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MAGIC VALUATIONS OF FINITE GRAPHS

BY
ANTON KOTZIG AND ALEXANDER ROSA(®)

The purpose of this paper is to investigate for graphs the existence of certain
valuations which have some ‘“magic” property. The question about the existence
of such valuations arises from the investigation of another kind of valuations
which are introduced in [1] and are related to cyclic decompositions of complete
graphs into isomorphic subgraphs.

Throughout this paper the word graph will mean a finite undirected graph
without loops or multiple edges having at least one edge. By G(m, n) we denote a
graph having m vertices and n edges, by V(G) and E(G) the vertex-set and the edge-
set of G, respectively. Both vertices and edges are called the elements of the graph.

DerINITION 1. A graph G(m, n) is said to have a magic valuation (M-valuation)
with the constant C if there exists a one-to-one mapping f: V(G) U E(G) —
{1, 2, ..., m+n} such that f(a)+/(b) +f([a, b])=C for all [a, b] € E(G).

DeFINITION 2. (a) Two M-valuations £, f’ of a graph G are equal, f=f", if there
exists an automorphism « of G such that f(«x)=f"(x) for all elements x € G.

(b) Given an M-valuation f of a graph G(m, n), the valuation f such that f(x)
=m+n+1—f(x) for all elements x € G is said to be complementary to f.

(c) Two M-valuations f;, f; of G are equivalent if f; =f; or f; =fs.

(d) An M-valuation f of G is said to be self-complementary (SCM-valuation) if
f=f

LemMA 1. If a graph G(m, n) without isolated vertices has an SCM-valuation then
m is even and n is odd.

Proof. It follows immediately from definitions that if G(m, n) has an SCM-valua-
tion then m and » are of different parity, and the constant Cis 3(m+n+1)/2. In an
SCM-valuation f of G(m, n) there is an element x € G such that f(x)=1(m+n+1).
Suppose x to be a vertex. Since G has no isolated vertices, there is a vertex y
adjacent to x and f(x)+/(»)+f([x, yD=3(m+n+1)/2, ie., f())+f(x,y)=m
+n+1. On the other hand, f(y)=m+n+1—£(y)=f([x, y]) which is a contradic-
tion, whence x must be an edge. It follows easily that the number of edges » is odd
and hence m is even.

Let us remark that there exist graphs G(m, n) with isolated vertices having an
SCM-valuation such that m is odd and # is even (for an example see Fig. 1).
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Figure 1.

THEOREM 1. (a) If G is an m-gon then there exists no SCM-valuation of G.
(b) 4 complete graph K, has an SCM-valuation if and only if m=2.

Proof. (a) follows immediately from Lemma 1.

(b) An SCM-valuation of K, evidently exists; Kj; is a triangle. Let m>4, and let
f be an SCM-valuation of K,,. According to Lemma 1 there is an edge h= [y, v]
such that f(h)=4(m+n+1). Pick another vertex w, and let f(u)=a,f(w)=>.
According to the definition of an SCM-valuation we have f(v)=m+n+1—aq, and
there must be another vertex z such that f(z)=m+n+1—b. But then we have
S(w, z)=3(m+n+1) which is a contradiction.

We do not consider here the existence of an M-valuation for complete graphs;
to this case a separate paper of the first author will be devoted. Let us state here
only without proof:

A complete graph K,, has an M-valuation if and only if n=2, 3, 5, or 6.

THEOREM 2. An M-valuation of the complete bipartite graph K, , exists for all
p,q=1.
Proof. We can easily construct an M-valuation of K, , Denote the p blue

vertices by ay, @, . . ., a, and the g red vertices by by, by, . . ., b,, and define f in
the following way:

fla) =i, f)=ip+i+p, f(a, b)) = (p+D-(¢g—-j+2)—-i-1

Evidently, f'is an M-valuation of K, , with the constant C=pg+3p+g+1 since
all verifications are trivial.
As an example, an M-valuation of Kj; 4 is shown in Fig. 2.

Figure 2.

THEOREM 3. An M-valuation of the n-gon exists for all n> 3.

Proof. Let a4, as, ..., a, be the vertices and [ay, a,], [a2, a5, . . ., [@,, a,] the
edges of the n-gon. Consider three cases:
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Case 1. nis odd, n=2k+1. Define

fa) = {i for i odd

i+n forieven
fUa, a; 1)) =2n-2i fori=1,2,...,n—1,1([a,, a;]) = 2n.
Since we have
V% {fla)} ={1,3,...,2n-1},
E(Lg) {f(a, @D} = {2,4,..., 21},
Sfla)+f(a)+f([a,, a1]) = n+1+42n = 3n+1,

fla)+fa)+f(a, a41]) = 2i+n+142n—-2i = 3n+1 fori=1,2,...,n—1,
fis an M-valuation of the n-gon with the constant C=3n+1.

Case 2. n=0 (mod 4), n=4k. Define
(i fori=1,3,...,2k—1
i+1 fori = 2k, 2k+2,...,4k—2
n+1 fori=2k+1,2k+3,...,4k-3, k=2
n+i+l fori=2,4,...,2k-2, k=2
2 fori = 4k—1
2n—2 fori =4k

fla) = 4

(2n—2i—2 fori=1,2,...,2k—-2,2k,2k+1,...,4k-3, k=2

2n fori=2k—1
Sfas, a;41]) ={2n—1 for i = 4k—2

n fori = 4k—1

\n+1 fori = 4k

We have
@) ={1,3,5,on=Ln+3,n45,..., 203 U {2, 2=
(G.
) f aasD} = (4,68, .., 20—4, 203 U {n-+1, 20~ 1,

Now we show that
fl@a)+f@.)+f(a, a..]) = C foralli=1,2,...,4k.
(1) Letie{l,3,...,2k—3}; then
f@)+f(@ ) +f(a, aii1]) = i+(n+i+2)+(2n—2i—2) = 3n;
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(2) Leti = 2k—1; then
Sage 1) +f(ao) +f({azk -1, azi)) = Qk—1)+Qk+1)+2n = 3n;

(3) Letie{2k,2k+2,...,4k—4}; then

fla)+fa ) +f(a, ais1)) = (+D+(@+i+ D)+ (2n—2i—2) = 3n;
(4) Let i = 4k—2; then

Sas-2) +f(asr-1) +f([Gak - 25 Qar-1]) = Bk —1)+2+(2n—1) = 3n;
(5) Letie{2k+1,2k+3,...,4k—3}; then

fl@)+f(a ) +f([as, a;11]) = (n+0)+((+2)+(2n—2i—2) = 3n;
6) Letie{2,4,...,2k—2}; then

f@)+fa )+ fa, a;.1]) = (n+i+D)+(GE+1)+(2n—-2i—2) = 3n;
(7) Leti = 4k—1; then

SOy -1)+f(aw) +([0a -1, asi]) = 2+ (2n—2)+n = 3n;
(8) Let i = 4k; then
faw) +f(@) +f([as, o)) = 2n—2)+1+(n+1) = 3n,

thus fis an M-valuation of the n-gon with the constant C=3n.
Case 3. n=2(mod 4), n=4k +2. Define
(3(i+1) fori=1,3,...,2k+1
3(i+3) fori = 2k+3,2k+S5,...,4k+1
6k+3 fori=2
fl@) ={k+2 fori = 2k+2
2k+3 fori = 4k+2
3i+2k+2 fori=4,6,...,2k, k=2
(3i+2k+1 fori=2k+4,2k+6,...,4k, k=2
(4k+3 fori=1
4k +2 fori=2
8k+4 fori=2k+1
f(lai, a;+1]) =<8k +2 fori = 2k+2
6k+2 fori=4k+1
8k+3 for i = 4k+2

\8k+4—i otherwise, k>2.
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Since
U {f@)} = {1,2,..., 4k, 4k +1, 6k+3},
(e

U){f([ai, @)} = {4k +2,4k+3,...,6k+1,6k+2,6k+4, 6k+5, ..., 8k+4},
E(G.

we have to verify only that
fla)+fla.)+f(a,a,.,) =C foralli=1,2,...,4k+2.
(1) Leti = 1; then
fla)+f(ar)+f(las, a;]) = 1+(6k+3)+(4k+3) = 10k +7,
(2) Letie{3,5,...,2k—1}; then
fl@)+f(a . )+fa, a1]) = 3G+ D+GE+1)+2k+2)+ Bk +4—i) = 10k+7;
(3) Leti = 2k+1; then
J(@ai+1) +/ @i+ 2) +/([G2k 41, Gai2]) = 32k +2)+(k+2)+ @8k +4) = 10k+7;
(4) Letie{2k+3,2k+5,...,4k—1}; then
fla)+f(a ) +fUa, a41]) = 3GE+3)+EFE+ D) +2k+ 1)+ @k +4—i) = 10k+7;
(5) Leti = 4k+1; then
(@uie+1) +/@a+2) + (a1 15 Qarev2)) = 34k +4)+(2k+3)+(6k+2) = 10k +7;
(6) Let i = 2; then
fa)+f(az)+f([as, as]) = (6k+3)+2+(4k+2) = 10k+7;
(7) Leti = 2k+2; then
S @z +2) +f(@2i+8) +/([@2kc 1 25 G2 45]) = (K+2)+3(2k+6)+(8k+2) = 10k+7;
(8) Let i = 4k+2; then
fup+2) (@) +f([Gar 425 a1]) = Qk+3)+1+(8k+3) = 10k+7;
) Letie{4,6,...,2k}; then
f@)+fla)+f(a, @i 41)) = Gi+2k+2)+3(E+2)+Bk+4—i) = 10k+7;
(10) Letie {2k+4,2k+6,..., 4k}; then
f@)+f(@ )+ (a;, a41]) = Gi+2k+1)+3(E+4)+@k+4—i) = 10k +7,

thus fis an M-valuation of the (4k+2)-gon with the constant C=10k+7, which
completes the proof of Theorem 3.

In Fig. 3 there are some illustrations of Theorem 3, in Fig. 4 all nonequivalent
M-valuations of n-gons for n=3, 4, 5, 6 are shown.
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Figure 3.

Denote by C; the tree with exactly two end-vertices (vertices of degree one) and i
edges. Denote by H; the star—the tree with i edges (i> 3) and exactly i end-vertices
(and consequently, with exactly one vertex of degree i).

DEFINITION 3. The base By of a tree T is the subgraph of T formed by all elements
of T except all its end-vertices and end-edges.
For any tree T define the number z(T') as follows:

1 z2(C)=0, z(H)=1
) z2(T) = 1+z(By) for T# C,T# H,.

An edge h=[u, v] of a tree T is said to be symmetric if there is an automorphism
o of T such that au=v, cv=u, ch="h. A symmetric tree is a tree having a symmetric
edge.

THEOREM 4. If T is a tree such that z(T) <1 then there exists an M-valuation of T.

Proof. Any tree T with z(T) <1 can be realized in the plane so that its vertices
(points) are displaced in two rows, the edges are segments joining these points
(from different rows) and no two segments cross. Let a;, @y, . . ., a, be the vertices
in the first row and let b,, b, . . ., b, be the vertices in the second row. Define

fla) =1, f(b)=p+i, f(a b)) =2p+29—i—j+1.
We have

tgl {f@) =1{1,2,...,p}; ing {fB)} = {p+1,p+2,..., p+q};

EL(% {fUa, b))} = {p+q+1,p+q+2,...,2(p+q)—1}
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and

S@)+f6)+f(a, b)) = i+p+j+2p+2g—i—j+1 = 3p+2g+1,
thus fis an M-valuation of T with the constant C=3p+2g+1.
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THEOREM 5. Let T be « tree and let z(T)< 1. There exists an SCM-valuation of T
if and only if T is symmetric.

Proof. The necessity is obvious. On the other hand, p=g for any realization of
a symmetric tree 7" as described in the proof of Theorem 4, and a valuation f of T
defined by f(a)=1i, f(b)=3p+i—1, f([a;, b;))=3p—i—j+1 is clearly an SCM-
valuation of T with the constant C=6p.

THEOREM 6. Let T be a symmetric tree and let Sy, S, be the two (isomorphic) com-
ponents of the graph T' obtained from T by deleting the symmetric edge. If z(S;) <1
then there exists an SCM-valuation of T.

Proof. Let A=[u, v] be the symmetric edge of T and let « be an automorphism
of T such that cu=v, acv=u, ch=~h. Let u € S;. Take a realization of S; as described
in the proof of Theorem 4, and let a;, a,, . . ., a, be the vertices in the first row and
b, b, . .., b, the vertices in the second row, the vertex u being, without loss of
generality, in the second row. Denote a;=ca; (i=1,2, ..., p), bi=eb(i=1,2,...,9).
We can realize T in the plane so that its vertices are displaced in four rows, namely

a a4y ... a
by by, ... b,
by by ... b
ay a; ... ap,

the edges (segments) join the vertices in the first and second row, and in the third
and fourth row, respectively (the edges of S; and S,, respectively), there is a single
edge joining a vertex in the second row to a vertex in the third row, namely the
the edge &, and no two edges cross. Now define

fla) =i, f(b) =3p+3q+i—1, f(@)=4p+4q—i,
f@) =p+g+1—i,  f(a,b]) = 3p+3g—i—j+1,
Sai, bi]) = p+g+i+j—1,  f([u,v]) = 2p+2q.
We have

Cs

)y ={1,2,....p},

-
1]
[

[l Cn

{f(6)} = 3p+3q,3p+3q+1,...,3p+49—1},

i=1

Cx

{f(a)} = 3p+4q,3p+4q+1,...,4p+4q -1},

i

Y00y = {p+1,p+2,....,p+q},

E%)) {f(lai, b;D} = 2p+29+1,2p+2q+2,...,3p+3g—1},

1

o

A @, D} = {p+a+1,p+g+2,..., 2p+29— 1)
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and

f(@)+fb)+fas, b;) = i+Gp+3q+j—1)+(Gp+3g—i—j+1) = 6p+6q,
S@)+fb)+fa, b)) = (4p+49—i)+(P+q+1-N)+(p+q+i+j-1)
= 6p+6q,
S@+f@)+/(u, v]) = fbi) +/ ) +f(lw, v]) = Gp+3q+k—1)
+(p+q+1-k)+(2p+2q) = 6p+6q,
thus f is an M-valuation of 7, and since, as it is easy to see, f=f, fis an SCM-

valuation of T with the constant C=6p+ 6gq.

COROLLARY. For any symmetric tree with less than 14 vertices there exists an
SCM-valuation.

Proof. If T is a symmetric tree with less than 14 vertices then we must have
z(S;) <1, and the corollary follows.

THEOREM 7. Let G(2n, n) be the regular graph of degree one. An M-valuation of
G exists if and only if n is odd.
Proof. Since G(2n, n) has 3n elements and no two of its »n edges are adjacent,
3n+1
( n2+ ) /n must be necessarily an integer whence it follows that » must be odd,

n=2k+1. Denote by a;, b, [a;, b;],i=1, 2, ..., n, the vertices and edges of G(2n, n),
respectively. Define f by

Sk+2+i fori=1,2,...,k+1

3k+1+i fori=k+2,k+3,...,2k+1.

4k+4+2i fori=1,2,...,k+1
6k+5-2i fori=k+2,k+3,...,2k+1.

f@) =i, ﬂ®={

fan 8 = {
Evidently,
1!1 {f(bi)} = {2n+ 1, 2n+2, cees 3”}9 iL=J1 {f([ab bi])}

={n+1,n+2,...,2n}
and

fla)+1b)+f(a, b]) = 9k +6,

thus fis an M-valuation of G(2n, n) with the constant C=9k + 6.
Observe that the described M-valuation f is even an SCM-valuation, thus we
have
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COROLLARY. A regular graph of degree one has an M-valuation if and only if it
has an SCM-valuation.

Given a graph G, denote by G+{i} a new graph obtained from G by adjoining
to it i isolated vertices. Define also G+{0}=G.

DEeriNITION 4. The magic deficiency (M-deficiency) u(G) of a graph G is the least
integer i such that the graph G +{i} is M-valuable.

Denote by #;,i=0, 1,2, ... the class of all graphs G such that u(G)=i, thus
M is the class of all M-valuable graphs.

For a graph G with n vertices we can derive a trivial bound

#(G)SF,.m—z—(”;l)

where F, is the nth Fibonacci number. Indeed, we can obtain an M-valuation f of
1
the graph K,,+{F,,+2—2— (n;
and f([a;, ;) =Fp 42+ 1 —F,—F,
All graphs with less than 7 vertices belonging to .#, are shown in Fig. 5. There
is no graph with less than 7 vertices having M-deficiency greater than 1.

)} by putting f(a;)=F; for all vertices a; € K,

n=4

n=>5
O0———0
o—0
G (€ o—0
Gs
n=6
T T \/
Gy Gs ,
G Gr
7 //i\
o/ N
>3 ! / /> - \\\ |
‘ i
N\
Gg G9 GlO
Figure 5.
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Let us close with some open problems:
Problem 1. Does there exist an M-valuation for any tree?

Problem 2. What is the necessary and sufficient condition for a regular graph of
degree two (three and four, respectively) in order to have an M-valuation?
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