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Abstract

For network meta-analysis (NMA), we usually assume that the treatment arms are independent within each
included trial. This assumption is justified for parallel design trials and leads to a property we call consistency
of variances for both multi-arm trials and NMA estimates. However, the assumption is violated for trials with
correlated arms, for example, split-body trials. For multi-arm trials with correlated arms, the variance of a contrast
is not the sum of the arm-based variances, but comes with a correlation term. This may lead to violations of variance
consistency, and the inconsistency of variances may even propagate to the NMA estimates. We explain this using
a geometric analogy where three-arm trials correspond to triangles and four-arm trials correspond to tetrahedrons.
We also investigate which information has to be extracted for a multi-arm trial with correlated arms and provide
an algorithm to analyze NMAs including such trials.

Highlights

What is already known?

The contrasts in parallel-arm trials, included in a meta-analysis, show consistent variances. The approach used
by R package netmeta so far relied on variance consistency.

What is new?
Variance consistency can be violated in trials with correlated arms.

Potential impact for RSM readers
We provide a method for analyzing trials with inconsistent variances that is implemented in R package netmeta.

1. Introduction

Network meta-analysis (NMA), a method that generalizes standard pairwise meta-analysis to a network

of three or more treatments, has become an important tool for evidence synthesis in health care.'”

Bayesian and frequentist methods have been proposed to analyze such networks. Both contrast-based
and arm-based methods are available.’

© © This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
Abbreviations: NMA, network meta-analysis; SMD, standardized mean difference.
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Multi-arm trials come with a particular challenge for the analysis of NMA. In a multi-arm trial,
the pairwise contrasts involve the same treatments, thus creating a dependency of the treatment effects
and also their variances. The standard contrast-based NMA method accounts for this dependency in an
n-arm trial by using only the n — 1 contrasts to a baseline treatment and deriving the treatment effects
of all other contrasts from these baseline contrasts (also called basic parameters). In the framework
of the graph-theoretical method, implemented in R package netmeta, we had developed an alternative
adjustment method by reducing the weights of all contrasts of a multi-arm trial by certain factors."™
This method is based on the observation that the variances in a multi-arm trial in parallel design (and
also the variances of the network estimates) build a metric on the set of treatments and therefore obey
the triangle inequality. This also follows from the analogy between NMA and electrical circuit theory,
where this metric is called the resistance distance.”” In the NMA context, we suggest calling this
property variance consistency.

The variance-adjusting method relies on the assumption that the arms within a multi-arm trial are
independent (though the contrasts become dependent). However, this assumption is violated for trials
with correlated arms, for example, split-body trials. For multi-arm trials with correlated arms, the
variance of a contrast is not the sum of the arm-based variances, but comes with a correlation term. This
may lead to violations of variance consistency, and the inconsistency of variances may even propagate
to the NMA estimates. Knowing the variances of the baseline contrasts is then not sufficient for knowing
all variances, and the method so far used in R package netmeta did not necessarily lead to correct results
or did not even work at all.

Su and Tu (2018) introduced three NMA methods to include studies with correlated treatment arms,
a data augmentation approach, an adjusting variance approach, and a reducing weight approach, the
latter based on netmeta.'’ They did not explicitly discuss variance inconsistency.

We present three examples, one with fictitious data and two with real data, in Section 2 of this
article. Another fictitious example is given in the online Supporting Information on Zenodo, see Data
Availability Statement. In Section 3, we first clarify the correspondence between three-arm trials and
triangles and then describe the specialties of trials where treatment arms are correlated. We show that
variance consistency is not guaranteed for correlated arms and present a method that works also in
the case of variance inconsistency. In Section 4, we apply this method, implemented in the R package
netmeta, to the examples, followed by a discussion in Section 5.

2. Data
2.1. Fictitious data example

In Table 1. we give a fictitious example of correlated arm data for individual participants. We assume
four individuals, each having three different treatments (1, 2, 3) such that each individual i provides
three measurements xl.(1>,xl.(2>,xl.(3) of a continuous outcome. To compare these measurements at the

di(12) _ xlgl) _xi(z)’di(n) _ xlgl) _x®,

individual level, we consider the three pairwise differences ;

d;23) =x® —x®, Averaging these at the trial level provides three treatment effects (TE, contrasts)

d"1?, d13 43 with standard errors (SE) and sampling variances as given in Table 1.

2.2. Real data example 1

We use data from a 28 week prospective double-blind phase I trial in patients with alopecia universalis
investigating hair regrowth where each of 16 patients was treated with each of four treatments in
different areas of the scalp (2% tofacitinib, 1% ruxolitinib, clobetasol dipropionate 0.005%, and
placebo).!" We had no access to the individual patient data. Here, we use data of two patients from
Table 1 of the publication, here reproduced in Table 2. Treatment started at visit 2 (week 0) and ended
at visit 8 (week 12), with two follow-up visits at week 18 and week 24. The outcome is a hair regrowth
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Table 1. A trial with four participants and three correlated arms.®

Measurement COl’l'[I‘aS'[S
Individual x( x@ x® d(1? d13 d@®
1 0 -1 0 1 0 -1
2 0 2 -2 -2
3 0 4 -1 -4 -3
4 0 - -1 1 1 0
TE 0.25 -1.25 -1.50
SE 0.553 1.280 0.745
Variance 0.306 1.639 0.556

2 TE = treatment effect; SE = standard error.

score with integer values from 1 (worst) to 4 (best). We added the average score from visit 2 to visit 10
to the table (last column).

2.3. Real data example 2

The second real data example is a small NMA provided by a pseudonymous user of R package netmeta.'
We use the last, corrected, version of this data set that is given in Table 3. The effect measure is Cohen’s
d with a pooled standard deviation. This would guarantee variance consistency for multi-arm trials in a
parallel-arm design, but not in a design with correlated arms.

3. Methods

First, we consider trials with independent arms and refer to a geometric analogy between trials and
triangles that has been pointed out by Lu and Ades.”

3.1. Independent arms

Consider a three-arm trial comparing treatments A, B, C in a parallel-arm design and denote by SE 45,
SEc, and SEpg the standard errors of the three possible comparisons. We construct the triangle built
using these standard errors as side lengths. If the three arms include different individuals, they are
independent, and the variance of each contrast is the sum of the variances of two arm-based responses,
for example, for treatments 4 and B,

SE4 5 = s5 + 5%, (1)

where si and sfg denote the sampling variances of the arm-based responses y 4 and y g, which could be
means or log odds.

We now consider (without loss of generality) the angle y between the AC and BC edges. Applying
the law of cosines to y we obtain

SE% . +SE3 — SE%,
2SEsc SEgc

cosy =

2

Thttps://github.com/guido-s/netmeta/issues/17.
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Table 2. Data from two patients on four treatments for alopecia from Bokhari and Sinclair (two participants).”'®

14

Treatment Visit 1 Visit2  Visit3  Visit4  Visit5  Visit6 Visit 7 Visit 8 Visit 9 Visit 10 Average

ADZADMYIS OPINL) PUD AIYONY DJAIL)

Patient Screening Week 0 Week2 Week4 Week6 Week8 Week 10 Week 12 Week 18 Week 24 (visits 2 to 10)
P1 Ruxolitinib 1 1 1 1 1 1 1 4 3 1 1.625
Tofacitinib 1 2 1 1 1 1 1 4 2 1 1.500
Clobetasol 1 2 1 1 3 3 3 4 2 1 2.250
Placebo 1 1 1 1 2 2 2 4 2 1 1.875
P2 Ruxolitinib 1 1 1 2 2 2 1 3 3 3 2.125
Tofacitinib 1 1 1 2 2 2 1 3 3 3 2.125
Clobetasol 1 1 1 2 2 2 1 4 3 3 2.250
Placebo 1 1 1 2 2 2 1 3 3 3 2.125

2 The entries correspond to a four-point categorical hair regrowth scale where 1 is worst and 4 is best.
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Table 3. An NMA of three studies. Study Batchl0 has correlated arms.

Study trtl trt2 smd se.smd

Batch?7 A Control —1.8305545 0.3316958
Batch9 B Control —0.8826485 0.2240514
Batch10 B C 1.2587150 0.2132226
Batchl10 B Control —-0.6531304 0.1700709
Batchl10 C Control -1.9118454 0.2739463

which we may rewrite using (1) as

2,2 0202 22 2

S5 HSL S+ SL—855 =S s
cosy=-ATCTIBTICTIATE _ c _
2\/(S§x+52c)(sé +S2C) \/(Six"'szc)(sé"'szc)

Due to the independence of the arm-based responses the covariance between two contrasts dac =
ya—yc and dgc = yp — yc is given by

Cov(dac,dpc) = Cov(yc, yc) = Var(yc) = s..

Thus we have
Cov(dac,dpc)

’= VVar(dac)Var(dpc)

= Cor(dac, dpc)-
Note that because of szc > 0, it follows cosy > 0 (that is, 0 < y < 90°). This means that all angles in
our triangle are acute. Using (2) we also see that, equivalently,

SE% . + SE%. > SE4, A3)

holds which is the triangle inequality for the variances. We note that another triangle inequality is also
valid for the standard errors. We can use equation (3) to see that

SE% ¢ + SEgc +2SEacSEpc > SE4 5 +2SEacSEgc > SE “)
(SEac +SEgc)? > SE% Q)
SEAC + SEBC > SEAB. (6)

This confirms that a three-arm trial can be represented by a triangle with the standard errors as side
lengths, as noted by Lu and Ades who referred to the relation in (6) as second-order consistency.'”
For a summary, see Box 1.

BOX 1 Trials and triangles

A trial with three independent arms corresponds to an acute-angled triangle, the side lengths
representing the standard errors of the contrasts and the angles representing the (non-negative)
correlations between contrasts. The triangle inequality holds for both the standard errors and the
variances. The same is true for every subset of three arms of a multi-arm trial in general. For
example, a four-arm trial could be represented by a tetrahedron, with the four subsets of three
arms building the faces of the tetrahedron, as shown in Figure 1.
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Figure 1. Visualizations of a four-arm trial as a tetrahedron.
Note: Vertices represent the treatments, edges the comparisons, the four faces the four three-arm subtrials. Left panel: All faces acute. Right panel:

All faces obtuse.

3.1.1. Adjusting the standard errors of multi-arm trials in NMA

In NMA, it is necessary to account for the within-trial correlation of contrasts in a multi-arm trial. This
can be done in two ways. The standard method is to represent an n-arm trial by n — 1 basic parameters
and their covariance matrix. An alternative method, implemented in the R package netmeta, is to use
all ('21) =n(n — 1)/2 comparisons and adjust (that is, inflate) their variances by certain factors in a way
that corresponds to reversing the NMA process for this trial. Thus, when including the trial in an NMA,
the inflated variances are reduced to their original values.* For trials with independent arms, it has been
shown that both methods are equivalent.’

3.2. Trials with correlated arms

If the treatments are not provided to different individuals in independent arms, but each individual
receives all three (or more) treatments (e.g., in a cross-over trial), the above-mentioned conditions of
independence are not fulfilled. There are a number of different terms for this type of trial, for example,
split-mouth trial (in dentistry), split-body trial (frequent in dermatology), intra-individual/intra-subject
trial, or within-person/within-patient/within-subject trial, self-control trial, or non-parallel arm trial. In
many of these trials, the unit of randomization is a part of the body, for example, a tooth, an eye, or
a lesion, such that randomization can take place within an individual.> We want to investigate the
validity of the triangle inequality for the variances of the comparisons if arms are correlated.

3.2.1. Methods of analysis

The optimal method to analyze a single multi-arm trial with correlated arms is a mixed effects model
with fixed effects for the treatments and a random effect for individuals. Such a model does not use
the pairwise contrast variances, but produces identical variances for all contrasts to a given baseline
such that the resulting triangle becomes equilateral. This is not a problem for including the results in
an NMA. It is different if pairwise contrasts are analyzed separately within the patients. We assume a
multi-arm trial with at least three treatments (i, j, k, . .. ). Generalizing (1), we have for the standard
errors of the contrasts

SE%J, = slg + S? - zpijSiSj 7
SEz;k = s? + si —20ikSiSk (3
SEf.k = s? + si —2pjkS;Sk )

with certain correlation coefficients p;;, pik, pjk. For the covariance of a pair of contrasts with a
treatment in common we find

2
Cov(dij, dir) = s; — pijSiSj — PikSiSk + PjkSjSk
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and for the covariance of a pair of contrasts without a treatment in common (possible if there are at
least four treatments) we have

Cov(dij, dki) = piksiSk — Pi1SiS1 = PjkSjSk + PjiSjS1-
Combining equations (7) to (9) in a suitable way—for example, adding equations (7) and (8) and
subtracting equation (9)—provides

Cov(dij, dix) = (SE}; + SEj, — SE3,) /2 (10)

Cov(dij,dx) = (SEj, — SE}, +SE7, — SE7) /2 (11)

meaning that all covariances and correlations between contrasts, also for non-adjacent edges, are
determined by the contrast-based variances. This is plausible when thinking of the triangle analogy:
all angles are determined by the side lengths of all edges.

While NMA of independent arms always leads to variance consistency, corresponding to acute-
angled triangles for all subsets of three trials, this is not necessarily the case for correlated arms, as
we will see in our examples. The variance inflation method, implemented in R package netmeta, is
based on the assumption of independent arms (corresponding to acute triangles) and does not work for
a trial that corresponds to an obtuse-angled triangle. In this case, it results in a negative estimate for
an arm-based variance, leading to an error message. We cannot ignore the off-diagonal elements of the
covariance matrix for trials with correlated arms. The right panel of Figure 1, showing a tetrahedron
with all faces obtuse, represents a four-arm trial with correlated arms.

3.2.2. The rank of the covariance matrix
Let us denote the variance-covariance matrix, as derived using (10) and (11), by C. As defined here,
C is fully determined by the ('2’) standard errors (or variances) of all comparisons in a multi-arm trial
with n treatments. C is also, alternatively, determined by the variances of all n — 1 comparisons to an
arbitrarily chosen baseline treatment plus the (";1) covariances between them, likewise resulting in (5)
entries, see Appendix A for a proof that the covariance matrix has rank at most n — 1.

This can also be illustrated using our geometric analogy. We may think of the baseline treatment as
a node of the geometric polyhedron (for example, a tetrahedron for a four-arm trial). If we know (i) all
side lengths from this baseline node to its n — 1 neighbors (corresponding to n — 1 standard errors), and
(i) all (";1) angles between each pair of these edges (corresponding to the correlations), the polyhedron
is completely determined.

3.2.3. A method for correlated arms

For multi-arm trials with independent arms, we may still use the variance inflation method described
above to obtain a diagonal matrix W with adjusted weights. For multi-arm trials with potentially
correlated arms, we need a more general method. Instead of adjusting, we use the Moore—Penrose
generalized inverse (also known as pseudoinverse) of the covariance matrix C,'*

w=C*

which is not a diagonal matrix. We then apply the graph-theoretical method as usual, but with a block-
diagonal matrix consisting of blocks such as W for multi-arm trials, instead of a diagonal matrix of
weights, see Appendix B. In Appendix C, we discuss the special case where the rank is less than n — 1.

If we enter the full covariance matrix for a multi-arm trial into the NMA equations, the effective
variances and covariances of this trial agree with the original variances and covariances. Correctly,
the variances are neither inflated beforehand, nor reduced afterwards by the NMA: providing the
full covariance matrix replaces the adjustment for multi-arm studies. We have implemented the more
general method in R package netmeta, version 3.2-0, to allow including multi-arm trials with correlated
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Figure 2. Visualization of the data in Table 1.

Note: Left: Individual participant data, represented as a line chart. Right: Obtuse-angled triangle, side lengths representing the standard errors.

arms, even in case of variance inconsistency. In the R script in the Supporting Information on Zenodo,
we demonstrate the use of the new argument “correlated.”

4. Results

We apply the method to our examples.

4.1. Fictitious data example

We see that the variances in Table | violate the triangle inequality, as 1.639 > 0.306 + 0.556. This is
visualized in the left panel of Figure 2: the variance of comparison 1 vs. 3 is greater than the sum of the
variances of the comparisons 1 vs. 2 and 2 vs. 3. The right panel shows the obtuse triangle that belongs
to these data. An NMA reproduces the results in Table 1. R code for analyzing this data set and creating
Figure 2 is provided as Supporting Information on Zenodo.

4.2. Real data example 1

We consider the hair regrowth score, averaged across visits 2 to 10 (that is, all visits after treatment
onset), given in the last column of Table 2. To demonstrate that the phenomenon of inconsistent
variances exists in these data, we build means of pairwise score differences between treatments within
each patient. The results are given in Table 4. As there are four treatments, we have six pairwise
comparisons. The last three columns give the mean difference, its standard error, and the sampling
variance for each pair of treatments. It is easily checked that the triangle inequality is violated for the
variances of each of the four possible triangles. Moreover, all triangles are degenerate in the sense
that all nodes are lying in one line. For example, consider the triangle Tofacitinib—Clobetasol-Placebo:
the sum of the last two standard errors in Table 4 gives the standard error of the fourth comparison.
See Appendix C and the R code provided in the Supporting Information on Zenodo. Figure 3 shows
the results as a forest plot, suggesting a slight superiority of clobetasol over placebo, but no other
differences between treatments.
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Table 4. Pairwise within-patient differences with mean and standard error. Data from Bokhari and
Sinclair (two participants).!

Comparison Patient Difference MD? SEP Variance
Ruxolitinib - Tofacitinib P1 0.125

Ruxolitinib - Tofacitinib P2 0.000 0.0625 0.0625 0.0039
Ruxolitinib - Clobetasol P1 -0.625

Ruxolitinib - Clobetasol P2 -0.125 -0.3750 0.2500 0.0625
Ruxolitinib - Placebo P1 -0.250

Ruxolitinib - Placebo P2 0.000 -0.1250 0.1250 0.0156
Tofacitinib - Clobetasol P1 -0.750

Tofacitinib - Clobetasol P2 -0.125 —0.4375 0.3125 0.0977
Tofacitinib - Placebo P1 -0.375

Tofacitinib - Placebo P2 0.000 —0.1875 0.1875 0.0352
Clobetasol - Placebo P1 0.375

Clobetasol - Placebo P2 0.125 0.2500 0.1250 0.0156

2 MD = mean difference.
b SE = standard error.

Comparison: other vs 'Placebo’

Treatment (Common Effects Model) MD 95%—ClI

Clobetasol ———+—— 0.2500 [0.0050; 0.4950]

Ruxolitinib —_— -0.1250 [-0.3700; 0.1200]

Tofacitinib t -0.1875 [-0.5550; 0.1800]
I T T 1

-04 -02 0 02 04

Figure 3. Forest plot of the hair growth trial results.

Comparison: other vs 'Control’

Treatment  (Random Effects Model) SMD 95%-ClI
—— -1.831 [-2.481; -1.180]
B - -0.737 [-1.003; -0.472]
C —i— -1.997 [-2.493; -1.500]
I T T 1 1
-3 -2 -1 0 1

Figure 4. Forest plot of the second real data example, produced with netmeta.

4.3. Real data example 2

We analyzed the second real data example using two methods, our method and the method implemented
in the R package metafor."> We show the results for the random effects model as standardized mean
differences (SMD) compared to treatment “Control” in Figures 4 (netmeta) and 5 (metafor). They are
in agreement. The full R code, also for generating the covariance matrices, is provided in the supporting
information for this article on Zenodo.
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Treatment, compared to Control Estimate [95% CI]
A —_—— -1.831[-2.481, -1.180]
B ] : -0.737 [-1.003, -0.472]
C e : -1.997 [-2.493, -1.500]
I T T T 1
-3.000 -2.000 -1.000 0.000 1.000
SMD

Figure 5. Forest plot of the second real data example, produced with metafor.

5. Discussion

This article was primarily inspired by a message from a pseudonymous user of the R package netmeta
who reported a negative treatment arm variance for a three-arm trial, see our real data example 2. In our
past experience, negative variances in multi-arm trials were typically caused by an inadequate variance
imputation or data errors. However, in this case, we identified the correlation of treatment arms as the
culprit. After finding a mathematical solution for correlated arm data which is described in Section 3.2,
we accordingly extended R package netmeta. Users can now easily specify trials with correlated arms
as “correlated” to obtain correct results.

For the usual case of multi-arm studies with independent arms we know three approaches: the
standard approach (i), using only n — 1 baseline contrasts (basic parameters) for an n-arm study, leading
to a full-rank (n — 1) X (n — 1) covariance matrix; the variance-adjusting approach (ii) from netmeta,
using a (}) x (5) diagonal matrix of adjusted weights for all contrasts; and the approach introduced
in this article (iii), likewise using all contrasts, but, instead of a diagonal matrix of adjusted weights,
utilizing the full covariance matrix and its pseudoinverse. For independent arms, all three approaches
are equivalent. In particular, this means that our new approach is completely general. To demonstrate
this, we provide an example in the R script in the Supporting Information of this article on Zenodo.

For the case discussed in this article (correlated arms), the standard approach (i) works, but to
provide a full correlation matrix more information is needed than only the basic contrasts. The variance-
adjusting approach (ii) does not work, which is why we introduced the novel approach (iii) that replaces
the diagonal matrix with the full covariance matrix of all contrasts.

Technically, treatment effects and standard errors of all pairwise comparisons of a multi-arm trial are
used in netmeta. It is not necessary to know arm-based variances s%, s?, si or any correlations between
arms (p;;, pik, pjk) for deriving equations (10) and (11) that provide the full covariance matrix also
for the correlated case. Particularly, it is not necessary to impute “typical” values for correlations such
as 0.25 or 0.5, or to assume a constant correlation. Notably, this also holds for multi-arm studies with
more than three arms. However, it is rarely the case that variances are presented for all comparisons.
Missing variances can, in principle, be derived from known correlations, but correlations are provided
in primary studies even less frequently. We point out that this type of inconsistency is disguised if only
the contrasts to a chosen baseline are used in the analysis. Therefore, it is due to the special approach
of netmeta that inconsistency of variances within a trial becomes apparent.

If present within one or more multi-arm trials in an NMA, variance inconsistency may also propagate
to the NMA, at least in theory. At present, we are not aware of a real-data example where this happened.
Instead, we provide a toy example (an NMA with four three-arm trials) in Appendix D and the R script
in the Supporting Information of this article on Zenodo.

Su and Tu (2018) provided three methods for imputing unreported correlations that could be
valuable.'” Their reducing weight approach is based on netmeta. Su and Tu presented their data
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examples in an arm-based format, such that it depends on the observed (or assumed) correlations
whether variances become inconsistent or not. Su and Tu did not encounter variance inconsistency
in any of their examples. In a recent publication, Liu et al. (2025) discuss within-study correlations in
NMA, but do not seem to refer to correlated arms.'°

Examples of inconsistent variances appear to occur rarely or are at least rarely reported. We found
it difficult to find a “good” real data example: the pseudonymous user’s example has, to the best of
our knowledge, not been published, and the hair growth example is very artificial, as discussed in
Section 2.3 and Appendix C. The main reason for the apparent lack of examples is that most authors
report results of studies with correlated arms not contrast-wise, but arm-wise and without providing
information on correlations. An exception is Table 2 in Farook et al. who used a mixed model, and
there was no inconsistency.'’

A reviewer pointed out that another reason for inconsistent variances might be the use of the SMD
as an effect measure. While this holds for Hedges’ g with different group sample sizes or standard
deviations for the contrasts, it is not a problem for Cohen’s d with a single pooled standard deviation
for all contrasts, as implemented in function pairwise () of R package meta which is used in a typical
workflow of netmeta. The real data example 2 uses Cohen’s d with a single pooled standard deviation
for the three-arm study.

The estimation method in nefmeta originated from the analogy between NMA and electrical
circuits.* For electrical circuits, the triangle inequality for resistances, which corresponds to variance
consistency, is always fulfilled. As we have seen, this does not extend to NMA in general: it can be
violated if the treatment arms are correlated. We know of no analog in physics for correlated treatment
arms. This makes our adjusting variance (or reducing weights) approach inappropriate for the examples
described in this article. However, our new method, implemented in R package netmeta, version 3.2-0,
overcomes this limitation and can be recommended for the NMA of multi-arm studies with correlated
data.
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Appendix

In the Appendix, we give additional details.

A. The rank of the covariance matrix

We choose treatment i = 1 as baseline. That is, we assume to know SE% f forall j =2,...,n and also,
see (10), Cov(dij,dik) = (SE%]. + SE%k - SE?k)/2 forall j,k=2,...,n, buildingan (n—1) x (n—1)
submatrix of C with (}) potentially different entries.

We show that any other row (or column) of C is obtained as a linear combination of the first n — 1
columns (rows). Consider, for example, entry ((15), (k[)). We have by (11)

Cov(dij,du) = (SE7, — SE], +SE}, — SE3))/2
= (SE}, - SE}))/2 — (SEj, — SE%,)/2
= (SE7, + SE, - SE}))/2 - (SE}, + SE7, — SE3,)/2
= Cov(dij,dy) — Cov(dij,dix)
which are terms from the top left submatrix, assumed as known. Thus, starting from the top left
submatrix, we can derive all entries in the top rows of the remaining columns and in the leftmost

columns of the remaining rows. Finally, by the same process, we also can fill in all remaining entries.
This result means that the variance-covariance matrix C has a rank of at most n — 1.

B. Estimation method for the non-degenerate case

Restricting the consideration to the multi-arm trial of interest, we consider an n-arm trial with m = ('21)
treatment effects (contrasts). First, we define the edge-vertex incidence matrix B with m = (3) rows,
corresponding to ordered comparisons, and # columns, corresponding to the treatments. In the row
corresponding to comparison (i, j), i < j, B has an entry 1 in column i and —1 in column j; all other
entries are zero.

Based on B and W = C* we obtain the hat matrix H by

H=B(B"WB)'B'W.
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Treatment effects within a multi-arm trial are consistent and therefore linearly dependent. Let S be the
(n — 1)-dimensional consistent subspace of R™ which is spanned by the columns of B.[5] H is the
projection onto S. If C and W = C* have maximal rank n — 1, H has the same rank and is the projection
onto S.

C. The degenerate case

The hair growth example shows that the covariance matrix, and thus the Laplacian matrix, its
pseudoinverse, and H can have rank less than n — 1, in this case even 1. We call this the degenerate
case. It can be shown that this may happen if we have very few observations (such as only two patients
in the hair growth data). It turns out that for rank 1 the covariance matrix has the form

C=ss",

where s is the vector of standard errors. C has rank 1 because all columns (or all rows) are by definition
proportional to each other, i.c., to s. If the rank is 1, all eigenvalues except the first (largest) must be
zero. The first eigenvalue therefore equals the sum of eigenvalues, which is the trace of the matrix,
A1 = ¥, s2. The principal eigenvector is s due to

Cs:ssTs=Zs?s=/lls.

The matrix C* and the hat matrix H, derived using C*, have the same principal eigenvector as C.
Therefore, the vector of observed treatment effects is a fixed point of H only if it is proportional to s,
the vector of standard errors (where deviations of some signs are possible, depending on the direction
of the edges). If this is not the case, H does not map the consistent treatment effects onto themselves.

Technically, this means that we need an adapted estimation method for the degenerate case. To obtain
the correct treatment effect estimates, our implementation uses W = (diag(s))~! instead of W = C*,
while still using C to derive the standard errors.

D. A network meta-analysis with inconsistent variances

This fictitious example demonstrates that variance inconsistency can propagate from individual trials
to NMA. We assume a network of four treatments A, B, C, D based on four three-arm trials. The data
are given in Table D1.

We can easily confirm that all trials in Table D1 except ACD have inconsistent variances (column
SEZ), as 1 +1 < 2.89;1+42.25 < 47.61. The last column shows the variances of the resulting NMA
estimates, and they are also inconsistent: 0.364 + 0.364 < 0.754;0.364 + 13.502 < 14.019. R code to
reproduce this result is found in the Supporting information on Zenodo.
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Table D1. Fictitious data of an NMA of four three-arm studies, all with correlated arms.

Study Treatl Treat2 TE SE SE? NMA variance
ABC A B 0 1.0 1.00 0.364
A C 0 1.7 2.89 0.754
B C 0 1.0 1.00 0.364
ABD A B 0 1.0 1.00 0.364
A D 0 6.5 42.25 13.502
B D 0 6.9 47.61 14.019
ACD A C 0 1.7 2.89 0.754
A D 0 6.5 42.25 13.502
C D 0 6.5 42.25 13.502
BCD B C 0 1.0 1.00 0.364
B D 0 6.9 47.61 14.019
C D 0 6.5 42.25 13.502

Note: TE = treatment effect; SE = standard error; NMA variance = variance of the NMA estimate.

Cite this article: Riicker, G, Schwarzer, G Trials and triangles: Network meta-analysis of multi-arm trials with correlated arms.
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