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A b s t r a c t . Many quite different theories and methods of celestial mechanics are 
referred to as semi-analytical or semi-numerical. Their common feature is the 
trade-off of a generality for a computational efficiency. Four main ideas behind 
semi-analytical theories are identified and reviewed: series contraction, analytical 
support of numerical integration, piecewise solutions, and numerical evaluation of 
action-angle variables. The role of numerical analysis tools in analytical theories 
is briefly discussed. 

1. Introduct ion 

The great and frequently quoted discovery of Moliere's Mr. Jourdain, tha t 
he was speaking prose all through his life, originated from a sharp dicho­
tomy imposed by his tutor: prose or poetry and no other way. One does 
not have to be an expert in literature to judge such a distinction as instruc­
tive but rather oversimplified. We can well imagine the same kind of tutor 
explaining to a modern Mr. Jourdain tha t theories of motion in celestial 
mechanics are either numerical or analytical. In this statement the two ex­
tremes are clearly identified: the analytical "poetry" explains the nature 
of trajectories and their dependence upon physical parameters and initial 
conditions, still struggling with the limitations imposed by the language 
of perturbation series; the numerical "prose" generates single trajectories 
step by step in a "sledgehammer approach" (Fox, 1984) - quite often more 
efficiently than the analytical methods do, but the more information we 
want about what is behind the generated sequence of numbers, the more 
numerical analysis tools must be used. To approach the explanation level of 
analytical theories one has to integrate numerically not only the equations 
of motion for a large family of initial conditions, but also their variational 
equations - and all this must be followed by a fair amount of numerical 
harmonic analysis. 

/. M. Wytrzyszczak, J. H. Lieske and R. A. Feldman (eds.), 
Dynamics and Astrometry of Natural and Artificial Celestial Bodies, 411,1997. 
© 1997 Kluwer Academic Publishers. Printed in the Netherlands. 

https://doi.org/10.1017/S0252921100046881 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046881


412 S. BREITER 

But, in between the two extremes there lies a huge realm of the theo­
ries and methods dubbed semi-analytical or semi-numerical. This "poetic 
prose" and these "epic poems" of celestial mechanics have always been the 
domain of ingenious stratagems in quest of an efficient compromise between 
functions and numbers. The main goal of this presentation is to collect the 
achievements in the form of a tool-box - mainly to guide the newcomers, 
but also to help looking for yet unexplored possibilities. 

2. W h a t D o e s it M e a n Semi-Analyt ica l ? 

The disorder in terminology concerning semi-analytical methods is almost 
frightening. Not only the expressions "semi-analytical" and "semi-numeri­
cal" are used either as synonyms or as distinct words, but also some authors 
try to avoid them writing about "partly numerical", "almost numerical", 
"semi-general" or "step by step" methods. Some obviously semi-analytical 
theories are named not only "analytical" but even "totally analytical". 
The a t tempt of Chapront-Touze (1982) to regulate the terminology has 
not remedied the chaos. Hence, for the purpose of the present review, only 
the word "semi-analytical" will be used [save for the method of Henrard 
(1990)] to avoid additional confusion. 

Let us call semi-analytical the methods which are essentially based on 
general perturbation theory, but which involve some techniques eliminating 
partially the information about the dependence of motion upon initial con­
ditions and physical parameters, or additionally restricting the domain of 
validity of the obtained solution. This loss of generality - usually caused 
by the use of some numerical analysis tool - leads to some gain in the ef­
ficiency for particular trajectories to be described. To see it better, let us 
look first at the four main branches of semi-analytical theories, grouped 
and named here according to their leading ideas: series contraction, analy­
tical support of numerical integration, piecewise solutions, and numerically 
evaluated action-angle variables. After these four, already classical themes, 
some more numerical assistance tools will be given in short. 

3. Series Contract ion 

A generic form of series arising in perturbation theory may be expressed as 

E * m . » * I R ' I K J 
sin 
COS 

m,n,p i j Ik 
Y^Pkfa (1) 

/?* = Uk(e,<x)t + pk,o, <*i= const. (2) 

Nm<niP is a numerical coefficient, e are physical parameters (some of them 
being small parameters in a mathematical sense), a and /3 are metrical and 
angular variables respectively, and frequencies UJ are also power series of e 
and a. As referred to the above series, the word "long" is usually a subtle 
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euphemism. To get them shorter - and so easier to derive and evaluate -
one can do the following: 

1. Substitute numerical values for some of the parameters or metrical 
variables; this removes the relevant indices from sums and shortens 
the products. The approach is classical and has a long tradition [see 
Chapront-Touze (1982)]. At the extreme, we may come to the series 

£ " * t f e w 4 ( 3 ) 

P I k . 
(3k = N'kt + f3kfi, (4) 

valid only for a particular orbit perturbed by particular forces. This 
type of compression can be done in a more subtle way, by substituting 
a = otN(l + 8a) or e = £Ar(l + (fe), where numerical values are given to 
Q>N and e # . For 6a and Ss small enough, we may obtain series which 
are much shorter from the original (1) and (2), but they still hold their 
analytical character for a restricted class of orbits. This is the simplest 
way of overcoming the slow convergence due to high eccentricities in 
asteroid theory (Ferraz-Mello, 1987) or high mean motions ratio in 
lunar theory (Henrard, 1978). 

2. Decompose trigonometric terms into products of rapidly oscillating 
and slowly oscillating parts . The sine/cosine of the slowly changing 
angles can be approximated by Taylor series or Chebyshev polynomials 
of time. The former approach leads to classical Poisson terms of a 
planetary theory; the latter was proposed by Chapront (1982, 1984). 
Many long-periodic contributions can merge into a small number of 
terms if their frequencies are given numerically. In this case the loss 
concerns the "orbital information" and also the length of the time span 
on which the theory is valid. 

Of course, these two methods can be applied together, and in their most 
radical version - when the entire trigonometric terms are approximated by 
time polynomials - the result looks exactly like a synthetic theory obtained 
from numerical integration. 

4. Analyt ical Support of Numer ica l Integrat ion 

The class of theories considered in this section, merging numerical inte­
gration with analytical series, demonstrates how fruitful can be the union 
of the seemingly opposite techniques. Numerical integration of motion can 
be accelerated even some tens or hundreds of times if good use is made 
of general perturbation methods. Let us enumerate the main possibilites of 
achieving the speed up and reducing the accumulation of errors of numerical 
integration: 
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1. "analytical c o m p l e m e n t s " : The numerical integration of the So­
lar System consists of the N-body problem (the Sun and interacting 
planets), and of minor contributions due to the asteroids, the Moon, 
general relativity etc. Bretagnon (1986) gained much of computation 
time integrating numerically only the former problem, and adding the 
perturbations due to the latter derived from analytical solutions. Note, 
tha t these perturbations are small enough to be expressed by short 
first-order series. 

2. analyt ical filtering: The main idea behind this type of methods co­
mes from the distinction between long-periodic and short-periodic va­
riations worked out in analytical theories. Transforming the equations 
of motion by averaging, one obtains a slowly evolving system; the sy­
stem which would cause some problems in further analytical treatment, 
but which can be integrated numerically quite fast due to a large step-
size allowed. According to the way of averaging three cases arise: 

(a) The equations can be averaged by analytical integration; this way, 
one can go far in powers of a small parameter, reaching even 
high accuracy. The best examples are the planetary theory of 
Laskar (1990) and the artificial satellite theories of Cefola et al. 
[see Danielson (1994)] and of Metris and Exertier (1995). Short 
periodic perturbations resulting from the transformation may be 
computed from analytical expressions if they are of any interest 
in the studied problem. 

(b) The equations can be averaged by numerical quadratures between 
subsequent steps of numerical integration. The steps can be long 
- covering one or more orbital periods. This approach is known 
as "Schubart averaging" [see Schubart (1968) and Moons (1994) 
for more details]. 

(c) The averaging by numerical quadratures can be performed before 
starting the numerical integration, but in this case one should 
store a large grid of the numerical values of the right-hand sides, 
as functions of slow variables. An example of this approach is the 
tesseral resonance study by Nacozy and Diehl (1982). 

The great advantage of averaging through numerical quadratures is the 
possibility of treating large eccentricities and inclinations. However, in the 
applications known to the author, this averaging gives the first-order trans­
formation with no way to evaluate the short-periodic terms. The question 
of passing to higher orders (and of doing it efficiently) remains open. 

One thing should be emphasized here, because it is frequently overlooked 
in applications of averaged equations: averaged equations generate a mean 
trajectory which actually may have some offset with respect to the real 
trajectory smoothed out numerically (or by any other means). For the way 
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of removing this offset without computing short periodic terms (where it is 
usually hidden) - see Metris and Exertier (1995). 

5 . P iecewise Analyt ica l Treatment 

Under more or less severe restrictions, one can solve the equations of mo­
tion on the interval ranging from a fraction of orbital period to a couple of 
revolutions. After a single step the variables are updated with the analyti­
cally derived corrections and the procedure is repeated. This strategem is 
particularly useful when one of the perturbing forces is discretely modeled. 
One can recognize here the principle of numerical integration, but general 
perturbation theory and expansions in powers of small parameter are still 
involved in this semi-analytical approach. 

The method is rather widespread, especially in artificial satellite pro­
blems with drag or shadow. In the former, complicated expressions for long-
term drag contribution are avoided [eg. Watson et al. (1975)]; in the latter, 
the discontinuity of the shadow function is by-passed thanks to splitting the 
solution into sunlit and shaded parts [eg. Lautman (1977)]. The "strobosco-
pic method" of Roth (1979), which determines the elements at subsequent 
peri- or apocenter passages, is also based on the principles discussed here. 

Although it may be controversial, the explicit symplectic integrator of 
Wisdom and Holman (1991) — as interpreted by Saha and Tremaine (1992) 
— can also be understood as a semi-analytical method. The Hamiltonian 
is separated into the Keplerian part V,Q and a perturbation e%\. One step 
of the integrator is a composition of two exact, analytical solutions of the 
equations resulting from %Q and e%\ alone, and its error is proportional to 
the product of e and some power of the stepsize. 

6. Numerica l Transformation t o Ac t ion -Ang le Variables 

There are many problems in celestial mechanics where the system of ave­
raged equations still has at least two degrees of freedom and a nontrivial 
structure with libration zones and separatrices; the best examples are reso­
nance problems. If the Hamiltonian is a sum of the separable part Ho and 
a perturbation eli\ 

H = Ho{q1,q2,Pi,P2) + £Kl{qi,q2,Pl,P2), (5) 

a nice way of studying the phase flow would be the transformation from q, p 
to the action-angle variables J, ifi admitted by Ho, with the Hamiltonian 7i 
turned into 

K = K,Q{JUJ2) + e/Ci(Ji,J2,ipi, fo)- (6) 

The perturbing part IC\ takes the form of Fourier series in ip with amplitu­
des depending on J . This transformation, however, usually involves a fair 
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amount of algebra and may be inexpressible in terms of elementary func­
tions. Henrard (1990) overpowered the difficulty by resorting to numerical 
methods. In his approach — which has almost gained the position of the 
semi-analytical (or rather the semi-numerical) method — the values of acti­
ons J(q,p) are obtained by numerical integration of the equations admitted 
by %a{q, p), along a closed trajectory. The expression of /Ci is then supplied 
by numerical harmonic analysis. The method has been applied and further 
developed in resonant problems of asteroids (Morbidelli and Henrard, 1991) 
and of artificial satellites (Delhaise and Henrard, 1993), where high inclina­
tions and/or eccentricities are involved. The numerical transformation to 
action-angle variables opened the way to an ingenious revitalisation of De-
launay's perturbation theory by Morbidelli (1993), which permits to obtain 
better approximation than the first-order method of Henrard. 

7. Numer ica l Ass i s tance Tools in Analyt ica l Theor ies 

In the preceding sections, we have presented four — already classical — 
lines along which semi-analytical theories are built. But the concept of mi­
xing analytical and numerical methods is so prolific, tha t we are still far 
from completing the review. Let us see now, how some methods of nume­
rical analysis help to break through intricasies of analytical theories. We 
have already met numerical integration, numerical quadratures, harmonic 
analysis and polynomial approximation grafted on general perturbation 
constructions. Glancing through the multitude of theories we meet some of 
them again in different places: 

1. Numer ica l quadratures: quite useful in "piecewise analytical" theo­
ries when analytical quadratures become complicated (Hoots and Fran­
ce, 1987), they may also serve to evaluate the values of special functions 
like Hansen's functions or Laplace coefficients (Gooding and King-Hele, 
1988). 

2. Fourier transforms and frequency analysis: powerful techniques 
helping to develop a disturbing function (Brown and Shook, 1933) 
and to retrieve qualitative information from numerically integrated 
trajectory (Laskar, 1993). 

3. P o l y n o m i a l approx imat ion and interpolat ion: indirectly involved 
in most of numerical methods, but in some applications they help much 
in situations where due to the use of numerical quadratures or other 
means one gets a function defined by the set of its values. 

4. I terat ive root finding: Newton-Raphson or direct iterations are fre­
quently used in the disturbing function's development where one starts 
with approximate series (Kovalevsky, 1963); but their more "semi-
analytical" use is to get rid of the problems caused by coupling of 
different perturbations. The example can be found in the "piecewise 
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analytical" theory of artificial satellite with atmospheric drag of Wat­
son et al. (1975). The contribution due to the drag depends on the 
trajectory affected by the oblateness perturbations and vice versa. The 
problem is easily solved by iterating the two seprate perturbation ex­
pressions and updating variables after each step until the required 
accuracy is reached. 

5. Numer ica l differentiation: applied mainly to compensate the in­
formation loss in compressed series or numerical quadratures (Kubo, 
1982; Hoots and France, 1987); this tool, however, seems to be yet 
unappreciated in less straightforward applications. 

6. Linear algebraic s y s t e m s solving: If the solution method is the 
substitution of series with undetermined coefficients into the equations 
of motion, the resulting system of linear equations can be solved by 
standard numerical routines like in Diez et al. (1991). 

7. R u n g e - K u t t a approximat ion: Last, but not least, come unusual 
ways of using the so called "Runge-Kutta expansions" (Kizner, 1964). 
Kizner was the first to observe, tha t power series of a small parame­
ter e arising in Poisson's perturbation method can be replaced by a 
step of a Runge-Kutta method solving a variational problem with e 
as the independent variable, and followed by a usual integration with 
respect to time. This apparently forgotten idea was rediscovered by the 
author (Breiter, 1996) in the context of Lie transformations, where it 
occurs even more naturally and may be generalised for other numerical 
integration methods. 

8. C o n c l u s i o n s 

The development of the large variety of semi-analytical methods was possi­
ble thanks to the advances in computer technology. Fortunately, the alleged 
contradiction between numerical and analytical methods has not resulted 
in their clash, but it lets both sides draw from the treasures' chest of the 
supposed opponent. Although one would complain, tha t the term "semi-
analytical" has become too ambiguous — due to the multitude of different 
methods it covers — let us hope, that this ambiguity will grow each year, 
resulting in more and more ingenious theories of motion. 
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