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Abstract

A group G is called semi-n-abelian, if for every g e G there exists at least one a(g) E G-which
depends only on g-such that (ghf = a~\g)g"h"a(g) for all h G G; a group G is called n-abelian,
if a(g) — « for all g G G. According to Durbin the following holds for n-abelian groups: If G is
n-abelian for at least 3 consecutive integers, then G is n-abelian for all integers and these groups are
exactly the abelian groups. In this paper this problem is generalized to the semi-n-abelian case: If a
finite group G is semi-n-abelian for at least 4 consecutive integers then G is semi-n-abelian for all
integers and these groups are exactly the nilpotent groups, where the Sylow-2-subgroup is abelian,
the Sylow-3-subgroup is any element of the Levi-variety Q[g, h], h] — e V | , i G G) and the
Sylow-/>-subgroup (p > 3) is of class < 2. As a consequence we get a description of all finite
(3-)groups, which are elements of the Levi-variety.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 20 D 15; secondary 20 E 10.

1. According to Kowol (1977) a group G is called semi-n-abelian, if there exists
to every g £ 6 a t least one element a(g) G G, depending only on g, such that
(gh)n = a~Xg)g"h"a(g) holds for all A e G . These groups are closely con-
nected with nilpotent groups of class < 2; for instance we have (see Satz 9 of
Kowol (1977)): A finite semi-/i-abelian group whose order is relatively prime to
n(n2 — 1) is nilpotent of class < 2. Conversely (see Bemerkung 2 of Kowol
(1977)) the following holds: A nilpotent group of class < 2 and of odd order is
semi- n -abelian for every n G Z.

In this paper we transfer a question of Durbin (1967) concerning /i-abelian
groups (that are semi-n-abelian groups with a{g) = e for all g G G) to the case
of semi-n-abelian groups: Which finite groups are semi-n-abelian for all n G Z
and what is the minimal number k, such that G semi-n-abelian for k consecutive
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numbers implies G is semi-n-abelian for all n £ Z? This question is answered in
the «-abelian case in Durbin (1967): Exactly the abelian groups are /i-abelian for
every n G Z and k = 3. In the case treated here we give the following answer: A
finite group G is semi- n -abelian for all n G Z if and only if G is nilpotent with
Sylow-2-subgroup abelian, Sylow-3-subgroup an element of the Levi-variety
(that means [[ g, h], h] = e V g, h G G) and Sylow-/?-subgroup (p > 3) of class
< 2. For the minimal number k we derive k = 4; k < 3 is impossible, because
every group of exponent n is semi-(« — 1)-, semi-n- and semi-(/i + l)-abelian,
evidently (see Lemma 3a of Kowol (1977)).

As a consequence we derive a description of all finite groups, in particular
finite 3-groups, which are elements of the Levi-variety.

All groups considered in this paper are assumed to be finite.

2. We state the following lemma:

LEMMA 1. If G is semi-m-abelian and semi-n-abelian then G is semi-mn-abelian
too.

PROOF. Evident.

We start with the case G is a 2-group.

THEOREM 1. Let o(G) = 2". Then the following properties are equivalent:

i) G is semi-n-abelian for 4 consecutive integers.
ii) G is abelian.
iii) G is semi-2-abelian.
iv) G is semi-n-abelian for every n £ Z .

PROOF, ii) <=> iii) is part of Lemma 11, c in Kowol (1977).
i) => ii) We use induction on the order o(G) of G. Since property i) is

hereditary to homomorphic images (see Bemerkung 10 in Kowol (1977)) we can
assume that all non-trivial ones are abelian. This implies o(G') < 2 and c(G) <
2 -c(G) denoting the class of G. Thus we can apply Hilfssatz III. 1.3a of
Huppert (1967) and obtain [g2, h] = e for all g, h e G, which means g2 e Z(G)
for all g G G. Now among the 4 consecutive integers for which G is semi-/j-
abelian there exists exactly one, denoted by m, which fulfills m = 2 (mod 4),
that is m = 4s + 2. Taking into account that g2 G Z(G) for a f l g E G the
definition of a semi-m-abelian group gives the equality (gh)m = gmhm. Using
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finally Hilfssatz III. 1.3b of Huppert (1967) we derive

(ghf = (gh)4'+\gh)-4' = g*

thus G is abelian and ii) holds,
ii) => iv) => i) is evident.
The next case we want to treat of is o(G) = 3°. For this we need the following.

LEMMA 2. Let o(G) = 3". If G is semi-2-abelian then c(G) < 3.

PROOF. We can assume exp G > 3. Since 2 is a primitive root mod exp G, G
is semi-5-abelian too, because of Lemma 1. The proof of Satz 19 in Kowol
(1977) then implies the regularity of G. Thus we have G' is abelian by Satz
III. 10.3b in Huppert (1967). According to Lemma 5 of Kowol (1977) the
property of being semi-2-abelian is hereditary to subgroups of G. Therefore we
can assume using an induction argument that all proper subgroups of G have
class < 3. We distinguish three cases:

a) G is generated by at least 4 elements. Then each subgroup of G which is
generated by 3 elements has class < 3, therefore c(G) < 3 by Satz III.6.10 of
Huppert (1967).

b) The minimal number of generators of G is exactly 3. Since G' is abelian we
can apply Theorem 1.3 of Gupta (1965) in this case and we again have
c(G) < 3.

c) G = <a, b}. The regularity of G then implies G' cyclic (see Satz III.10.3b of
Huppert (1967)) thus K3(G) := [(?', G] C (G'f since (G')3 is the only maximal
subgroup of G'.

On the other hand Lemma 4d of Kowol (1977) with n - 2 implies [G3, G] C
CG(G2) = Z(G). Because of the regularity of G we have [G3, G] = (G')3 (Satz
HI. 10.8c of Huppert (1967)) which together with the above result yields K3(G)
C (G'f = [G3, G] C Z(G) which means c(G) < 3.

THEOREM 2. Let o(G) = 3". Then the following properties are equivalent:
i) G is semi-n-abelian for 4 consecutive integers.
ii) G is semi-2-abelian.
iii) G is semi-3-abelian and c(G) < 3.
iv) G is a homomorphic image of a subgroup of the direct product P X H where

P is a finite group of exponent 3 and H is a finite 3-group with c(H) = 2.
v) G is semi-n-abelian for every integer n.
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PROOF, i) => ii) Let G be semi-w-abelian for n G / = {i, i + 1, i + 2, i + 3}.

Then there exists an element k G / with k — \ EL I and A: = 2 (mod 3). If k = 2,
5 (mod 9) then A; is a primitive root mod 3" for all n G N (see for example Satz
43 of Scholz-Schonberg (1973)), in particular for the modulus exp G = 3*. If on
the other hand k = 8 (mod 9), then by Lemma 1 G is semi-A:(A: — l)-abelian too
and we have k(k - 1) = 8 • 7 = 2 (mod 9), which means k(k - 1) is a primitive
root mod exp G. Combining both results we have shown the existence of an
integer m such that G is semi-m-abelian and m is a primitive root mod exp G.
Therefore there exists a natural number r with mr = 2 (mod exp G); now
Lemma 1 implies that G is semi-w'-abelian hence semi-2-abelian.

ii) => iii) By Lemma 2 we know that c(G) < 3. Now G is semi-2-abelian thus
we have by Lemma 5 of Kowol (1977): (g2hf = g3h2g which is equivalent to
(1) hg2h = gh2gVg,h(EG.

We calculate (g2h)3 using (1) twice:

(g2hf = (g2hf(g2h) = g\2gg2h - g\h2g2h2)h~2gh

= g3gh\ gh -2g)h = g%% ~ Yh ~ lh = g4h V

which is equivalent to G is semi-3-abelian by Lemma 5 of Kowol (1977).
iii) => iv) Essentially this is Satz 13 of Kowol (1977)-there it was shown that G

is an element of var P u var H, where P is a finite group of exponent 3 and H
is a finite 3-group with c(H) = 2 (the finiteness of P, H is not stated explicitly
but follows from the proof). Since var P u var H = var(P X H), this means
that G is a homomorphic image of a subgroup of the infinite direct product of
P X H. By Lemma 4.3 of Higman (1959) it suffices to take only finite direct
products of P X H, but these always are of the form P X H, where P is a finite
group of exponent 3 and H is a finite group of class 2, thus iv) holds.

iv) =* v) By Lemma 3a of Kowol (1977) finite groups of exponent 3 are
semi-n-abelian for all n G Z, since there can occur only the cases: semi-0-,
semi-1- and semi-(-l)-abelian. On the other hand according to Bemerkung 2 of
Kowol (1977) all finite 3-groups of nilpotence class 2 are semi-n-abelian for all
n GZ too. Thus P and H (in the notation of condition iv)) satisfy the law
(g*h)n = gn+lh"gn-1 V g , / i 6 C , V n E Z (Lemma 5 of Kowol (1977)). Since G
lies in the variety generated by P and H and since o(G) is odd we derive using
Lemma 5 of Kowol (1977) once more that G is semi-n-abelian for all n G Z,
hence v).

v) => i) is trivial.
iv) => vi) According to Satz III.6.6 of Huppert (1967) P fulfills condition vi)

and so does H, evidently, therefore we have

G <E {K,[[g, h], h] = eV g, h e. K,g°*PG = e,V g <E K) = Q

that means G is element of the Levi-variety C.
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vi) =^ iii) If G is an element of the Levi-variety 2, then Satz III.6.5 of Huppert
(1967) first implies c{G) < 3. On the other hand using Hilfssatz III.6.4 of
Huppert (1967) we know that [g, ft] commutes with g (and h)

(2) [[g,h],g]=e\/g,h(EG.

Applying this we get

= g*hh{g2h)[h, g2] = g 4 AV[ g\ h][h, g2]

= sW,
which means that G is semi-3-abelian (Lemma 5 of Kowol (1977)).

NOTE, a) Condition iv) can also be used to rephrase the theorem in terms of
varieties of groups: for example we have: the variety generated by all finite
semi-2-abelian 3-groups is the join of the variety generated by all finite groups of
exponent 3 and the variety generated by all finite 3-groups of class 2.

b) Condition vi) of the theorem yields other already known equivalences:

vii) Conjugate elements of G commute (see Huppert (1967), Hilfssatz III.6.4).
viii) [[ g, h], g] = e V g, h e G (see also Levi-v.d. Waerden (1932)).

Theorem 2 can be used to give a description of all finite groups satisfying the
law [[ g, h], h] = e-it seems that this characterization has not appeared in the
literature yet.

COROLLARY. Let G be a finite group. G satisfies the law [[ g, h], h] = e if and
only if G is nilpotent such that the class of every Sylow-p-subgroup is < 2 for
p ¥= 3 and the Sylow-3- subgroup is a homomorphic image of a subgroup of P X H
where P is a finite group of exponent 3 and H is a finite 3-group of class 2.

PROOF. The result follows immediately from Satz III.6.5 of Huppert (1967)
and Theorem 2.

We now turn to the general case; here Gp denotes as usually a Sylow-p-sub-
group of G.

THEOREM 3. For a finite group G the following properties are equivalent:
i) G is semi-n-abelian for 4 consecutive integers.
ii) G is nilpotent with G2 abelian, G3 a homomorphic image of a subgroup of

P X H, where P is -a finite group of exponent 3 and H is a finite 3-group of class
c(H) = 2 and Gp has nilpotency class c(Gp) < 2forp > 3.
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iii) G is semi-2-abelian.
iv) G is semi-n-abelian for all integers n.

PROOF, i) =s> ii) Let G be semi-n-abelian for n G / = {/, i + 1, j + 2, / + 3}.
First we claim that for (p, 6) = 1 the Sylow-p-subgroup Gp is a direct factor of G
and has class < 2. This statement follows using Satz 7 of Kowol (1977), since
one cannot have/>j«(n2 — 1) for all n G / ((/>, 6) = 1), thus G = Gp X Gp.. Now
condition i) is hereditary to homomorphic images so we get by induction
G = {̂2,3} x {̂2,3}- where G{2>3}' satisfies condition ii) (as usual Gv denotes a
Hall 7r-subgroup of G and IT' is the set of all primes not in IT but dividing o(G)).

Now let G be a group with o(G) = 2"36 and let G be semi-n-abelian for all
n G /. G is solvable, and we may assume a > 0, b > 0. First we claim that G is
nilpotent. To prove this we assume indirectly that all homomorphic images of G
are nilpotent but G itself is not. Then by well-known results of Ore (see also
Huppert (1967), Satz II.3.2 and Satz II.3.3) we have: there exists exactly one
minimal normal subgroup TV of G, with o(N) = pc and CG(N) = TV, and if U is
a maximal, non-normal subgroup of G, then G = N • U, N n U — E and U
does not possess any non-trivial normal subgroup of order/?''. In our case this
last condition yields o(N) = 2" or o(N) = 3*.

1) o(N) = 2°. Choose g e G (g¥=e) with g3 = e and n e / with n = 1
(mod 3) then we get using Lemma 4c of Kowol (1977)

(g2h)" = g"+lh"g"-1 = g2h" - g2nh"

and thus

{hg2y = ( r W ) 1 = g-2(g2h)Y

Now Baer (1951/52), p. 173, Folgerung 2 implies g2" = g2 G C c « G " - ' » .
Assume G"~l =t E; then we have N C <GB~'> and thereforeg2 G CG(iV) = N,
but g3 = e, g =̂ e. Therefore it follows exp G|(n - 1). If n G /, then either
n + l G / o r n - 2 G / , thus we have that G is semi-(±2)-abelian, which by
Lemma 3 of Kowol (1977) implies that G is semi-2-abelian, too. But Satz 7 of
Kowol (1977) yields the nilpotence of G, contrary to the assumption.

2) o(N) = 3*. In this case we have o(U) = 2" and G/N =s U, which implies U
semi-n-abelian for all n G /, too. Theorem 1 yields that U is abelian and
therefore G' C N and G' is nilpotent. Corollary 2 in Baer (1957), p. 159 gives
t//CoreG U is cyclic and since TV is the only minimal normal subgroup of G we
get Corec U = E (o(CoreG U)\2°) and thus U is cyclic itself. Assume that
exp U > 2. Then we choose an element g G U, g ¥=e, with g4 = e and n G /
with n = 1 (mod 4). As in 1) above we obtain g2 G CG(N) = N or exp G|
(n — 1) which in both cases gives a contradiction.
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Therefore we have exp U = 2 and since U is cyclic we get o{ U) = 2 and
o(G) = 2-3*. According to Scott (1964), 7.2.15 G is supersolvable, in particular
o(N) = 3 and o(G) = 6. Since G is not nilpotent G — S2. But it is easy to see
that S3 never is semi-n-abelian for n even, thus we have a contradiction.

Having proved the nilpotency of G the further results in ii) now follow from
Theorems 1 and 2.

ii) => iii), iv) This follows immediately from Theorem 1, 2 and Bemerkung 2 in
Kowol (1977), noting that direct products of semi-n-abelian groups are semi-n-
abelian again.

iv) => i) is trivial.
iii) =* ii) If G is semi-2-abelian, Satz 7 of Kowol (1977) implies the nilpotency

of G and c(Gp) < 2 for p > 3. The remaining part of ii) follows from Theorems
1 and 2.
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