oo,

then, for unrestricted approach for zeX,

lim [W(z) — z] =« extsts and — o0 <g<< + oo, (1"

&= +tco

The essential step in the proof of this theorem is an estimate of the
oscillation () of U(x + iy) on a vertical segment Rz = x of X} (Lemma 2).

The above mentioned criterion for more general domains is then ob-
tained from Theorem 1 by using S as an “interior comparison domain”
(Theorem 2, section 4). To indicate the scope of Theorem 1 we mention an
example considered by J. Ferrand in [2] and jointly with J. Dufresnoy in
[3], viz. the special case of the domain S where v; =v,+ 7, so that §,==
and v,y — v,| = |vies —vs| = 2,. In [3] they proved that ,,‘il'? < o i

necessary for the existence of (1’) and that a sufficient condition is Y} 3% < oo,

y=1
All present criteria known to the author do not appear to yield a sharper
sufficient condition. Theorem 1 shows that leflog%< co s sufficient for the
y= v

existence of (1').

https://doi.org/10.1017/50027763000014021 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014021

ANGULAR DERIVATIVE 21

1. Semiconformality. Since the boundary curves of S have the
lines v =0 and v = = as asymptotes as # — + oo it follows that li_)m (V(z)—y)=0
exists, uniformly for 0 <y <=z; in particular, the mapz%W(a;)mis semicon-
formal at z= 4 . This has a number of useful consequences. Let
z=Z(w)=X(w) + iY (w) be the inverse function of W(z). Then for any w',w'’ €S,
Rw') =u’, Rw”)=u", u' <u’,

X" —Xw')=QQ+ou,u")(uw —u')+ ou',u") (1.1)

where ou',u'") =0 as u’ =+ oo, uniformly in S. This follows e.g. from Corol-
lary 1 of Theorem la and Theorem 2 of [6].

Let w, and w} denote the vertices u, + iv,-, and «, + iv, on the lower
boundary of S and w;, w,* those on the upper, u, + iv,; and u, + ivs,
respectively (z=2). Under the map w—Z(w), w,, wi correspond to points
T, T8, @, < xk, and w;, wi* to points x, + irx, x,* + iz with z; < 2;*. Since
Upe1 — U, =d >0 we have from (1.1) for all sufficiently large =

3d ’

3d
By — By = i and 25, — x5 = 5

and therefore there exists a constant k>0 such that for all n =1,2,. - .
Tpe1— 2=k and x},, — 2z, =k. (1.2)
Furthermore, (1.1) shows that the octagon

is mapped onto a curvilinear rectangle contained in the rectangles

[z=x+iy e — 2, g—%—d, ogygn]
and (1.3)
[z=o+iy:le—uil=3d 0=y=a]

provided # is sufficiently large, say » > N,.

We also assume N, so large that 2, < % and |6, — x| <~7—8r— for n>N,.
Finally, it follows from Theorem 5 of [6], under the hypothesis (a) of

Theorem 1 (which ensures condition (5.1) of [6]), since lim 6, =z that for
we S

lim [Z(w) —w] = 4 (1.4)

Uu—r--00
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exists and that — o< A<+ o, It remains thus for us to show that
A< + oo if 3722 Iog%— converges.
y=1 v

For the proof we shall need two lemmas.

LemmA 1. Let a, = % (w, + wi), n >N, If

wyw'e{|lw—a, <r}nS, where 2r <r, = Min ({f—, %), (1.5)
then
|Zw') — Z(w'")| < cr where ¢ = -g”—, 2d =1.
7o log2
An analogous statement holds for a; = %(w,’t + wi*) wn place of a,. In par-
ticular, Lemma 1 implies that
Th— X, < cd,, ¥ — x5 =<ca, for n>N,. (1.6)

Proof. Let 7, = {|w—a,] = p}NS for p <7,; because of the symmetri-
cal location of a,, 7, is a semicircle. If 7/, denotes the length of I, = Z(7,)
we have

= ([ 1z/@, + vel0a0) = (120, + oei9)l2pd0 o

To Te

and therefore (» <7,)

r 2 r

[Leap <= {12(a,+ pet)0d0ap = zat (1.7)

o P 0
where A(r) is the area of the domain 4, bounded by I, and a segment of
the real axis which contains Z(a,). We reflect I, with respect to the real
axis obtaining an arc I, and consider the interior of the closed Jordan

curve bounded by I',UI,. By the isoperimetric inequality:

2A(7’) é (217)2

4z
and thus
12 rA’'(7)
Alr) = - =557,
2 - Al Alr) - _Alry) _
v g A(?’) or ri - rg (71 <rn= 7’0).
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Since for r<r, 4, is surely contained in the rectangles (1.3), A(r,) < 2zd
and therefore, for any » <,

Alr) < l”zai r?

4

Thus, from (1.7), for 2r <7,

(2r)2.

er [2 2n%d
ST 0 do < ri

0

Hence there exists a p,, » < p, <2r, such that

8r2d
2 g 2
Loy = rilog2 -
Now, if w’ and w'’ satisfy (1.5), Z(w'), Z(w'')& 4,, whose diameter is <1, <cr,
2 TZd—Z— >1. This proves the conclusion.
og

2. Estimate of the oscillation o(xz). We return to the function
w=WI(z) =Ulz)+ iV(z) and define for —oo <2<

o) = Max Uz + iy) — Ulz + iy")].

0Ly, ¥ <7
Clearly

T

a)(x)ég V(x + 1Y) | 4, 2.1)

_@L Y) | gy _S

0
by the Cauchy-Riemann differential equation. We obtain an estimate for

o(z) by estimating the latter integral.

Lemma 2. Suppose, for some n, x is a point in the interval

Lyt + k<oc<.'Jcn+1 % (2.2)
which has at least the distance 8, 0<<d<L- from the intervals I, = [x,,x%] and

=[x}, 2;*¥]. Here k is the constant deﬁned wn (1.2). Then there exists an N
such that for n > N

(x) < =~ tl log-——l—[smh——} an]E t,

where ¢, >0, im o, =0 and Zan . converges if A% converges. In fact, if

n—co

S = A, then
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3 0uin < AR R+l R=e (2.3)

Proof. Since V(z) is harmonic and bounded in ! and has continuous
boundary values, except when «-—+ c, we have by the Poisson integral
et + e®cosy

Vie)=—-J_ Ve arctan (SZEE0) + - Vie + imd arctan (€L

Since elizl V(E) =0, lim V(&) = v, elim V(E+ in) =x, lim V(& + ir) =v]{ we

£5—c0 e ) gs—oo

obtain by integration by parts, with 2¢ = = — (v] — v,), ¢, = v{ — v,,

= 1 {7 _av@ e —e’cosy ge 1 (7
Vie)=c+cy T S—m dé arctan e®siny as P S—m X
_a____dV@ + im) arctanw d&
dé e”siny )
Hence
Ve _ L[ V) et*% siny de S
ox T J d& e% 4 2% — 2¢¢+2)cosy T oo
V(€ + im) €4*7(— siny)
dé €% + g% - 2¢¢+2)cosy
Using the equation %—I—/— = gg we obtain
"l oU. 1( E) e”-l—ef dV(é+in) e*+et
So oy }dyé 27 S-w !1 ] diton S-m dE J [ :ldé
(2.4)
We note now that d;&(f) =0 outside of 7, and dV(_fi;—m_) 0 outside
of I} v=1,2,+++);in I, and I/ V is a monotone function and
[, 14 )\dsgzv, SI,M)dssz b=1,2---) (2.5)

e’ +e We choose N> N,

We estimate therefore logl

and so large that for n>N: lx,._l—x,,_ll<? and 8¢i,-, <k. We consider

the cases vy =#n, v >un, and v <n separately.
(a) Let v =n. Assume first £/, and

_k K
¥n — 5 sr=<wx, + 5 (2.6)
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which is a subinterval of [xn_l + % Lpsy — _’22] Then either z}+4-6<=

=z,+ % or x, — —]23 Z=x=ux,—0d. In the first instance

s T .2
0< € Te _ e e e +1 e +1
er —et T Ao g e—1 = 0

and in the second, using (1.6),

o ten ©,—3 i
et + e” & + e edtcdn 1 e? +1
= = < .
0< et —e® T g% — g¥n~0 e —1 = o
If x is outside the interval (2.6) then for z =, + %
PR S LA -k
ee_z g e ( 2 )g e 4 ,
and for xéwn—*zk—
PP -k
e t=Ze ? =¢ %,
so that
_k * *
e® + ¢ .S 14e ' e +1 - e® +1 _ 2
‘e’—ef = - 0 = B = é " (@.7)

Thus (2.7) holds for v =#n, é=1, and « in (2.1).

When ¢eI! we note that our assumption [z/., — 2, < —Ig— for n >N
implies that for any « in (2.2) we also have xe[x,i_lll——]i—, X1 —%]
Hence the same argument shows that (2.7) is satisfied for é=1;.

(b) When »>#n (and also when v<#x) we use the inequality

1+u - 1 -
log T =2u — for O<u=xa<l. (2.8)

For z in (2.2) and €1, v >#n, we have

k
k
Tpel——— "%y 2 2
-t 2 e ~ . _€ .k
e’ ée é gkG=n=1) - Rr—(n+D) ¢ R=2¢.
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k

Applying (2.8) with a=¢ 2 we have
_k
e +et| - 2 ° 1 _ 1 1
et —et | T R l—e™® Rv-(n+1) sin h<~lzc_> .

log ’

When é=1; we observe again that for z in (2.2), we have xe[x,’,_l +—’Z— ,
Theys — %] , and therefore

k
eitet [y 1+et - 2¢ * 1 1 1
IOg‘ ex_ee —lOg l_ez—e —_ Ru._n—1 -L < Ru_n-l Sinh(&) . (2.9)
1—e *? 4
Thus (2.9) holds for v >#» for éeI,UI!.
(¢) When v<n and ¢, we have for y<n—2
k
LA O W —E _kn—y —2) z -k
ef‘kéex 21 de 1 1 zge 3 n—y =Ren_,,_2§e 2
and for v =#n —1, using (1.6),
. A I3
et < e%_‘_x"_l_T = eMH_T <e ',
Thus, by (2.8)
R’&”‘z 1 o when v<n —2
i sinh—z—
e’ + e
log’ ¢ — &t } = . (2.10)
—1—k— s when v=n—1
Sinhz

When v —#x and é=]; we have for y<un —2

sk~ B —Tpy -+ e
T <e v <e 4 = Rt
and for vy = # —1, again using (1.6),
o¥ —eh g -k LI SR _k _k
é"=Ze ‘e t<e t,

Thus, again by (2.8)
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n{u_ L , when v<#n—2
R 2. h k
. Sin Z
log ’ e g (2.11)
1 , when y =n —1.
sinh-~

We obtain then from (2.1), (2.4), (2.7), (2.9), (2.10) and (2.11)

"] oU(x + iy) l 2 2¢* N e
w(x)§So y dy éT[lnlog 5 + <smh 8> an]_yn
where
1 n—1
= R™1 3 “prer 2 AR = si 4 si.
y= n+1 y=1

It is easily seen that lim 1, = 0 implies hm o, = 0. To prove [2.3) we write

7n—>00

= 3 AL, 1
Elznsn R2 2, R2 +7?'3‘+ 2t J
Y S R 1
+R4,23[ _%TJF %54.}1564_... ]

and taking the sum on the right “by diagonals” we find
o , 00 1 co 1 0o
py AnSn = 2] A1 T+ R PN Ahiio + RT PAP I
n=1 yv=1 v=1 v=1

Now, if illf = A then, by the Cauchy-Schwarz inequality,

1
2 © @ =
N =(S2N.) =4
v=1 v=1 v=1

and therefore

(2.12)

Ms
ot
o
IA
oS
—
x
I
-

N
[}
-

—
|

Similarly

https://doi.org/10.1017/S0027763000014021 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014021

28 S.E. WARSCHAWSKI

Ms

lnSZ = lz[llR]

N
i
1Y)

R+ 2,R*]

+ TR + LR + LR

+ R + 4R]

Taking again the sum ‘“by diagonals” we find

©o oo 1 oo
ngz nSn =R 2_] (7 1v+1) Zl(zulwz) + y§1(2 21+a)
(2.13)
_ AR?
SAR+1+ + gt o oe )= 2R

The estimate for 3,4, follows now from (2.12) and (2.13).

3. Proof of Theorem 1. We choose N=N, such that Lemmas 1
and 2 apply. Suppose for an » >N, I,nI; = ¢, so that either z}< x; or
*<2,. Assume the former; then we assert: if wx,— ak>22, then

' 2 26" . -
x} — a¥ < dcp, where p, = - [).nlog Ze,,, + <smh %) ,"n} .

If 2} — x¥ > 4cp, we choose an x&[x¥, x.] at the distance = 2cy, from
both endpoints. If follows from Lemma 1 that the point W(x)€4S has a
distance > g, from w¥. For if this distance were =<y, then W(x) would
lie within a circle of radius <,a,, +%2,‘) about a, and, therefore, by Lem-
ma 1, we would have |z — x¥| < c(g, + 2,) < 2cz,. (Note that for n > N,

26"

1, <= and therefore >e¢* so that p,>2,) Now, by Lemma 2,

o(%) glfn, and therefore thenimage I, of the segment {z|Rz=2x, 0 =JIm z=n}
under the mapping z—>W(z) must lie in the half-plane Rw > u,, since
RW(x) > u, + #,. This contradicts the fact that z} < x < «/ implies that [,
must cross the line Rw = u, in S. Thus we must have z} — ¥ <4cp,. (An
analogous result holds if #/*< x,.)

For each n> N let J, denote the smallest interval containing I,UI;
(e.g. if a¥< 2], J,=[w,,2.¥]). We can choose N so large that the length
of J, is g_’;_ for all » > N. If  is a point exterior to all J, and between

J. and J,.,, then [, connects a point on {u,<u <u,,,, v =1v,} to a point
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on {u,<u=<u,., v=uv,} and therefore its length I(x)=6,. For z=],,
l(2) =0, — 22,.

Let xy<a’ <’ and z’, a2’/ exterior to any J,. Let {J.}i, be all of
these intervals contained in (xz’,z’’). The set [x’,x”]\ﬁl J . consists of g—p+1
intervals J;, n=p—1, p,+--,q where J;_, precedt::sp J»» and J; follows

Jas m=D2, p+1,---,q.
By the arc length-area inequality (see [1], p. 13)

z!

(1w + iy)lsdy de <z — @) + wola) + ofs")

’
x

SZ:’lz(x)dx =

(3.1)
where
' = MaxU(x’ + iy), u'' = MinU(z" + iy).
0Ly 0Sysm
We write
1‘" q q
[ rewde= 51 (r@de+ 2 [, (3.2)
x n=p—1 n=p
7 g
Now
S I¥(x) do = S 02 do > S (z + 0, — 7)?de =[x? + 20, — 7] S dw (3.3)
7 7 7 b
and
S 1x) do = S (0, — 22,)°dw = (62 — 42,0,) S da
Jn I Jn
(3.4)

= x| do + 12000, — 7) — 42,01 | aw
T Ja
Thus from (3.2), (3.3), and (3.4), if m(J,) and m(/;) denote the lengths of
J. and J},

[ 1) do = wtte — 2) — 20 3} = — 007D
n=p—

2/ /%44
(3.5)

0,<m

— 2 3 (a = 0,)n(]) = 4 31 0t ].)
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Since Jiclx¥, 2,.,] we have m(J}) < 2,,,—«} and since, for n > N, m(]“)<%
and 2,.,— x:g% we have also m(J,) <2,., —25. Hence the absolute
value of the sum of the second and third terms on the right hand side of
(3.5) doses not exceed

q
4” E 1(7[ - 071.) (x'n+1 - xi)-
=

By (1.1), since #,+; —u,=d >0, we have

Lpt1 — xh = (un+1 - un) 14+ 51;)9 lime, =0
MN—»00
and therefore

[ 120) do = w0 —0)—t5 31 (5=0,) (pri—10,) (L + &) —24¢ 3} 2opn0

& "iugn "
(recalling that m(J,) <6cp,). The last two series converge by hypotheses
(a) and (b). Thus by (3.1) for 2’ = &’ + iy, 2/’ =" + iy’

Ulz'") — 2" 2 U(Z') — 2’ —[o(®') + o(x")] + 5(2')

where 4(z’) >0 as 2x’-—>co. Since we already know from (1.4) that
lim (W(z) — z) = £ < oo exists and that lim o(2’’) = 0, this shows that £ > —oo

and Theorem 1 is proved.

4. Criterion for angular derivative. We come now to the appli-
cation of Theorem 1. Suppose 2 is a simply connected domain which has

a boundary point w. at w = oo, accessible along a ray L parallel to the
T
2]
open segment on the line Rw = « which intersects L and is contained in

and 6(u) (< o) its length. We denote the endpoints of 6, by v(x) and v'(«),
v(u) <v'(u). Let {u,} be a sequence with u,., —u,=d >0, u, >u, and let

real axis, say L = lu =y, v = ]CQ. For u = u, let 6, denote the largest

v,= Sup ou), vi= Inf o'(u), 0,=0v,—0,
UnSUS Un st UnSUS Uney

Zn = Ma'x[lvn+1 - Unly IU;L+1 - U'I/zl]-

THEOREM 2. Suppose there exists a sequence {u,} such that

(a) limv, =0, limv,=n=,

n—>c0 n—rco
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(b)

M

0 (77 - 011,) (un+l - un) < 00,

IA

n

Ms

()

A2 log-zl— < oo,

n=1

and suppose that for all u > u,

(d) [y —mar=m.
If W(z)=U(z) +iV(z) maps the strip 3 conformally onto Q such that
lim W(z + ¢ —2—) = w., then W(z) has an angular derivative at z = + oo,

L—>4o0

Remark. If S is the domain (3) constructed with the data {u«,}, v,, v}
of Theorem 2, then the part of S in #=u, is contained in Q. For our
purposes it is no restriction of generality to assume that the whole domain
Scf. We note that S is not required to be contained in a parallel strip
of width z (a restriction frequently imposed on an “interior comparison
domain’). Under that restriction hypotheses (b) and (d) alone form a
sufficient condition for (1), and this is essentially the criterion given by
Ahlfors [1], p. 36, the first important criterion in the literature. In this
case (b) implies that n§11n< co. In our theorem that restriction has been
replaced by the conside:rably weaker assumptions (a) and (c). It is difficult
to compare directly our theorem with some other criteria which use a dif-
ferent geometrical characterization of 32 (e.g. théoréme VI, 16a in [4] p.
208 and those derived from it pp. 209-211), but such comparisons may be
made in special cases to which both apply, such as the example described

in our introduction.

Proof of Theorem 2. Condition (a) implies that for every 7, 0 <9< —727—,
there exists an R,=u, such that the halfstrip S,= {w=u + iv:u=R,
1=v=r—7n}cQ. Let E,={y,<u<oo:0u)—z>0} and E_.={y,<u< :
6(u) —r <0}. Then it follows from (b) that

S (6(u) — n)du converges,
E

and therefore from (d) that
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[ 0w — = == {(000) — x) du < o0,
. k.

Thus Q satisfies the hypotheses of Theorem 5 in [6], and if Z(w)=X(w)+iY(w)

is the inverse function of W(z), we have for weS, for any 7, 0<7)<-%—,
lim [Z(w) —w]= A4 exists and —oo <A<+ o,

As indicated above we may assume that Sc@, where S is the domain (3)
constructed with the data of the theorem. If Z(w) maps S conformally
onto 3 such that lim 8121<u +i %) = + o, we know by Theorem 1, that

U=+

for wes,

lim [Z(w) — w] = 4, exists and is finite.

U—>—4-00

If Z,(w) is so normalized that, for some w,=S, Zi(w,) = Z(w,), then Sc@
implies 4 < 4,< + oo. This completes the proof.
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