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A FURTHER GENERALIZATION OF 
AN IRREDUCIBILITY THEOREM OF A. COHN 

MICHAEL FILASETA 

Let dndn-\ . . . do be the 6-ary representation of a positive integer N. 
Call/(x) = 2^0 dkx

k the polynomial obtained from N base b. In the case 
the base is 10, f(x) will be called the polynomial obtained from N. 
Pôlya and Szegô attribute the following theorem to A. Cohn [2, b. 2, 
VIII, 128]: 

THEOREM 1. A polynomial obtained from a prime is irreducible. 

This theorem was generalized in two different ways by John Brillhart, 
Andrew Odlyzko, and myself [1]. One way was by proving the theorem 
remains true regardless of the base being used. The second way was by 
permitting the coefficients of f(x) to be different from digits. Thus, for 
example, if f(x) = J^n

0 dkx\ where 0 g dk ^ 167 for all k, and if /(10) 
is prime, then f(x) is irreducible. In this paper, Theorem 1 will be 
generalized in another way by considering composite N. In particular, 
the following two results will be proven: 

THEOREM 2. Let f(x) be a polynomial obtained from wp base b, where w 
and b are positive integers, w < b, and p is a prime. Then f(x) is irre­
ducible over the rational numbers. 

THEOREM 3. Let f(x) be a polynomial obtained from wp, where w is a 
positive integer ^ 9 0 and p is a prime. Suppose f(x) = g(x)h(x), where 
g{x) and h(x) £ Z[x] having positive leading coefficients. If w ^ 73, 82, 
83, 84, or 85, then g(x) or h{x) is a polynomial obtained from a divisor of w 
and therefore of degree ^l.Ifw = 73, 82, 83, 84, or 85, then either g(x) or 
h(x) is a quadratic depending only on w or g(x) or h(x) is a polynomial 
obtained from a divisor of w. 

We first begin with the case of a general base b, then turn to the case 
b = 10, and finally discuss an irreducibility test for small degree poly­
nomials. 

1. To prove Theorem 2, we shall make use of a lemma (for a proof, see 
the proof of Theorem 3 in [1]). 
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LEMMA. Let f(x) = ^2ldkx
k G Z[x], wfeere drt > 0, dn-i ^ 0, aw^ 

4 _ 2 ^ 0. Le* 

w = m a x ^ - 2 { |4 | /4} , n = (1 + \ / 4m + l ) / (2 -\/"2), awo7 

r2 = {(^ + A A 2 - 4)/54}1 /3 + {(^ - \ A 2 - 4)/54}1 /3 + 1/3, 

wAere 5 = 27m + 2. 77?en eacfe zero a off(x) satisfies 

Re (a) < max {n, r2}. 

The lemma can be made more explicit by noting 

(*) m a x { r l f r , } = | f 2 i f w < 4 + 3 v / ? B 

(*) is shown by using the fact that r2 is the positive zero of g(x) = 
x3 — x2 — m. Since g(Vi) = 0 precisely when m ^ 4 + 3\/2~> (*) follows. 

For the proof of Theorem 2, write /(x) = g(x)h(x) where g(x) and 
&(#) are polynomials in Z[x] having positive leading coefficients, h(x) 
is irreducible, p\h(b), and consequently g(b)\w. Suppose 

g(x) = arx
r + ar_i*r-1 + . . . + «o, 

with ar > 0. Now we consider two cases. 
Case 1. 6 ^ 4. 
One checks directly by use of the lemma and (*) with m = b — 1 that 

if b ^ 4, then each zero a of f(x) satisfies Re (a) < b — \ A - Then for 
each zero a of g(x), Re (a) < b — V ^ s o that g(x + b — \/b) has 
positive real coefficients. Thus, 

g{x + b - y/b) ^ arx
r for all x ^ 0. 

Takex = \Atoge tg(&) ^ arb
r/2. Now, g(6) ^ w < & so that r = Oor l . 

We want to show r = 0, so assume r = 1. Then g(x) = aix + a0 where 
a,\ > 0. But f(x) has nonnegative coefficients so that f(x) and therefore 
g(x) have no positive real zeroes. Thus, a0 è 0 and g(b) ^ &i£ ^ &, giving 
a contradiction. 

Case 2. b = 2 or 3. 
The case b = 2 follows from the generalization of Cohn's Theorem to 

an arbitrary base [1]. 
For b = 3, the lemma shows that each zero a of g(x), being a zero of 

/ (#) , satisfies Re (a) < 1.7 so that g(x + 1.7) ^ arx
r for all x ^ 0. 

This gives g(3) ^ a r(1.3) r so that r g 2. If r = 0, then we're through. 
If r = 1, then as in Case 1, a0 è 0 and g(3) è 3, giving a contradiction. 
So assume r = 2. Then g(3) è a2(1.3)2 so a2 = 1. Also, a0 ^ 0 since 
g (3) ^ 0 (mod 3). But a0 divides the constant term of f(x), and since 
f(x) has no positive real zeroes, a0 è 0. Thus, a0 = 1 or 2. Now, 

g(x + 1.7) = x2 + (3.4 + ax)x + (2.89 + 1.7a! + a0) G R+[x] 
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so ch > —3.4. Also, 

g(3) = 9 + 3ai + a0 ^ w ^ 2 

so 

«i ^ ( - 7 - a0)/3 g - 2 . 6 . 

Therefore, ai = —3, and g(x) = x2 — 3x + 1 or g(x) — x2 — 3x + 2. 
Both of these choices for g(x) have a positive real zero, giving a contra­
diction. 

2. For b — 10 the lemma in the previous section gives an upper bound 
of œ 2.504 for the real part of a zero of f(x). The actual bound can be 
sharpened to <2.5 by using methods similar to those used in [1]. The 
bound 2.5 isn't necessary to obtain the results of this section but will be 
used for convenience. 

In Theorem 3 let h(x) be such that p\h(10) and write 

g(x) = arx
r + aT-iXT-1 + . . . + a0, 

with ar > 0. If r < 2, then g(x) = ci\x + «o where both ci\ and a0 are 
digits (base 10). Thus, g(x) is a polynomial obtained from g(10), a 
divisor of w. 

Now, suppose r è 2. Since g(10) è a r(7.5) r > 421 for r ^ 3, r = 2. 
Thus, g(x) = a2x

2 + ai# + a0 and 

g(x + 2.5) = a2x
2 + (5 + ax)x + (6.25 + 2.5ai + a0) G R+[x]. 

This gives g(10) ^ a2(7.5)2. Since g(10) ^ 90, a2 = 1. Also, 5 + ax > 0 
so ai è - 4 . Therefore, g(10) è (7.5)2 + (7.5) = 63.75, proving 
Theorem 3 for w S 63. 

For any w ^ 90, we have g(10)\w and g(10) > 63 so g(10) = w. If 
w = CilO + Co where d and c0 are digits, then 

g(10) = a0(mod 10) and w = c0(mod 10) 

so a0 = Co and consequently a,\ = C\ — 10. Thus, g(x) is a quadratic 
depending only on w, proving Theorem 3 for w = 73, 82, 83, 84, and 85. 

It remains to show that for the remaining w ^ 90 in Theorem 3 the 
corresponding quadratic g(x) is not a possible factor of f(x). We give an 
example of three possible procedures which may be used to handle the 
remaining w: 

(i) For w = 64, g(x) = x2 — 4x + 4 = (x — 2)2 so g(x) has a 
positive real zero and cannot be a factor of f(x). 

(ii) For w = 78, g(x) = x2 - 3x + 8. Lets = (3 + -y/2Si)/2 so that 
g(z) = 0. Then |z| - Vs and 0 = arg (z) « 1.012. If/(x) = E o 4xfc, 
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then 

^ R e L + ^ + . - . + M -±^Tf 
\ z z / $ \z\ 

00 Q 

> 1 + 9 cos 26/8 + 9 cos 30/83/2 + 9 cos 4<9/82 - £ 0̂ /2 
8 O 

« 0.022 > 0. 

This means /(z) ^ 0 so g(x) \ f(x). 
(iii) For w = 86, suppose/(x) = g{x)h(x) where 

n— 2 

g(x) = x — 2x + 6 and h(x) = ^ bkx\ 
0 

Then 6„_3 ^ 2. Let / be such that |6,| è 2 and |6;| g 1 for 7 < /. If 
6 ^ 2 , then 

9 è 66, - 26,_i + 6,_2 ^ 12 - 2 - 1 = 9 

so 6,-1 = 1 and 6,_2 = — 1. Also, 

0 ^ 66,_2 - 26,_3 + 6,_4 g - 6 + 2 + 1 = - 3 , 

giving a contradiction. If 6, ^ —2, then 

0 g 66, - 26,_i + 6,_2 ^ - 1 2 + 2 + 1 = - 9 , 

giving a contradiction. 

Comments. (1) For w = 82 and p = 122321, the polynomial obtained 
from wp has a quadratic factor. Similarly, for w = 83 and £ = 121333, 
and for w = 84 or 85 and £ = 12211. The author knows of no example 
for w = 73. 

(2) The results of this section may be extended to w > 90. For 
example, if 91 5* w ^ 99 and f(x) is the polynomial obtained from wp for 
some prime p, then g(x) or h(x) is a quadratic depending only on w or 
g(x) or /&(#) is a polynomial obtained from a divisor of w. Furthermore, 
the quadratic occurs as a factor when p = 11. Also, for 70 = 100 + 
CilO + Co _̂  150, where Ci and c0 are digits, and for any prime p, if the 
polynomial f(x) has no rational zeroes and if x2 + c\X + c0 is not a 
divisor of f(x) in Z[x], then/(x) is irreducible over the rationals. 

(3) A result of a slightly different flavor is the following: If p and q are 
primes such that p ^ 1 (mod 10) and q j£ 1, 2, or 3 (mod 10), then the 
polynomial f(x) obtained from pq is irreducible. To show this, assume 
f(x) = g(x)h(x) where g(x) and h(x) 6 Z[x] with positive leading 
coefficients and g(x) ^ 1 and h{x) ^ 1. If g(10) = 1, then g(x + 7) 
having positive integral coefficients guarantees that g(x) = 1, a contra­
diction. Thus, g(10) > 1 and similarly h(10) > 1. We may take 

M 
n 

Z 
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g(10) = p and fe(10) = q. Write 

T n—r 

g(%) = ]£<**** and h(x) = X) ****. 
O 0 

Then a0 = g(10) = £ (mod 10) and b0 = A(10) = g (mod 10). Since 
f(x) has no positive real zeroes, a0 ^ 0 and bo ̂  0. The conditions p ^ 1 
(mod 10) and g ^ 1, 2, or 3 (mod 10) imply a0 ^ 2 and 60 è 5. This 
contradicts a0fro being the constant term of f(x), i.e., a digit. 

(4) Some simple but similar results on irreducibility can be made if 
we restrict the degree of f(x) to being small. For example, if f(x) is any 
quadratic with positive integral coefficients which takes on a prime value 
at any positive integer, then f(x) is irreducible. This same result holds 
true if f(x) is a cubic rather than a quadratic but for no higher degree. 

(5) Some interesting results for decimal representation of wp can be 
obtained by looking at bases other than 10. For example, Theorem 2 
with b = 100 shows that since 73-85711 = 6256903, where 85711 is 
prime, f(x) = 6x3 + 25x2 + 69x + 3 is irreducible. 

3. At the beginning of this paper two generalizations of Theorem 1 
were mentioned where only prime values at integral arguments are taken 
into consideration. These generalizations can be used as an irreducibility 
test for a polynomial/(x), but they fail to give any information when 
f(x) is an irreducible polynomial which never takes on a prime value at 
an integral argument as is the case, for example, when/(x) = x2 + x + 4. 
The results in this paper, however, are somewhat stronger. Theorem 2 
shows that for f(x) = x2 + x + 4, f(x) is irreducible since /(o) = 2-17. 
But one should note that if the degree of a polynomial f(x) is large, one 
must be prepared in what follows to deal with large values of f(x) at 
integral arguments. We are now ready to give an irreducibility test via 
a theorem. 

THEOREM 4. Let f(x) = X^o^x* G Z[x] such that dn > 0 and dn-i ^ 0. 
Suppose f{x) has no rational roots. Set 

m = (maxjén-2 {\dk\})/dn and 

B = (1 + V 4 m + l)/2. 

If for any integer b ^ B, f(b) = wp, where w is an integer ^ (b — B)2, 
and p is a prime, thenfix) is irreducible over the rationals. 

To prove Theorem 4, note that for |s| ^ B, 

\fM 
n 

I Z 

Thus, each root a oif(x) satisfies Re (a) < B. lîf(x) = g(x)h(x), where 

*M^-?¥>*-A» 
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g(x) and h(x) 6 Z[x] such that p\h(b)y then g(b) ^ w. The condition 
w ^ (b — B)2 guarantees g(x) is of degree ^ 1 . 

As an example, consider f(x) = xb + 10x4 — 3x3 + 7x2 — 1. One 
checks tha t / (x) has no rational roots. Here m = 7 and £ œ 3.2. Thus, 
we consider /(5) = 2 3 1 1 1 3 9 , /(6) = 11-432, and finally /(7) = 
2-5-4013. Since (7 - B)2 œ 14.5 > 10,/(a) is irreducible. 

In using Theorem 4 as an irreducibility test, we do not need to factor 
f(b) completely. Instead we can make use of a primality test. Let 
R = YliPi€i> where pj is the j th prime, pr ^ (b — B)2 < pr+iy and 
ej G Z such that pjej\\f{b). Let 

5 = max^ r f j ^ ^ 1). 

If/(ft) = 22, s e t ^ = R/ps. If/(ft) ^ 22, s e t P = 22. If P > (ft - B)2
} then 

proceed to /(ft + 1). If P ^ (ft - B)2
} then consider Q = /(ft)/P. If 

<2 is prime,/(x) is irreducible. If Q is composite, proceed to/(ft + 1). On 
the other hand, if/(x) is reducible, some information can be gained about 
its factorization from divisors of /(ft) which are > (ft — B)2, as was done 
for ft = 10 in Section 2. Finally, it should be noted that Theorem 4 can 
be applied to any polynomial f(x) = ^Jo dkx

k £ Z[x] since ± / ( x ) or 
i / ( — x) will always have two nonnegative leading coefficients. In the 
case that dn-2 ^ 0 as well as dn > 0 and dn-\ ^ 0, the role of B in Theorem 4 
may be replaced by max {r^ r2} where rx and r2 are as in the lemma of 
Section 1. 
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