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DETERMINANTAL IDEALS WITHOUT MINIMAL
FREE RESOLUTIONS
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Introduction

Let R be a Noetherian commutative ring with unit element, and x,;
be variables with 1 <i<m and 1 <j<n. LetS= R[x;] be the poly-
nomial ring over R, and I, be the ideal in S, generated by the ¢ X ¢
minors of the generic matrix (x,;) € M, .(S). For many years there has
been considerable interest in finding a minimal free resolution of S/I,,
over arbitrary base ring R. If we have a minimal free resolution P.
over R = Z, the ring of integers, then R'®,P. is a resolution of S/I,
over the base ring R’. When does S/I, have a minimal free resolution
over Z, then?

The resolution over Z has been found in the case ¢t = min(m, n)
(Eagon-Northcott complex, [3]) and in the case ¢ = min(m, n) — 1 (Akin-
Buchsbaum-Weyman complex, [1]). Of course, in the case ¢ = 1, we have
the resolution of S/I,, namely, the Koszul complex. Recently, we proved
that S/I, has a minimal free resolution over Zinthecase m=n=1¢+ 2
[6]. But our proof consists in showing that the Betti numbers of S/I,
are independent of the characteristic of the ground field, so it does not
provide an explicit construction of a resolution.

In this paper, we prove that S/I, does not have any minimal free
resolutions, if R is the ring of integers Z, and if 2 < t < min(m, n) — 3,
as we announced in [5]. The third Betti number of S/I, is independent
of the characteristic, if t = 1 or ¢ > min(m, n) — 2 ([5]). To the contrary,
it depends on the characteristic if 2 < ¢ < min(m, n) — 3. If the charac-
teristic is 3, then the Betti number gets larger than the characteristic
Zero case.
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§1. Preliminaries

On the characteristic free representation theory of GL, including the
notion of partitions, Schur modules (Schur functors) and Schur complexes,
tableaux, and Cauchy formulae, we use the notation, the terminology
and the results of [2] and [5] freely. But we shall review some facts on
the characteristic free representation theory of GL, which will be used
later. For the details, see [2] and [5].

Let R be a commutative ring with unit, and «: 0 - G LFSES 0
be a finite free complex of length two. We define the symmetric algebra
of «, to be the tensor product: So = SEQ NFQ® DG. Sa has a structure
of a graded bialgebra over R, with an appropriate anticommutative struc-
ture. Moreover, Se has a structure of a chain complex. We define the
boundary map 3 to be the sum, 85*® 1,5 £+ 13z ® 8"*. The multiplication
and the comultiplication of Se are chain maps (see [5, chapter I, §2]).

Let ¢: Fy - F, and +: G, — G, be two morphisms of finite free
modules, and %2 be a nonnegative integer. There is a unique universal
natural transformation 6,, which makes the following diagram commuta-
tive;

Nip® ANy ——> S,(p® )
(=) ld@d ld
T ® Tl "L_) Tl ® )
where 4’s in the diagram are appropriate diagonalizations, and the 7 in the
diagram is an appropriate twisting. We define §: Ao ® A — S(p ® )

given by ¢ =6, on A% ® A", and § =0 on A‘p® Ap if i =j. The
natural transformation 6 is the composite map;

Ne® N = ANF,® DF,® NG, ® DG,
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2 AF,® AF,® DF,® DF.® AG,® AG,® DG, ® DG,
’

L AF® AG,®DF,® AG,& AF,® DG, ® DF,® DG,

05 G 6 B 1 G0 w7

>S(F,® G) ® NF,® G) ® N(F,® G) ® D(F, ® G)
TLS(F,QG)Q AF.® G®F,®G)R DF,®G) = S(p® )

where 4 is the diagonalization, 7' is an appropriate twisting. ¢°%, ¢", ",
and " are the unique universal natural transformations determined as
follows. We define ¢3(F, G): N*F® N'G — S(F & G) for any nonnegative
integer k to be the unique universal natural transformation which makes
the following diagram commutative.

S
NF@ NG — s SUFR G)

() 1 4& 4 4
TFRT.G——> T(FRG)

We define ¢5 = ¢7 on AN*F® A*G and ¢° = 0 on N'F® NG ifi=+j. Thus
#° is a natural transformation which maps AF® AG to S(FQ G). The
definitions of ¢, ", and W are quite similar (see [5, chapter III]). Note
that ¢; is given by

AN NAR N - ANg) = (= 1)k det(fi®gj)1§i-j£k

for fi, -+, fre Fand g, -- -, g, ¢ G. Since the diagram (x) commutes, 8, is
a chain map.

For a partition 2 with lg(2) = g and |1] = r, we define 6,: N0 ® A
— S,(p @) to be the composite map;

N @ N = N ® - ® N @ N & - - @ Ao
T
—> Ao @ AW @ - @ Nhp® Ny

02 R+ R 02y Sx1(§0®\l")® e ® Slq(¢®l]/‘) ——E? ST(§0®‘!f)

where 7T is an appropriate twisting, and m is the (iterated) multiplication.
We also define:

M) = Y Im@, and M) = 3 Ima,
#l=r jul=7
n=2 n>2

For re N, {M{0)},-. gives a filtration of S, (¢ ® ).
The Cauchy formula holds for S(p ® v) via the pairing 4.
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LemMma 1.1 ([5, Proposition III, 2.6]). Let A€ Qi and pe SyA). The
following diagram is commutative.
id® [ BluAp) ®id
Ao ® A SO\ @ A g SO @ A
l[]x(/\‘ﬁ)@id loy lid®[]z(/\¢)

2 0z
N @ NApbr “—‘f—) Sk(§0®‘1") —— N ® Ay

TueoreMm 1.2 ([5: Theorem IIL. 2.7]). Let ke N, and ¢: F, — F, and
¥: G, — G, be morphism of finite free R-modules. If 1€ 25, then 6, induces
the isomorphism of complexes B,: Lo & Ly — M¥Y6)|M*6) which makes the
following diagram commutative;

Aw® A —2 s MX0)
lda ® da proj.
Lo ® Loy —— > MX0)/M6)

where L, is the Schur complex with respect to the shape A. Hence, the
associated graded complex of the filtration {M*)hicoy i D icoy Lo ® L.

Now we fix positive integers m, n, and ¢ with ¢ < min (m, n), and
we consider free R-modules F' and G with rank F = m and rank G = n.
We let S = S(F® G) so that S is isomorphic to the polynomial ring with
m-n variables over R. We define I, to be the ideal of S generated by
Im ¢} and call I, a determinantal ideal. For re N, we denote S(F® G)
by S,, and S,NI, by I,,. We denote the complex I, ®sS(idsg:) (resp.
I, ®,S(3d, ® idg)) by #* (resp. £*). The complex £ (resp. £*) is a graded
S-complex so that ¢ (resp. #') is decomposed into the direct sum; ‘=
Drene T (resp. It =3, cn, F07).  Since S(idpgs) = SO AF®QG) is a
graded minimal free resolution of R = S/I,, H,(#"") is the degree r com-
ponent [Torf(I,, S/I,)], of the graded S-module Tor{(Z,, S/I,) for any i > 0
and r>0. On the other hand, we have an isomorphism H,(#"") ~
H/(s5%") for any i and r [5, Lemma IV. 1.4]. In case R = K is a field of
characteristic p, we denote dim, [Tor$ (S/I,, S/I,)],, which is invariant under
an extention of the base field K, by p?,. We have the following lemma.

LEMMA 1.3. There is a minimal free resolution of S/I, in the case
R = Z, if and only if p,,, = rank H(S"") is independent of the charac-
teristic p of the base field R = K for any i > 0.

For the proof of the lemma, see [9, Proposition 2 of chapter 4] or
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[6, Proposition II. 3.4].
Now we shall prepare some additional notation. We define #: id, ® id,
— 1dpge and ¢: idyge — 1dr ®ids to be the morphisms of complexes given

by:
1
: . < 1) (1,1)
id;,®idy =0 —>FRIG-—HFRIGRAFRG—-S>FRG—>0
n'l lo l(1,1) ll
idygy =0—> 0 —> F®G —>FRQG—>0
and
idygg =0—> 0 —> F®G —>F®G—>0
zl 0 /4 ,0) 1
( 1> 1,1 h4

id;Ridyg =0 —>FRIG-—5FRIGOFRG—-"5FRG—>0

It is easy to see that moc=1idy, , For reN, S maps J47 onto
#57, and S,t maps S into F°7. Since Hy(S"") ~ Hy(#"") and Hy(S,x)o
H,(S,0) = id, H,(S,r) gives an explicit isomorphism between them. We
define o”: A7idp;® A7id; — S,(idyge) to be the composition S,r-4, for
reN, It is clear that o maps Ly = >, ;.. L\ to J4" for t, ke N,
(for the definition of L!? (1 a partition), see [5, Definition IV. 1.5]). Note
that L™ is nothing but the complex {U‘(F, G), 3"} defined in [1, Defini-
tion 3.7]. The map o«" coincides with the map defined in [1, Remark 3.19].
If R contains @, then ol t*®: LLU+H 5 Z0I — g-Y(FLL %) is surjective,
but this is not true in general (see section 3).

We fix ordered bases X = X, UX, of id,: F;, - F, and Y= Y,UY, of
idg: Gy — G,, where X, = {x, <---<x,}, Xi={x<---<a}, L ={m <
- <y,} and Y, = {y;<---<y,} are bases of F,, F,, G, and G,, respec-
tively. The ordering is given by X, < X, and Y, < Y,. For simplicity of
notation, we may denote x; and y; by i, and x, and y, by 7/, if there is
no danger of confusion.

For a tableau Se Tab,,(X) and subsets I C X and N C N, we denote
#{(@,))ed,,lie Nand T(@,j) eI} by ny(T, I). In this notation, an element
x € X (resp. i € N) may stand for the singleton {x} (resp. {i}). We denote
nd{S, X)) by n(S), and ny(S, X)) by n(S). We will use a similar conven-
tion for a tableau T € Tab,,(Y).

Let 2¢2-, SeTab; X, and TeTab, Y. We use the bitableau notation
as in [2]. We denote 6(S® T) by (S|T). More generally, we will denote
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0(a® b) by (a|b) for ae N,;id; and be A,id;. The set of tableaux,
{SeTab,X|S is row-standard mod X}, is denoted by X,. The set Y, is
defined similarly.

Let R = K be an infinite field, and M be a polynomial representation
of GL(F) (i.e., M be a K[End(F)]-module with dim,M < co, and the
representation map p: End (F') - End (M) be a regular morphism). We
identify End (F) with M,(K) via the basis X = {«x,, ---, x,}. For a se-
quence « = (ay, -+ -, ;) € NI, we define the subspace M, of M by

Ma = {a’eMlv(th Tty tm)eKm P(t1® v G')tm)'a = t‘l)(1 ct t;.nm'a}

where £, P --- D, is a diagonal matrix whose (i,7) content is ¢, We
call M, the a-weight submodule of M, and « its weight. The representa-
tion M is decomposed into the direct sum of M, Any morphism of
polynomial representations of GL(F) preserves weight. So any chain
complex of polynomial representations of GL(F), say P, is decomposed
into the direct sum; P = > P,.

We will consider complexes of polynomial representations of GL(F)
X GL(G) in section 3. Such a complex, say C, is decomposed into the
direct sum of biweight subcomplexes C, corresponding to the biweight
a = (a(F); «(G)). For example, the biweight (ai, - -, @u; By -, ) Sub-
module of S,(id; ® id,;) is generated by:

{(SlT)‘aze‘QI;9 SeXh Te y'), Vi (1 g i S m)
ny(S, {2, 2} = a;, Vi (L <j < n) ny(T,{y,, ¥;D) = B3}

Any universally free functor L on F and G that we will consider will
always be a polynomial functor. So L(F, G) is a polynomial representa-
tion of GL(F) X GL(G).

§2. The filtration of 4"

We have calculated p? in the case ¢t > min(m, n) — 2, in [5], using
the natural filtration {M“%},.,- of #"". We can associate with this filtra-
tion the usual spectral sequence whose E'-term is EL* = H, (M M%)
We use the following facts on the homology of the associated graded
complex of this filtration.

ProrosiTiON 2.1. Let m, n, r and t be positive integers with min(m, n)
>t, and 1€ 2;. Then we have:
(1) E?“* =0, except for the case 2 = (t + 1). In particular, H(F"")
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= 0 except for the case r =t + 1.
(2) Ey"* =0, except for the following three cases.
(i) 2=(0+2
(ii) r=2t4+1,2=0¢+ 1%, 1/t +1)eR, and min(m,n) >r
Gil) t<r<22t, 2=Er—1t), 1/r —t)eR, and min(m,n) >r
(8) If the following two conditions hold, then E}"* = 0.
(1) A,=tor 2, <t
(i) Ilg(d) > 3, or equivalently, 2, + 0

Proof. (3) is [5, Proposition IV. 3.1]. (2) is a little stronger than [5,
Proposition IV. 2.3]. We have to show that E}** =0 if 2 (¢t + 2) and
if r — ¢ is invertible in R.

We use the same spectral sequence argument used in the proof of
[5, Proposition IV. 2.3]. By Lemma IV. 2.4 and Lemma IV. 2.7 of [5], we
have only to show that E?, = HY(HF (MY /M%) = 0.

First we consider the case ¢t <r < 2f, and 1= (t,r — #). In this case
the same argument as in the proof of [5, Lemma IV. 2.8] works. In fact,
any element of E}, is represented by A = > ,cs(S|T), where S is
standard mod X,, T is standard mod Y;, and »,(S) = n(T) = 0. So we can
write > sCs 7088 = Z#GSD(Z) O%(al), where a’ € A\ F. But since [1{(a%,) =
1/(r — DO MO8 5(ah,), we may assume that af,, = 0, after replacing
al_iy by @by + 1(r — 8 1(al,). So this case is clear.

We consider the case 1 = (¢t + 1,¢). Any element of K}, is represented
by A= 3 5r¢s,7(S|T), where Se¢X,, TeY,, S is standard mod X;, T is
standard mod Y;, and n(S) = n(T) = 1. We claim that for each pair (S, T),
which appears in the sum with n,(S) = n(7T) = 1, it holds

(S|T) e 6(LipY) + Mot + 0:(M5D + (ML) .

If the claim is true, we may assume that A ef(Li%Y) + 8,(MbY). So we
can write A = A’ + 9,B with A’ ed,(L:7") and Be M%i. It is easy to see
that there exists some B’e0,(L¢3") such that 9.(B — B’)e Myi (see the
proof of [5, Lemma IV. 2.4]). Replacing A = A’ + 3,B by A’ 4+ 5,B’, we
may assume A € 6,(Li7"). So the proof of [5, Lemma IV. 2.8] is still valid
by [5, Lemma IV. 2.6], and it suffices to prove the claim.

We shall prove the claim.

We put;

=% @.Q; ., and T=%""" o0 .

1"‘bz ﬁl...‘gt
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where a, and b, are elements of X,, and «; and B, are elements of Y,.
We may assume that «; ans g, are all distinct (if not, then the claim is
(essentially) proved in [56, Lemma IV. 2.5]). If we set;

S = Zi atat+1
then we have
J
)

e
(SIT) = (§'1T) = =5 aa(s

J
1 ce e ag) W s ol
0.8 . % 1Ky 41 1)t-4 % ¢ Oyl
M a“( B B Z( Y e B )
Jj
B )
t+1 J=1 ‘Bl"'ﬁl b

where each symbol j indicates the deletion of the j-th member in the
sequence. Hence, it suffices to show that the element

J

1 t+1 a S a ..o
C = .<S —_ S/ —1 t-j+1 %1 t+1 j)
]Z:=1( ) ,31 e .Bc

t+1

is contained in 9x(M%3). We shall calculate C. If we put
i

s+1 s Oy cr e Oy .
= ]Z.zl(_l) A ,35 oo B €[N idels,

&;
then using Lemma 1.1, we have
i
1 <a1 cee Qg ¢ a - a0, )
C = A by b+ T2 b, |U
t+1 @ 7=t a;
]
S 'ti:( 1)””6””1)”Z5“U
t+1 £ oy t-10;
Y ]
¢ i AR A PO ai“
=4 (}:( R O L U)+D,
@) a)

where D e M4{"" is of the form D = (V|3,U). Since
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J
t+1 @y * 00 Oy
aGU—'—— Z(_l)t_“‘ ﬁl e ﬁt
=1 o
J

and

t+1 ‘l
E 1(-—1)t_1+1a; /\ e /\ a;ﬂ@“] = A(al /\ v /\ at+l)
=

it holds that De M%i. Hence,

J J
1 ¢ a - a0, t+1 ‘ Qg ovece L7981
+0 Z(—'l)t_j by - v bz - Z(""l)t_j b, "'bz—1b: U)l+ D
t+1 i=1 a; i=1 a;

is a cycle of M*»®“50 /M43 By (3) of this proposition (see also Proposi-
tion 2.3 below), C — D is a boundary of M*“? so that Ced,(M%%). This
proves our claim, so we have completed the proof of (2).

(1) can be proved quite similarly to (2), and so we omit the proof.

Remark 2.2. From (1) of (2.1), we can conclude that 8,, = 0, unless
r =1t -+ 1. Furthermore, we can see that X, = H,(Sf"'*') = E}*“*Y is a
homomorphic image of H(L"“*") by the morphism H(a"'*'). Using this
fact, it is not difficult to see that X} is generated by the elements of the
following form;

e,

0y « - LA, | Jy v Jos) With 2 and j, - - j,,; are both standard
+

1
and

8y - Lydl| s+ Jujl) with g, -+ i,,, and j.l ""J¢ are both standard
t+1

where 9 is the boundary map of S(idr, ®id;). Since
rank X} = rank [L, ,F® N""'GD N**'F® L, ,,G],

these elements are a free basis of X!.
These facts were first proved essentially by Kurano [6].

PropoOsITION 2.3. We let 4, =(3,2) if t=2, and A, = (t,3) if t > 3.
Then Ey»» ~ Epb*,  [In particular, if we have Ey“* + 0, then fs,,.s + 0.

Proof. If p is a partition of weight ¢ + 3 with x4 <, in the lexico-
graphic order, then p satisfies the conditions (i) and (ii) of (3) in Pro-
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position 2.1, so that E}“* = 0. We have E}** = 0 for any partition v of
weight ¢ 4+ 3 by (1) of the proposition. With these facts and the standard
spectral sequence argument, it is easy to see that Eblt% ~ E&bh  The
second assertion is now clear and the proof is complete.

By Lascoux’s resolution [7], we know that #,,, = 0. Furthermore,
we can see that p¢,,, = 0 if p is a prime number with p = 3 by (2) of
Proposition 2.1. We shall show that £ ,., +# 0, if 2 < ¢ < min(m, n) — 3.

§3. The main result

This section is devoted to prove the next theorem.

THEOREM 3.1. Let m, n and t be positive integers with 2<t < min(m, n)
— 3. Then the third Betti number B, of S/I, depends on the characteristic.
In this case, S/I, does not have any minimal free resolutions over Z.

Proof. By the argument in section 2 and Lemma 1.3, we see that
it sufficies to show that E}“* % 0 when R is an infinite field K of char-
acteristic three, where 1, is the partition defined in Proposition 2.3. Each
M*?* is decomposed into the direct sum of the summands indexed by the
bicontents (see section 1). So it is sufficient to show that the biweight

«=(1,1,---,1,0,---,0; 1,1, ---, 1,0, - -+, 0)
l | |

PP Lty
submodule of E}“% is not zero. We shall show that E = E}Y% = [Eph¥],

is not zero. To this end, we construct a non-zero linear form h: K — K.

(i) case 1. t=2.
First, we construct a linear form g: Li, — K. Note that Li{, =
Ly} @ L2 1t holds that

Ly = (N'FQ DIFQ N'Flurm @ [AN'G® DG N'Glaey
where [ l.» and [ ], indicates the weight (1,1,1,1,1,0,0, - - -)-sub-
module. Hence, the basis element of Li{? is of the form

_ 0102(e3) o, 7172(z3)’
S®T = gdab ® 47h

with ¢, €S, and S and T both row-standard (mod X; or mod Y;). For
such a basis element, define g(S® T) = (—1)". We define g to be zero
on Lik:l  This gives the definition of g. We shall see that g induces a
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linear form g; Mt¥,/[Mb%, — K. To see this, it suffices to prove that g
vanishes on

(Ker 6)

= [OP(N'FRDF) + O (N FRQ DIF® N'F)]Q[N'G® DGR N'Glee
+ [AN*FQ DIF® A'Fl,y ® [OP(N'G® DG) + OW(NGR D,G® N'G)]
+ (Ker ) N Lyt

where 6 is the composite map:

0; proj .
ty20 0 Lyio : ty20 ty 0
Ll:l,a > Moy, > Ml:l,a/Mlzl,a .

The equation is a consequence of Theorem 1.2. We consider the linear
form: gp: [N\, 1dpls ey — K defined by:

gy 1s zero on [A*F® N'F® D, Flu

chLll Z? (03)) = (=10  for ge€,.

The linear form gg: [A,,1dsls,a@ — K is defined similarly. It holds that
g =8r®g; on Lip,. We see that;
gro 091 02 03 a4 (d5)) = (-1)0.(;1) —0

4 /
goo Dﬁﬁ’”(aé d2 ¢3 (04)

o )= (=13=0

by a straightforward computation. Hence, g, vanishes on
[OPXN'FQDF) + O (N FRODFR N'F)Q[N'G® DGR NGl -

Similar calculation will show that g, vanishes on

[N'F® DiF® N'Flun ® [OP(N'G® D,G) + OFU(N GO DGR N'G)].

It is clear that g vanishes on Li¥!. We conclude that g induces g. We
extend the definition of g. We define g is zero on M éjé?,,/M sh.®M f,:é‘,’a/M b,
so that g is defined over Mé;i"/M;;};‘.

Now we shall show that g induces A: E— K. To see this, it is
sufficient to show that g is zero on [M bl + By(M L) /M4%». To see this,
it is sufficient to show that g vanishes on

0@x(L5 1) + 0@s(Li3)

since g vanishes on
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[Mge + Mgk, + Mk, + 0,(LaeD] /Mg .

But this is clear from the facts that

gFan<01 (92) ("3)’) (=17 — (=1 =0 and

g4 db

a3 ) o

for ¢, 7€ G,
We shall show that A is a nonzero linear form. We let;

A (123 _1238128 123
s 45 |45 45 )

Then 0A = 0 and g(A) = 1. This shows that A is non-zero.

(1) case 2. t> 3.
We define a linear form g: L' — K as in (i). We define:

( gl o2 - at ® 2 e ft>
o(t + 1) ot + 2) o(t + 3) (¢ + 1) «(t + 2) «(t + 3Y

_ {(—1)‘" af {1, -t — 2} C{al, - -, 0t} N {cl, - - -, ¢t}
0 (otherwise)

for row-standard bitableaux of shape 2, = (¢,3) in L{{!. Note that g
admits an expression g = g,® g, In an obvious manner as in case (i).
It holds that

no(t + 2)) =0 and

~a(t+1))___0

(t+2,1) 1
08t 2y

o (t+1,2) (71 0'2 .
8ro Ll (a(t +2) (ot + )

(which can be shown by straightforward computation). Using [5, Lemma
1.3.9], it is easy to see that

Im O, NA'FQ N F® D F
= QAN FR AN'FQ DF) + L (AR D,F).

Hence, we have g, is zero on [Im O, NA‘F® N*FQ® D,F],, where
a(F) is the weight (1,1, ---,1,0,0, ---). Similarly, we have g, is zero on
[Im 7,,N A'G® N*G® D,Gl,, where a(G) is also the weight (1,1, -,
1,0,0, ---). Since 0,(Lo3k) + M1 1.=M?bi, by [5, Lemma IV. 2.2], g induces
a linear form g: Mup, [Mbi, — K, and we extend the definition of g as in
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case 1. By an argument similar to the proof in case (i), it is easy to see
that g induces A: E — K.

We shall show that A is nonzero. 1f we put

B P T otl  rl 2 -

A= 5 (T wE or y eED y y)
(remember that &, ={0ec@,, ol < - <o, oG+ 1 <--- <o+ )}
then 9A € M>%, and g(h) = (g>2 = 100 = 0. Hence, we have A == 0.

By case 1 and case 2 above, we have completed the proof of Theorem
3.1.

CoroLrLary 3.2. The rank of the module X does not depend on the
characteristic, if and only if t =1 or t > min(m, n) — 2.

Proof. The ‘if* part is [5, Corollary IV. 2.12]. Since .£“'** is a uni-
versally free complex, and H/(#"**") =0, if i # 2,3, the rank of X! =
Hy(7“"**) depends on the characteristic if rank Hy(#“***) = B,,,; depends
on the characteristic. So the ‘only if’ part follows from the theorem.

Remark 3.3. An argument quite similar to the proof of the theorem
shows that E;*®? £0, and E£75®P £0 for 2 < t<min(m, n) — 2, if
R = F,. It follows that the natural map H(L"“*®) — X} is not surjective,
if t<min(m,n) — 2 (even if t = 1!) and if R = F,. In fact, if we put

ol 2 .ot 2 oot
A = Zu’,feeg,g(o.(t + 1) O'(t + 2)/ ‘ (t + 1) T(t + 2)’ >)

then 0A e #1142 so Sn(A)e Z: (= Z¢*, in the notation of [1]). But Sz(4)
is not contained in the image of o»''*: L"“'? — ZL  Since 0Sn(A) e X\*!,
there exists B elIm a"'** such that 0Sz(A) = 0B, by Kurano’s first syzygy
theorem. Hence, Sz(A) — Be X!, but Sz(A) — B¢ Im Hy(«""*%).

Therefore, X} does not have a standard basis as X! has, although
X! is universally free.

Remark 3.4. We have seen that X' is not a universally free GL(I')
X GL(G) complex in the case 2 < t < min (m, n) — 3. Recently, the author
[4] proved that the Betti numbers of I, are independent of the charac-
teristic in the case t=1 or t >min(m,n) — 2. So X' is universally
free in this case, and is the linear part of the resolution.
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