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A generalized reciprocal theorem is used to relate the force and torque induced on a particle
in an inertia-less fluid with small variation in viscosity to integrals involving Stokes flow
fields and the spatial dependence of viscosity. These resistivity expressions are analytically
evaluated using spheroidal harmonics and then used to obtain the mobility of the spheroid
during sedimentation, and in linear flows, of a fluid with linear viscosity stratification.
The coupling between the rotational and translational motion induced by stratification
rotates the spheroid’s centerline, creating a variety of rotational and translational dynamics
dependent upon the particle’s aspect ratio, κ , and the component of the stratification
unit vector in the gravity direction, dg . Spheroids with 0.55 � κ � 2.0 exhibit the largest
variety of settling behaviors. Interestingly, this range covers most microplastics and typical
microorganisms. One of the modes include a stable orientation dependent only on κ and
dg , but independent of initial orientation, thus allowing for the potential control of settling
angles and sedimentation rates. In a simple shear flow, cross-streamline migration occurs
due to the stratification-induced force generated on the particle. Similarly, a particle no
longer stays at the stagnation point of a uniaxial extensional flow. While fully analytical
results are obtained for spheroids, numerical simulations provide a source of validation.
These simulations also provide additional insights into the stratification-induced force-
and torque-producing mechanisms through the stratification-induced stress, which is not
accessed in the reciprocal theorem-based analytical calculations.
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1. Introduction
Numerous natural and engineering scenarios involve the motion of dispersed biological
(micro-organisms) or artificial particles in fluids with non-uniform viscosity. The variation
in viscosity experienced by the particles can change their trajectory relative to that in
a uniform viscosity scenario. For example, spatio-temporally varying temperature and
dissolved nutrients in the ocean lead to viscosity stratification which may influence the
sedimentation of dead organic matter or marine snow, and micro-plastics. The motion
of these particles, that are responsible both for oceanic pollution and for the helpful
absorption of 30 % of anthropogenic CO2 (Gruber et al. 2019), could also be affected
by the interaction between background shear and variable viscosity. The viscosity of
the mucus present in airways increases from the cilium layers to the air-mucus interface
(Barton & Raynor 1967), likely playing a role in the movement of bacteria (Escherichia
coli) and other pathogens through cellular surfaces. As fluid motion near a wall may be
described as simple shear flow and that exiting from or entering a pore as an extensional
flow, these particles experience locally linear flows. A variety of particle shapes ranging
from spheres and spheroids to irregularly shaped micro-plastics are encountered in the
aforementioned instances. Irregular shapes are most often approximated as spheroids,
which enables analytical treatment for accessing a range of shapes by changing the aspect
ratio of the particle. Spheroids have been previously used to explain experiments on micro-
organisms such as Paramecium caudatum (Keller & Wu 1977), Escherichia coli (Bai,
Zhao & Asami 2006) and a system of sedimenting phytoplankton and secreted mucus
(Chajwa et al. 2024). Therefore, in this paper, we study freely suspended spheroids in
fluids with viscosity gradient, under gravity and in linear flow, and elucidate previously
unexplored mechanisms of rotation and translation. This is achieved through analytical
calculations of stratification-induced forces and torques, supplemented by insights from
pressure and viscous stresses obtained via numerical simulations. These findings can be
valuable in designing desirable intervention strategies for a variety of applications such as
ocean farming to enhance long term carbon sequestration provided by marine snow (Jones
et al. 2022), devising effective micro-plastic extraction strategies (Van Cauwenberghe
et al. 2015), targeted drug delivery (Xie et al. 2020) and understanding the role of viscosity
stratification in pathogenicity of bacteria.

In the absence of fluid and particle inertia, and in fluid of constant physical properties, a
fore-aft and axisymmetric particle does not experience a force when placed at the center of
a linear flow, or a torque when fixed in a uniform flow (Kim & Karrila 2013). As a result,
when such a particle is freely suspended, in linear flows it does not translate relative to the
local imposed fluid velocity and upon free sedimentation it maintains its initial orientation
while settling at an orientation dependent velocity. In simple shear flow, the axis of
symmetry of the spheroid undergoes non-uniform periodic trajectories known as Jeffery
orbits (Jeffery 1922), and the exact orbit chosen is dependent on initial conditions. As
indicated by numerous theoretical, computational and experimental studies, mechanisms
such as fluid inertia (Subramanian & Koch 2005; Dabade, Marath & Subramanian 2016;
Di Giusto et al. 2024), viscoelasticity (Gauthier, Goldsmith & Mason 1971; Leal 1975;
Bartram, Goldsmith & Mason 1975; Harlen & Koch 1993; Iso et al. 1996a,b; Gunes et al.
2008; D’Avino et al. 2014; Dabade, Marath & Subramanian 2015; D’Avino 2022; Sharma
& Koch 2023b) or stratification in the fluid’s density (see review by More & Ardekani
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(2023)) may break this strong dependence on initial conditions by inducing an additional
force and/ or torque.

Viscosity variation in the underlying fluid may provide another mechanism to break
the aforementioned symmetry in particle motion. Even though the mechanisms that result
in viscosity variation of a liquid are long studied, its effect on the particle motion is a
relatively new topic and previous studies have focused either on sedimenting particles or
those fixed in uniform flow. The viscosity may be stratified due to several effects such
as temperature (Seeton 2006) and salt concentration (Jiang & Sandler 2003). Increasing
temperature lowers the viscosity of liquids by creating increased agitation of molecules
resulting in smaller coherent groups that exhibit lower resistance (Batchelor 2000). Solute
concentration in an electrolyte alters viscosity as an additional restoring force is required
to overcome interionic attraction and thermal movements in a sheared cloud of ions
(Stokes & Mills 1965). Furthermore, due to ion solvent interaction the dependence
of viscosity on solute concentration may change with temperature from an increasing
function with concentration to a decreasing function (Kaminsky 1957; Stokes & Mills
1965). Phytoplankton alter the viscosity of their sorroundings by as much as 40 times that
of seawater (Guadayol et al. 2021) by secreting mucus clouds that take varying anisotropic
shapes around the organism (Chajwa et al. 2024). The presence of artificial particles can
also create viscosity disturbances in the surrounding fluid for example by changing the
surrounding temperature. This may then influence the particles’ motion relative to that in
a uniform viscosity scenario.

Oppenheimer, Navardi & Stone (2016) study the forces and torques on a hot sphere
fixed in a uniform flow of a fluid with temperature-sensitive viscosity. Their theory is
restricted to small Péclet number where temperature is transported primarily through
diffusion, creating variations in fluid viscosity near the particle surface. When the sphere
is uniformly heated, viscosity variation created due to the monopole thermal moment
lowers the hydrodynamic drag on the particle. This could be an explanation for increased
diffusivity of heated gold nanoparticles in water, as observed experimentally by Rings
et al. (2010). As another case, Oppenheimer et al. (2016) considered one hemisphere of
the sphere to be maintained at a different temperature from the other, and found that the
asymmetric viscosity distribution created by the dipole thermal moments leads to a torque
on the sphere. Ziegler & Smith (2022) considered two spherical particles which perturb the
viscosity due to their temperature (also for small Péclet number). Similar to Oppenheimer
et al. (2016) they find the self mobility of a hot particle to increase and that for a cold
particle to decrease. However, the additional cooling or heating by the neighboring particle
alters this mobility in a manner that scales inversely with the separation between particles,
s. Furthermore, unlike the single particle case, uniformly heated spheres lead to a coupling
between their translational and rotational motion at O(s−2).

Using a regular perturbation expansion and the reciprocal theorem, Datt & Elfring
(2019) found that a sphere of radius l moving at a velocity u relative to a fluid with small
ambient viscosity gradient ∇η, experiences a torque 2πl3u × ∇η. Through a combination
of this technique and numerical integration, Anand & Narsimhan (2024) performed these
calculations for a spheroidal particle. They found that the torque induced due to small
linear viscosity gradients leads to a change in the spheroid’s orientation, which alters its
translation path and speed. However, their semi-analytical results are restricted to κ < 0.5
and κ > 2, where κ is the particle’s aspect ratio. Gong, Shaik & Elfring (2024) have
extended this analysis to include fully analytical expressions for not just passive but active
prolate spheroids. They find the effect of viscosity gradients on the reorientation of a
swimmer towards lower viscosity is reduced as it becomes more slender. In the limit of
large aspect ratio, Kamal & Lauga (2023) formulate a resistive force theory to study the
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effect of small viscosity gradients on a slender fiber and a thin ring (small cross sectional
length relative to its circumference) fixed in uniform flow and in rotational and uniaxial
extensional flow. On these slender filaments, viscosity stratification leads to a torque in
uniform flow and force in rotational and extensional flows. The latter two cases are the
only results available for the effect of viscosity stratification on particles in linear flows.

While micro-plastics found in marine and freshwater environments have a wide range
of length to width ratios, most of the micro-plastic population is within the 0.5 < κ < 2
range (Kooi et al. 2021). Furthermore, certain micro organisms such as Paramecium
have an aspect ratio κ ≈ 2 (Kreutz, Stoeck & Foissner 2012) and Escherichia coli have
2 � κ � 4 (Kaya & Koser 2009; Liu et al. 2014). Therefore, the effect of viscosity
stratification in the entire κ range, which this paper provides, is beneficial. In § 4.1, we
revisit the sedimentation of spheroids in linear viscosity stratification. Our calculations of
stratification-induced torque on a sedimenting particle are entirely analytical. From this,
we obtain richer orientation dynamics behavior within the 0.55 � κ � 2.0 regime than
outside. Five types of orientation trajectories are discovered that can be represented by
different regions in the κ − dg phase space, where dg is the projection of the viscosity
gradient unit vector along gravity. The force due to viscosity gradients in linear flows
valid for the entire κ range is also obtained analytically. Cross-stream migration due to
stratification in simple shear flow (§ 4.2), may inspire novel particle sorting strategies
in microfluidics applications. In our study, viscosity variation arises solely from the
prescribed ambient conditions and is not influenced by the presence of the particle. An
example of such a scenario is when a fluid is subjected to an ambient temperature variation,
the particle is small or the fluid thermal conductivity is large (small Péclet number), and
the particle has the same thermal conductivity as the fluid. Otherwise, one must account
for the transport of the scalar (such as temperature or solute concentration) and appropriate
boundary conditions at the particle surface and the external boundaries.

The rest of the paper is organised as follows. Section 2 describes the governing
equations, expressions for stratification-induced force and torque for a fluid with small
viscosity variation, and other mathematical details. Beyond § 2 we focus on a fluid with
temporally constant, and spatially linear, viscosity stratification. We consider fore-aft
and axisymmetric particles, a class that includes biconcave discs such as red blood
cells, bispherical objects, dumbbells, rings, spheroids, etc. in § 3 and provide the vector
equations governing the rotation and translation of freely suspended neutrally buoyant
particles in linear flows and freely settling. These equations require specific stratification-
induced force and torque on a fixed particle as inputs, which may be determined either
analytically (as done here for spheroids) or from specific numerical simulations (that may
be done for other particle shapes in future). In § 4, these forces and torques on a spheroid
(obtained analytically using the spheroidal harmonics formulation of Dabade et al.
(2015, 2016)) are analyzed in detail with the underlying mechanisms elucidated. Distinct
modes of a spheroid’s motion as a result of the viscosity stratification while sedimenting
in quiescent fluid and freely suspended in linear flows are described in §§ 5 and 6
respectively. Finally, conclusions and suggestions for future investigations are given in § 7.

2. Mathematical formulation and different torque/ force generating mechanisms
Consider a particle in an unbounded flow of a variable-viscosity fluid in the absence of
particle and fluid inertia. The equations governing fluid mass and momentum conservation
are,

∇ · u = 0, ∇ · σ = 0, (2.1)
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where, u is the fluid velocity and,

σ = −pI + 2ηe = −pI + η(∇u + ∇uT ), (2.2)

is the fluid stress with p and η being the fluid pressure and viscosity, I the identity
tensor, and e the strain rate. Here, spatio-temporal variations in fluid viscosity, η(x, t),
are allowed. The boundary conditions are no-slip on the particle surface and a prescribed
flow field (uniform flow, shear flow, etc.) at the outer boundary,

u = uparticle, on the particle surface, and u → u∞ as x → xout . (2.3)

The outer boundary, xout , may be in the far-field, at a solid wall or a periodic boundary
(in case xout is at a finite distance, “→” in the above equation is replaced with an “=”).
The net hydrodynamic force, f, and torque, q, on the particle experiencing a fluid stress σ
on its surface are,

f(σ ) =
∫

rp

d S (n · σ ), q(σ ) =
∫

rp

d S x × (n · σ ). (2.4)

We assume that, without additional approximation, viscosity

η(x, t) = η0(t) + βη′(x, t), (2.5)

can be decomposed into a spatially constant, η0(t) (the fluid viscosity at the particle’s
center) and spatially dependent, βη′(x, t), components. Here, the variable part of viscosity
βη′ is assume to be much smaller than the spatially constant part, η0(t) with β � 1 being
a perturbation parameter. Typically one would require numerical discretization of the
governing equations to obtain the fluid stress, σ , at the particle surface prior to evaluating
f, and q. However, as outlined in appendix A, when β � 1, using a generalized reciprocal
theorem following regular perturbations of the relevant flow variables in β, the f, and q act-
ing on a particle at time t , placed at the origin, in a fluid with small viscosity variation is,

f(t) = η0(t)fStokes(t) − 2β

∫
Fluid

dx η′(x, t)(eStokes(x; t) − E∞(t)) : ∇bf(x)+O(β2),

q(t) = η0(t)qStokes(t) − 2β

∫
Fluid

dx η′(x, t)(eStokes(x; t) − E∞(t)) : ∇bq(x)+O(β2).

(2.6)

Here, η0fStokes(t) = ∫
rp

d S (n · σ Stokes) and η0qStokes(t) = ∫
rp

d S x × (n · σ Stokes) are the
current force and torque on the particle in the same computational domain as the complete
problem but with a spatially constant viscosity η0(t) (with the Stokes stress, σ Stokes =
−pStokes + 2η0eStokes), while the volume integral terms (with 2E∞(t) = ∇u∞ + (∇u∞)T

denoting the imposed strain rate) capture the entire contribution induced by viscosity
variation. The two 2-tensor fields bf(x) and bq(x) are related to the auxiliary problem in
the reciprocal theorem and are obtained from the solution of a Stokes problem around the
particle. A vector bf · û is the Stokes velocity field around the particle translating with û
in a quiescent fluid. Similarly, bq · ω̂ corresponds to the velocity disturbance created by
a particle rotating with angular velocity −ω in a quiescent inertia-less fluid. The tensor
fields bf and bq approach zero at the far-field boundaries and are equal to zero at the no-slip
wall surfaces. The expressions for the hydrodynamic force and torque in (2.6) are valid for
a general particle shape present in an inertialess fluid with small viscosity variations that
may be unbounded or contained within solid and periodic boundaries. If not held fixed by
an external force or torque, the particle translates and rotates to ensure that the force- and
torque-free constraints are satisfied. These expressions are utilized to reveal novel particle
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dynamics in viscosity-stratified fluids in the next four sections of this paper. In particular,
we note that in (2.6), when the spatial variability in viscosity is small, i.e., β � 1, the
force and torque on a particle in a viscosity stratified fluid require knowledge of only the
Stokes velocity field and spatial distribution of viscosity; we will use this fact in § 4 with
spheroidal harmonics to analytically determine these forces and torques on spheroids fixed
in uniform and linear flows. Section 2.1 provides mathematical details required to isolate
different mechanistic constituents of the extra force and torque due to viscosity variation.

2.1. Mechanistic origins of stratification-induced force and torque
The derivation of the expressions in (2.6) is in appendix A and relies on an exact
decomposition of the velocity and pressure fields into two components such that

u = uStokes + uStratified, and p = (1 + βη′/η0)pStokes + pStratified. (2.7)

The variables uStokes and pStokes represent the velocity and pressure in a uniform viscosity
fluid (Stokes flow) with viscosity equal to that at the particle’s center, whereas uStratified

and pStokesβη′/η0 + pStratified are velocity and pressure induced by viscosity variation. The
pressure component pStokesβη′/η0 is the Stokes pressure at any position incremented by
the local viscosity. The fluid stress, σ , consists of three parts,

σ = σ Stokes + (βη′/η0)σ
Stokes + σ Stratified, (2.8)

with its constituent stresses,

σ Stokes = −pStokesI + η0
(∇uStokes + (∇uStokes)T )

, and, (2.9)

σ Stratified = −pStratifiedI + (η0 + βη′)
[∇uStratified + (∇uStratified)T ]

. (2.10)
After applying the decomposition, the governing equations are,

∇ · uStokes = 0, ∇ · σ Stokes = 0, (2.11)

∇ · uStratified = 0, ∇ · σ Stratified + ∇η

η0
.σ Stokes = 0, (2.12)

subject to the boundary conditions

uStokes = uparticle, on the particle surface, and, uStokes → u∞ as x → xout , and, (2.13)

uStratified = 0, on the particle surface, and, as x → xout , (2.14)

where as in (2.3), the outer boundary, xout , may be in the far-field, at a solid wall or
a periodic boundary. Equations (2.11) and (2.13) governing the evolution of σ Stokes are
the same as the original equations (2.1) and (2.3) but in a fluid with uniform viscosity,
η0(t). The velocity induced by the variable viscosity effect, uStratified, has zero boundary
conditions, equation (2.14), because the imposed flow and particle motion are already
accounted for in the boundary conditions for Stokes velocity, uStokes in (2.13). Summing
(2.11) and (2.12) recovers the original formulation in (2.1). We have not made any
assumption in decomposing the original system ((2.1) to (2.3)) into the two components
given by (2.11) to (2.14). This exact decomposition is possible because the original mass
and momentum equations are linear in velocity and pressure. Periodic boundary conditions
(not in (2.13) and (2.14)) are also compatible with this decomposition.

To support the discussion and analysis of § 4, it is useful to describe the additional
stratification-induced force and torque on a particle that are not present in classical Stokes
flow. From (2.8) the extra stress in a variable viscosity fluid is (βη′(x)/η0)σ

Stokes +
σ Stratified which leads to the O(β) force or torque −2β

∫
Fluid dV η′(eStokes − E∞) : ∇b
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(with b = bf or bq). The net force and torque, shown in (2.6), acting on the particle
can be represented as, f = η0fStokes + fStratified

A + fStratified
B and q = η0qStokes + qStratified

A +
qStratified

B . Here, part of the force and torque arise from the Stokes stress acting on the
particle surface immersed in varying viscosity fluid,

fStratified
A = β

∫
rp

d S ((η′/η0)n · σ Stokes),

qStratified
A = β

∫
rp

d S (η′/η0)x × (n · σ Stokes), (2.15)

and the final contributions come from the velocity and pressure induced by variable
viscosity,

fStratified
B =

∫
rp

d S (n · σ Stratified)

= −2β

∫
Fluid

dV η′(eStokes − E∞) : ∇bf − fStratified
A +O(β2),

qStratified
B =

∫
rp

d S x × (n · σ Stratified)

= −2β

∫
Fluid

dV η′(eStokes − E∞) : ∇bq − fStratified
A +O(β2).

(2.16)

The force and torque, fStratified
B and qStratified

B , are due to the O(β) stratified stress governed
by the O(β) stratified mass and momentum equations,

∇ · (uStratified)(1) = 0, ∇ · (σ Stratified)(1) + d
η0

· σ Stokes = 0. (2.17)

Here in (2.17) we have regularly expanded the flow variables in β,

uStratified = β(uStratified)(1) +O(β2), (2.18)

pStratified = β(pStratified)(1) +O(β2), (2.19)

σ Stratified = β
[
−( p̃Stratified)(1)I + η0[(∇uStratified)(1) + ((∇uStratified)(1))T ]

]
+O(β2).

(2.20)

From here on, we focus on linear viscosity stratification such that the viscosity, η,
distribution is,

η = η0 + βd · x, ||d||2 = 1, ||∇η||2 = β (η′(x, t) = η′(x) = βd · x), (2.21)

where unit vector d lies along the direction of viscosity stratification. For this case the
parameter, β in the regular perturbation expansion of the relevant flow variables is the
magnitude of viscosity gradient.

3. Fore-aft and axisymmetric particle
This section first illustrates the structure of the stratification-induced force and torque on
a fore-aft and axisymmetric particle fixed in a linear and uniform flow of a stratified fluid
with small magnitude of viscosity gradient. These forces and torques, whose structure is
derived in the first two sub-sections below are labeled in table 1. Their explicit values may
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Imposed flow fStokes qStokes Fbody
strat Qbody

strat

û(1) f1û(1) 0 0
Q

U1
23 +Q

U1
32

2 Γ̂
(5)

+ Q
U1
23 −Q

U1
32

2 Γ̂
(8)

û(2) f1û(2) 0 0 − Q
U1
23 +Q

U1
32

2 Γ̂
(4)

+ Q
U1
23 −Q

U1
32

2 Γ̂
(7)

û(3) f3û(3) 0 0 QU3
12 Γ̂

(6)

x · Γ̂ (1)
0 0 FΓ1

11 Γ̂
(1)

0

x · Γ̂ (2)
0 0

⎡⎢⎣FΓ2
11 0 0
0 FΓ2

11 0
0 0 FΓ2

33

⎤⎥⎦ 0

x · Γ̂ (3)
0 0 FΓ1

11 Γ̂
(3)

0

x · Γ̂ (4)
0 q4û(2)

F
Γ4
31 +F

Γ4
13

2 Γ̂
(4)

+ F
Γ4
31 −F

Γ4
13

2 Γ̂
(7)

0

x · Γ̂ (5)
0 −q4û(1)

F
Γ4
13 +F

Γ4
31

2 Γ̂
(5)

+ F
Γ4
13 −F

Γ4
31

2 Γ̂
(8)

0

x · Γ̂ (6)
0 q3û(3) FΓ6

12 Γ̂
(6)

0

x · Γ̂ (7)
0 q1û(2)

F
Γ7
31 +F

Γ8
23

2 Γ̂
(7)

+ F
Γ7
31 −F

Γ8
23

2 Γ̂
(4)

0

x · Γ̂ (8)
0 q1û(1)

F
Γ7
31 +F

Γ8
23

2 Γ̂
(8)

− F
Γ7
31 −F

Γ8
23

2 Γ̂
(5)

0

Table 1. Forces and torques (in Cartesian basis) on an axi- and fore-aft symmetric particle in body-fixed
coordinates (where component 3 or the z axis aligns with the particle orientation) for different flows within
(3.1) for a linearly stratified fluid with viscosity given by (2.21), are η0fStokes + βFbody

strat · dbody+O(β2) and
η0qStokes + βQbody

strat · dbody+O(β2). The first part arises from fluid’s uniform viscosity, η0 and the second from
its viscosity gradient with magnitude β = ||∇η||2. The unit of fi is l and that of qi , FΓk

i j and QUk
i j is l3, where

l is the chosen length scale.

be evaluated either analytically, as demonstrated for spheroids in § 4, or numerically for
more complex particle shapes such as cylinders, biconcave disks or dumbbells (that may
be considered in future studies). Then the dynamics of such particles freely suspended
in a variety of flow scenarios can be obtained from the upcoming ordinary differential
equations (odes) defined in (3.18), and (3.21) using the aforementioned forces and torques
as input parameters. Even if only numerical evaluation of forces and torques is possible,
obtaining particle motion through the solution of these odes will be computationally more
efficient than alternative direct numerical simulations requiring numerical solution of the
governing equations at each time step along the particle trajectory.
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A uniform or linear incompressible imposed flow, u∞, can be obtained via a linear
superposition of the 11 canonical flows in the reference frame aligned with the particle,

ubody∞ = Σ3
i=1ai û(i) + xbody · Σ8

i=1bi Γ̂
(i)

,

û(1) = [
1 0 0

]
, û(2) = [

0 1 0
]
, û(3) = [

0 0 1
]
,

Γ̂
(1) =

⎡⎣1 0 0
0 −1 0
0 0 0

⎤⎦ , Γ̂
(2) =

⎡⎣−1
2 0 0

0 −1
2 0

0 0 1

⎤⎦ , Γ̂
(3) =

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ , Γ̂
(4) =

⎡⎣0 0 1
0 0 0
1 0 0

⎤⎦ ,

Γ̂
(5) =

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ , Γ̂
(6) =

⎡⎣0 1 0
−1 0 0
0 0 0

⎤⎦ , Γ̂
(7) =

⎡⎣0 0 −1
0 0 0
1 0 0

⎤⎦ , Γ̂
(8) =

⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦ ,

(3.1)

with appropriate values of the weights ai and bi and unit vectors, û(i)
, i ∈ [1, 3] and

constant tensors, Γ̂
(i)

, i ∈ [1, 8]. Here, xbody is the position vector of an arbitrary point
in the particle reference frame. In constant viscosity Stokes flow, the effect of a particle in
any linear or uniform flow can be obtained via a linear superposition of these canonical
cases. Furthermore, at O(β) (equation (A12)), we observe that the stratification-induced
flow is linear in the viscosity gradient, ∇η = dβ. Hence, calculating the stratification-
induced force and torque for three perpendicular viscosity gradients for each of the eleven
canonical flows in (3.1) is sufficient to obtain the relevant values for an arbitrarily oriented
d with any combination of uniform and linear imposed flow.

By acknowledging the symmetry of the particle shape relative to each of the flows given
in (3.1), we observe the symmetry within the components of forces and torques acting on
a fore-aft and axisymmetric particle in a constant as well as in linearly stratified viscosity
fluid. For example, in a reference frame with direction 3 aligned with the fixed particle’s
axis of symmetry, a uniform flow of constant viscosity with velocity along direction 3,
a3û(3), creates a hydrodynamic force only along direction 3. The force along direction 1
and 2 is zero. There is a symmetry in the 1 and 2 directions due to axisymmetry, e.g., the
force in direction 2 for flow û(2) is the same as that in direction 1 for û(1) in the particle-
aligned coordinate system. The torque in the case of uniform flow is zero. Similarly, in the
case of linear flows, the particle experiences a torque but no force.

In the context of uniform flow relative to a particle, the hydrodynamic force and torque
surface integrands shown in equation (2.4) are even and odd in the position vector, x,
respectively. In contrast, for linear flows the force integrand is odd and the torque integrand
is even. The surface integral of an integrand that is odd in x is zero around an axi
and fore-aft symmetric particle. For a particular flow type, the stress arising from linear
stratification, (η′/η0)σ

Stokes + σ Stratified is odd in x if the stress for uniform viscosity fluid,
σ Stokes is even and vice versa. Therefore, due to linear stratification, an extra force (and
no torque) is produced for linear flows, and an extra torque (and no force) in uniform
flow. Furthermore, the O(β) stratification-induced forces and torques are linear in d, the
direction along which viscosity is stratified. Based on such symmetry arguments, the force
and torque generated in the eleven flows listed in (3.1) in a uniform viscosity fluid are
provided in the second and third columns of table 1 and that in a viscosity-stratified fluid
are the dot product of the last two columns of this table with dbody , i.e., the unit vector in
the particle aligned frame along which viscosity increases. While we only consider linearly
stratified fluid in the rest of this paper, a similar argument allows one to note that spatially
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quadratic variation in viscosity may lead to an additional stratification-induced force in
uniform flows and torque in linear flows.

The orientation of a fore-aft and axisymmetric particle can be described by a single
vector: the direction of its axis of symmetry, p. From a body-fixed coordinate system
where the axis of symmetry is aligned with the 3 axis, a vector can be transformed to
another reference frame using the rotation matrix,

R =

⎡⎢⎢⎢⎢⎣
p2√

p2
1+p2

2

p1 p3√
p2

1+p2
2

p1

− p1√
p2

1+p2
2

p2 p3√
p2

1+p2
2

p2

0 −
√

p2
1 + p2

2 p3

⎤⎥⎥⎥⎥⎦ , (3.2)

where the particle’s orientation p = [
p1 p2 p3

]
in the chosen reference frame. In § 3.1 we

will use the forces and torques from table 1 to obtain the particle dynamics in a constant
viscosity fluid. Then in §§ 3.2 and 3.3 we will consider the force, torque and change in
particle dynamics due to viscosity stratification.

3.1. Constant viscosity fluid
In a fluid with spatially constant viscosity, η0, a force, g and torque, qΓ leads to the
following particle translation and rotation velocities,

uparticle = 1
η0

[
p(p · g)

f1 − f3

f1 f3
+ 1

f1
g
]

, (3.3)

ωparticle = 1
η0

[
p(p · qΓ )

q1 − q3

q1q3
+ 1

q1
qΓ

]
. (3.4)

The significance of particle shape-dependent factors f1, f3, q1 and q3 can be ascertained
from table 1. In particular, f1 and f3 respectively are the non-zero components of the
hydrodynamic forces on the particle in a unit uniform flow of uniform viscosity fluid,
aligned perpendicular and parallel to the axis. The factors q1 and q3 respectively are
the non-zero components of hydrodynamic torques experienced by a fixed particle in the
rotational flows xbody · Γ (7) and xbody · Γ (6). A particle fixed in an imposed uniform flow
with velocity, u f low, experiences a force,

fStokes
u f low

= η0[p(p · u f low)( f3 − f1) + f1u f low], (3.5)

and no torque. In a linear flow with an imposed velocity gradient, Γ = E + Ω , with
a symmetric (straining) part, E, and an anti-symmetric (rotational) part, Ω (such that
intrinsic rotation of the imposed linear flow, ω∞ = −0.5ε : Ω), a fixed particle experiences
a torque,

qΓ = η0[p(p · ω∞)(q3 − q1) + q1ω∞ − q4(E · p) × p], (3.6)

and no force. Therefore, from (3.4), a torque-free particle in a linear flow rotates with an
angular velocity,

ω
Jeffery
particle = ω∞ − q4

q1
(E · p) × p, (3.7)

that leads to the time rate of change of the particle orientation vector given by,

ṗJeffery = ω
Jeffery
particle × p = ω∞ × p + q4

q1
(E · p) · (I − pp). (3.8)
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Here, q4 is the non-zero component of the torque on a fixed particle in the straining flow
given by xbody · Γ (4) or −xbody · Γ (5). The orientation trajectories obtained through the
integration of the above equation are known as Jeffery orbits (Jeffery 1922).

3.2. Fixed particle in stratified fluid
In a coordinate-free form, the O(β) stratification-induced forces and torques on a fixed
particle are, using values from table 1,

fStratified
Γ = βR · Fbody

strat · RT · d, qStratified
u f low

= βR · Qbody
strat · RT · d, (3.9)

can be expressed as,

qStratified
u f low

= β[QU1
32 (pp · (u f low × d)) + QU3

12 (p · u f low)d × p + QU1
23 (p · d)p × u f low],

(3.10)
in a uniform flow with velocity, u f low, and,

fStratified
Γ = βR · Fstrat

linear, · RT · d

= β(FΓ1
11 E + (FΓ2

33 + FΓ2
11 + FΓ1

11 /2 − FΓ4
13 − FΓ4

31 )(p · E · p)pp

+ (FΓ1
11 /2 − FΓ2

11 )(p · E · p)I + (FΓ4
13 − FΓ1

11 )E · pp + (FΓ4
31 − FΓ1

11 )pp · E) · d

− β(FΓ6
12 ω f low×d − (FΓ6

12 − FΓ7
31 )pp · (ω f low × d) − (FΓ6

12 − FΓ8
23 )(ω f low × p)p · d),

(3.11)

in a linear imposed flow with Ω and E as the vorticity and strain rate tensor. Here, ω f low =
−0.5ε : Ω is the imposed fluid rotation in the perspective of the particle. The physical
meaning of the coefficients QUk

i j (i, j, k ∈ [1, 3]) and FΓk
i j (i, j ∈ [1, 3], k ∈ [1, 8]), can be

inferred from table 1. These are β normalized stratification-induced torques, QUk
i j , and

forces, FΓk
i j , along direction i in a fluid with viscosity increasing linearly along j , on a

fixed particle with axis of symmetry along direction 3, either in a uniform flow (for QUk
i j )

with unit velocity along direction k or a linear flow with gradient Γ̂
(k)

(for FΓk
i j ).

3.3. Particle motion in viscosity-stratified fluid
A particle translating with a velocity uparticle in a quiescent fluid experiences a
stratification-induced torque,

qStratified
uparticle = −β[QU1

32 (pp · (uparticle × d)) + QU3
12 (p · uparticle)d × p

+ QU1
23 (p · d)p × uparticle], (3.12)

in addition to the force, −η0[p(p · uparticle)( f3 − f1) + f1uparticle] (u f low replaced with
−uparticle in (3.5)) from the uniform viscosity component of the fluid. While a particle
rotating with an angular velocity ωparticle in a quiescent fluid experiences a torque
−η0[p(p · ωparticle)(q3 − q1) + q1ωparticle] (E = 0 and ω∞ = −ωparticle in (3.6)) due to the
constant part of viscosity. The linear stratification leads to a force,

fStratified
ωparticle = β(FΓ6

12 ωparticle × d − (FΓ6
12 − FΓ7

31 )pp · (ωparticle × d)

− (FΓ6
12 − FΓ8

23 )(ωparticle × p)p · d),
(3.13)

as a relative linear flow of the fluid with (anti-symmetric) velocity gradient Γ = −ε ·
ωparticle is experienced by the particle.
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The stratification-induced torque on a translating particle and force on a rotating particle
lead to a coupling between two types of motion not observed in a uniform viscosity fluid in
the absence of inertia (Oppenheimer et al. 2016; Datt & Elfring 2019; Anand & Narsimhan
2024; Gong et al. 2024). A particle sediments in a constant viscosity fluid along a linear
path that depends on its shape and initial orientation. However, its orientation will change
in the presence of viscosity stratification, leading to a different translation path. In a
linear flow, while rotating as per Jeffery orbits, a particle translates at a velocity equal
to the fluid’s velocity at its centroid. However, a stratification-induced force will lead to a
relative translation between the particle and fluid. For example, unlike a uniform viscosity
scenario, it can migrate across the streamlines of a simple shear flow or be forced to move
relative to the center of a uniaxial extensional flow.

3.3.1. Sedimenting particle
First consider a particle settling under the action of a gravitational force, g in a quiescent
fluid. The particle’s translation and angular velocity are obtained via the following coupled
equations,

uparticle = 1
η0

[
p(p · (g + fStratified

ωparticle ))
f1 − f3

f1 f3
+ 1

f1
(g + fStratified

ωparticle )

]
, (3.14)

ωparticle = 1
η0

[
p(p · qStratified

uparticle )
q1 − q3

q1q3
+ 1

q1
qStratified

uparticle

]
, (3.15)

where qStratified
uparticle (a function of uparticle) and fStratified

ωparticle (a function of ωparticle) are given
by (3.12) and (3.13). Upon substitution of relevant variables, the governing equation for
angular velocity is,

ωparticle = β

η2
0
[−t1(pp · (g × d)) − t2(p · g)d × p − t3(p · d)p × g] +O(β2), (3.16)

where,

t1 = QU1
32

f1q3
, t2 = QU3

12
f3q1

, t3 = QU1
23

f1q1
. (3.17)

The O(β) effect of stratification is to rotate the particle’s centerline, p. We note that
fStratified
ωparticle is O(β2), since, from (3.13), fStratified

ωparticle ∼ βO(ωparticle) and ωparticle is itself O(β),
which can be discerned from (3.13) and (3.15). Therefore, up to O(β), the settling velocity
of the particle is simply the Newtonian velocity in (3.3) for the p altered by the stratification
induced torque. At O(β2), a modification in the particle’s translational velocity due to
fStratified
ωparticle is expected. The time rate of change of the particle orientation vector, ṗ = ω × p,

is governed by,

ṗ = − β

η2
0

· [t3(p · d)g − t2(p · g)d
] · (I − pp) +O(β2). (3.18)

3.3.2. Freely moving particles in linear flows
The coupling between the rotation and translation of a freely suspended particle in a linear
flow with velocity gradient, Γ = E + Ω leads to the following translation and angular
velocity of the particle,
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uparticle = xp · Γ + uStratified, uStratified = 1
η0

[
p(p · fStratified

Γ )
f1 − f3

f1 f3
+ 1

f1
fStratified
Γ

]
,

(3.19)

ωparticle = ω∞ − q4

q1
(E · p) × p + 1

η0

[
p(p · (qStratified

u f low−particle))
q1 − q3

q1q3
+ 1

q1
(qStratified

uflow-particle)

]
.

(3.20)

where, fStratified
Γ (given in (3.11) with E as the symmetric part of imposed velocity gradient,

and ω f low = ω∞ − ωparticle) is the stratification-induced force on a fixed particle in a
linear flow created by the imposed strain and relative rotation of the fluid in the perspective
of the particle. The expressions for stratification-induced torques due to relative translation
motion between particle and fluid, qStratified

u f low−particle is qStratified
uparticle from (3.12) with uparticle

replaced with uStratified. This relative velocity of the particle induced by stratification is
governed by,

uStratified = β

f1η0

(
FΓ1

11 E + (FΓ1
11 /2 + FΓ2

11 )(p · E · p)I

+
[

f1

f3
FΓ2

33 − FΓ2
11 + FΓ1

11 /2 − FΓ4
13 − f1

f3
FΓ4

31 + q4

q1

(
f1

f3
FΓ7

31 − FΓ8
23

)]
(p · E · p)pp

+
(

FΓ4
13 − FΓ1

11 + q4

q1
FΓ8

23

)
E · pp +

(
f1

f3
FΓ4

31 − FΓ1
11 − q4

q1

f1

f3
FΓ7

31

)
pp · E

)
· d +O(β2).

(3.21)

Since qStratified
u f low−particle ∼ βO(uStratified) ∼O(β2), up to O(β) the particle’s centerline follows

the Newtonian rotation rate (3.8).
In the next section, the force and torque components listed in table 1 are analytically

obtained for spheroids using spheroidal harmonics. These coefficients appear in the
particle dynamics equations (3.18) and (3.21). Free settling in gravity using equations (3.3)
and (3.18) is explored in § 5 and the motion of particles freely suspended in linear flows
calculated using (3.8) and (3.21) is shown in § 6.

4. Fixed spheroids in viscosity stratified fluids
As discussed in § 2, we only need to know the expressions for the Stokes flow fields around
the particle to obtain the O(β) stratification-induced force and torque from (2.6). We use
the spheroidal harmonics formulation of Dabade et al. (2015, 2016) to obtain these expres-
sions in Mathematica. The stratification-induced force and torque expressions on spheroids
are unwieldy. Hence, while we discuss the qualitative nature of the aspect ratio dependence
of these quantities in this section, we provide the explicit formulae in appendix D.

We have validated these expressions in three separate ways. First, in the limit κ → 1
these values are compared with those obtained from simpler expressions of flow around a
sphere, demonstrated in appendix C. Second, for prolate spheroids we solve the stratified
mass and momentum equations (2.17) at O(β), using the finite-difference based numerical
method of Sharma & Koch (2023a). This solver is written in prolate spheroidal coordinates
with the particle surface as the inner boundary and a nearly spherical surface in the far-
field as the outer boundary. For the current study, we compute the flow around a fixed
particle with either uniform or linear flow imposed at the outer boundary. The numerically
evaluated stratification induced stress field, σ Stratified = β(σ Stratified)(1) +O(β2) at O(β) is
directly used to obtain the force and torque to compare with the analytical values obtained
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Figure 1. Viscosity-stratification-induced torque in uniform flow past a spheroid with aspect ratio κ and major
axis equal to 1. The markers for 1 ≤ κ ≤ 30 are the values obtained from the numerical code.

via a generalized reciprocal theorem that circumvents the stress field calculation. Last, in
the limit of large aspect ratio, values from the resistive force theory of Kamal & Lauga
(2023) are compared with ours.

4.1. Uniform flow

As mentioned in § 3.2, QUk
i j (for i, j, k ∈ [1, 3]) refers to the β normalized stratification-

induced torque along direction i in a fluid with viscosity increasing linearly along j , on a
fixed particle with axis of symmetry along direction 3, in a uniform flow with unit velocity
along direction k. Out of the 27 coefficients in QUk

i j there are only three unique non-zero
values. Therefore, the stratification-induced torque on a spheroid fixed in uniform flow of
linearly stratified fluid for a general case can be described by the torque induced on the
particle in three distinct scenarios which all require the imposed flow and the stratification
direction to be mutually perpendicular. In the first case, the particle centerline, denoted
by unit vector p, lies normal to the flow-stratification plane and the stratification-induced
torque, denoted by QU1

32 , lies along p. In the remaining two scenarios, where either the
flow direction (torque labeled as QU3

12 ) or the stratification direction (torque denoted by
QU1

23 ) is along p, the stratification-induced torque is normal to p. In § 4.1.1 we provide
a validation of the expressions for QU1

32 , QU1
23 and QU3

12 before discussing the qualitative
trends in the variation of these quantities with particle aspect ratio, κ , and providing a
mechanistic explanation of their origins in § 4.1.2.

4.1.1. Validation
The analytical expressions for stratification-induced torques QU1

32 , QU1
23 and QU3

12 for a
spheroid fixed in uniform flow (û(i)

, i ∈ [1, 3] from equation (3.1)) are shown in (D4)
within appendix D.2 and are plotted in figure 1 as solid curves. The corresponding
numerically obtained values for a prolate spheroid with aspect ratio, 1 ≤ κ ≤ 30 are shown
as circular markers in the same figure where a close match between the values obtained
from the two different techniques can be observed. Our formulas show that in the limit of
a sphere of radius, l, i.e. κ → 1,

lim
κ→1

(QU1
23 ) = lim

κ→1
(QU3

12 ) = − lim
κ→1

(QU1
32 ) = 2πl3, (4.1)

which are the same results obtained for a sphere in appendix C (equation (C5)) without
using the spheroidal harmonics.
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For a slender fiber, i.e., a prolate spheroid with κ → ∞,

lim
κ→∞(QU1

32 ) = −32π

3
l3

κ√
κ2−1

− 1

2 log(2κ) + 1
+O(κ−2),

lim
κ→∞(QU1

23 ) = 8π

3
l3 1

log(2κ) − 1
4 log(2κ)

+O(
κ−2

log(κ)
),

lim
κ→∞(QU3

12 ) = −8π

3
l3 1

(2 log(2κ) − 1)2 +O(
κ−2

log(κ)
).

(4.2)

Kamal & Lauga (2023) evaluated the torque equivalent to QU1
23 for a slender fiber

using resistive force theory. According to their equation (3.21), a slender prolate
spheroid of length 2l fixed in a fluid with viscosity gradient η0/(2l) parallel to a fiber
undergoing a uniform flow with velocity U2 perpendicular to the fiber experiences a
torque 4π/[3(log(2κ) + 1)]l2η0U2 +O(log(κ)−2) along the axis normal to the flow-
stratification plane. Their torque value re-scaled for U2 = 1 and viscosity gradient
β is (β8π/3)l3/(log(2κ) + 1) +O(log(κ)−2). The equivalent torque (equation (4.2)),
from our study in a fluid is β lim

κ→∞ QU1
23 = (8π/3)l3β(1/[log(2κ) − (1/4(log(2κ)))]) +

O(κ−2 log(κ)−1). Hence, in the large κ limit our expression matches with that of Kamal
& Lauga (2023).

4.1.2. Mechanistic origin of stratification-induced torque
The decomposition of torque provided in (2.15) and (2.16) shows that the stratification-
induced torque arises from two distinct fluid stresses (see (2.8)) in a viscosity stratified
fluid flow around a particle. The β normalized stress component (η′/η0)σ

Stokes depicts
the stress on a particle in a uniform viscosity fluid, σ Stokes, but incremented by the local
variation in fluid viscosity around the particle. It leads to the stratification-induced torques
QU1

32 A, QU3
23 A and QU3

12 A. The remaining part of the stratification-induced torques, QU1
32 B ,

QU3
23 B and QU3

12 B arise due to the fluid stress resulting from the changes in stratification-
induced velocity (uStratified) and pressure (pStratified) at O(β).

First consider the case when the imposed uniform flow and viscosity stratification are
perpendicular to one another and also to the particle centerline p. Then the stratification-
induced torque, QU1

32 , acts along p. We find,

QU1
32 B = 0 → QU1

32 = QU1
32 A, (4.3)

for all κ . Therefore, QU1
32 is only due the Stokes stress acting in a variable viscosity

environment. The fluid stress, σ Stratified, created by the stratification-induced velocity and
pressure does not contribute to this torque. However, both (η′/η0)σ

Stokes and σ Stratified

contribute towards QU3
12 and QU1

23 . These are the stratification-induced torques induced
normal to p when either the stratification or the flow direction is along p. The expressions
for decomposed torques QU1

23 A, QU3
12 A, QU1

23 B , and QU3
12 B are shown in (D5) and plotted

in figure 2(a) as a function of particle aspect ratio, κ . The torques QU1
23 B and QU3

12 B are
zero for κ = 1, i.e., the stratification-induced velocity and pressure do not play a role in the
stratification-induced torque on a sphere. However, for κ �= 1, QU1

23 B and QU3
12 B are present

in addition to QU1
23 A and QU3

12 A.
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Figure 2. Decomposition of stratification-induced torques in uniform flow on spheroids vs. aspect ratio: (a)
Decomposition into qStratified

A and qStratified
B = qStratified − qStratified

A given by (D5) (the markers show values from
the numerical code), and (b) Decomposition of qStratified

B into that from stratification-induced pressure and strain
obtained from the numerical code.

From figure 1, we can observe that the net stratification-induced torques, QU1
23 and QU3

12
change signs at κ ≈ 0.55 and κ ≈ 2.0 respectively. As seen in figure 2(a), the change
in signs at κ ≈ 0.55 and κ ≈ 2.0 is due to the competition between the torque arising
from (η′/η0)σ

Stokes (QU1
23 A and QU3

12 A) and that from σ Stratified (QU1
23 B and QU3

12 B). In the
upcoming discussion of § 5, this sign change will play an important role in the particle’s
rotational dynamics.

The torques QU1
23 B and QU3

12 B can be further decomposed into those arising from
the stratification-induced pressure, pStratified, and those from viscous force per unit area
2(η0)eStratified, where eStratified = ∇uStratified + (∇uStratified)T at O(β). This decomposition
can be accessed for the prolate spheroid through the numerical calculation and is shown
in figure 2(b) for QU1

23 B and QU3
12 B , marked with subscripts ‘Pressure’ and ‘Strain.’ Here

we observe that the torque due to the stratification-induced pressure and viscous force per
unit area, act in the same direction, but the former dominates for prolate spheroids with
κ � 10, beyond which both are of almost equal magnitude. Furthermore, QU3

12,B,Pressure

and QU1
23,B,Pressure (as well as QU3

12,A,Strain and QU1
23,B,Strain) are equal and opposite.

Similarly, the torques QU1
23 A and QU3

12 A that arise from the Stokes stress acting in a
variable-viscosity environment can be decomposed into that arising from (η′/η0)pStokes

and 2η′eStokes (not shown). Since the pressure acts normal to the surface, and for a sphere
the line of action of the pressure force acts through the particle surface, pressure does
not contribute to the torque. Therefore, for a sphere the entire stratification-induced torque
arises from 2η′eStokes, the Stokes strain rate acting in a variable-viscosity environment.

The stratification-induced pressure distribution, pStratified, is the dominant contributor to
the torques QU1

23 B and QU3
12 B for prolate spheroids with κ � 10. Using patterns of η′ pStokes

and pStratified at the surface of prolate spheroids we can understand the mechanisms in
various torque distributions observed in figure 2.

First consider the pressure distribution responsible for torque QU1
23,B,Pressure (and

QU1
23,A,Pressure), i.e., for the scenario when imposed flow and stratification are

perpendicular and parallel to p respectively. Figure 3 shows the pressures pStokes and
pStratified on κ = 1, 2 and 8 prolate spheroids along with the background viscosity variation,
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Figure 3. (a) to (c) Stokes pressure pStokes in uniform flow on a particle surface leading to QU1
23,A via

η′/η0 pStokes on (left) κ = 1, (middle) κ = 2 and (right) κ = 8 prolate spheroid. (d) to (e) Stratification-induced
pressure pStratified/β leading to QU1

23,B for the same κ as (a) to (c) respectively. Flow (u∞) and stratification
(∇η) are respectively perpendicular and parallel to the particle axis of symmetry. Background contours show
viscosity variation, η′ with light (dark) green representing η′ > 0 (η′ < 0). Streamlines are of the Stokes flow,
uStokes. Red (blue) indicates a positive (negative) surface pressure (pStokes or pStratified).

η′. Here, the variable component of viscosity, η′ = 0 at the center of the particle. For every
κ , the Stokes pressure, pStokes is positive on the particle surface facing the flow. On this
flow-facing/ upstream side of the particle, the stratification-induced pressure, pStratified is
positive when η′ > 0 (second quadrant) and negative when η′ < 0 (third quadrant). On
the downstream side, pStokes, is negative and the sign of pStratified is also reversed from
the upstream side. Overall, the pStratified distribution remains qualitatively similar as the
particle aspect ratio is altered (figure 3). The force due to pressure acts along the particle’s
center for a sphere leading to a zero moment arm for each surface element or a torque per
unit area of zero, i.e. x × n = 0 on a sphere since x = ln for the sphere with radius, l. As
κ is changed from 1, the surface normal no longer points towards the particle center and
there is a non-zero torque per unit area due to pressure. Upon increasing κ from 1, the
magnitude of x × n near the particle ends increases and the peak locations of |pStratified|
move towards the particle ends (figures 3e, 3f and 3g) leading to an initial increase in
QU1

23,B,Pressure with κ in figure 2(b). However, the decreasing surface area and reduction
in |pStratified|, upon increasing κ for a fixed major axis length, causes the final decrease
of QU1

23,B,Pressure with κ . Therefore, a maximum in QU1
23,B,Pressure is observed at κ � 2

in figure 2(b). The pressure distribution is such that the torque QU1
23,B,Pressure is along

∇η × u∞ or clockwise in the view shown in figures 3 and is depicted as positive for all
κ > 1 in figure 2(b).

While figure 3 depicted the case where the viscosity gradient direction d and the
particle’s centerline p are aligned, and both perpendicular to u∞, figure 4 shows the
case where u∞ and p are aligned, and both are perpendicular to d. In other words the
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Figure 4. Same legend as figure 3 but for torques QU3
12,A and QU3

12,B , i.e., flow (u∞) and stratification (∇η) are
respectively parallel and perpendicular to the particle axis of symmetry.

distinction between figures 4 and 3 is that the viscosity stratification, ∇η, and flow,
u∞, directions are swapped. The distribution of pStratified shown in the bottom panels
of figure 4 that leads to QU3

12,B,Pressure shown in figure 2(b) corresponds to the scenario
when flow and stratification are qualitatively similar to the pStratified distributions shown
in the bottom panel of figure 3 that are discussed above. Therefore, while QU1

23,B,Pressure

along the direction ∇η × u∞, QU3
12,B,Pressure is along u∞ × ∇η, leading to an opposite

sign of QU1
23,B,Pressure and QU3

12,B,Pressure for each κ shown in figure 2(b). The pressure
distributions pStokes shown in the top panels of figures 3 and 4 are such that the torque due
to (η′/η0)pStokes is positive in both cases, which leads to a positive contribution to QU1

23,A

and QU3
12,A in figure 2(a).

4.2. Linear flows

As stated in § 3.2, FΓk
i j (for i, j ∈ [1, 3], k ∈ [1, 8]) denotes the stratification-induced force

along direction i in a fluid with viscosity increasing linearly along direction j with β = 1,
on a particle with axis of symmetry along direction 3, in linear flows with gradient Γ̂

k
.

The flows corresponding to various Γ̂
k
, k ∈ [1, 8] labeled in (3.1) are defined relative to

the particle centerline directed along a unit vector p. These are: planar extensional flow
normal to p (k = 1), uniaxial extensional flow with extensional axis along p (k = 2), planar
straining flow in the plane perpendicular (k = 3) and parallel (k = 4 and 5) to p and purely
rotational flows with vorticity directed along (k = 6) and perpendicular (k = 7 and 8) to p.
§§ 4.2.1 and 4.2.2 below discuss the validation and mechanistic origin of FUk

i j (for i, j ∈
[1, 3], k ∈ [1, 8]).
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Figure 5. Variation of viscosity-stratification-induced forces on a spheroid aspect ratio, κ , and major axis of 1
in a linear flow. The markers for 1 ≤ κ ≤ 30 are the values obtained from the numerical code.

4.2.1. Validation
The analytical expressions for the non-zero FΓk

i j , i, j ∈ [1, 3], k ∈ [1, 8] are shown in
appendix D.3 (D10). Solid curves in figure 5 show the κ variation of these forces along
with black symbols obtained from the finite difference based numerical solution of (2.12).
Similar to the torques in the previous section (figure 1) a close match between the
symbols and solid curves of figure 5 obtained from two different techniques serves as
a point of validation. Using resistive force theory for a slender fiber, Kamal & Lauga
(2023) obtain the force equivalent to FΓ2

33 and FΓ8
23 (their equations 3.28 and 3.32) as

4πl3/(3 log(2κ) − 2) and −8πl3/(3 log(2κ) − 1) with an error of O(log(κ)−2). From
our expressions in (D10), in the limit of a slender prolate spheroid, i.e., κ → ∞ with a
major radius, l,

lim
κ→∞(FΓ2

11 ) = lim
κ→∞(FΓ4

31 ) =O((log(κ))−2), lim
κ→∞(FΓ1

11 ) = lim
κ→∞(FΓ7

31 ) =O(κ−2),

lim
κ→∞(FΓ6

12 ) =O(κ−2(log(κ))−1), lim
κ→∞(FΓ8

23 ) = −8πl3

3
1

log(2κ) − 0.25
log(2κ)

+O(κ−2),

lim
κ→∞(FΓ4

13 ) = 32πl3

3
log(2κ)

log(2κ2)2 + log(4) log(2κ2) + log(2)2 − 1
+O(κ−2),

lim
κ→∞(FΓ2

33 ) = 4πl3

3
1

log(2κ)
log(2κ)−2
log(2κ)−1 + 0.75

log(2κ)−1

+O(κ−2).

(4.4)

Hence, values from our expressions in the large κ limit match those of Kamal & Lauga
(2023). In the limit of the sphere of radius l, κ → 1,

lim
κ→1

(FΓ1
11 ) = −2 lim

κ→1
(FΓ2

11 ) = lim
κ→1

(FΓ2
33 ) = lim

κ→1
(FΓ4

13 ) = lim
κ→1

(FΓ4
31 ) = 6πl3,

lim
κ→1

(FΓ6
12 ) = lim

κ→1
(FΓ7

31 ) = lim
κ→1

(FΓ8
23 ) = −2πl3.

(4.5)

Substituting these formulae into equation (3.11), we find the force on a fixed sphere in
linear flow, with gradient Γ = E + Ω is,

fStratified
Γ = fsphere = 2πβl3(3E − Ω) · d. (4.6)
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This is the same expressions as obtained without spheroidal harmonics but directly from
the calculation using the flow fields around a sphere in appendix C ((C6) and (C6)). This
provides another validation of our use of spheroidal harmonics.

4.2.2. Mechanistic origin of stratification-induced force
For brevity, we only discuss the mechanisms on a sphere in this section. The signs of most
of the stratification-induced-torques on a κ �= 1 spheroid are the same as those for a sphere
(figure 5) and can be explained in a qualitatively similar manner as those for a sphere
considered here.

Following the decomposition introduced in (2.15) and (2.16), the stratification-induced
force, fsphere from equation (4.6) can be split into two parts. The first arises from the Stokes
stress acting in a variable-viscosity environment (η′/η0)σ

Stokes, and its force is, fA,sphere =
4πβl3(E + Ω) · d. The second is due to the stratification-induced stress, σ Stratified, and
its force is fB,sphere = fsphere − fA,sphere. Within fA,sphere, the pressure, (η′/η0)pStokes

contributes an amount fPressure
A,sphere = (8π/3)βl3E · d and the remaining (4π/3)βl3(E +

3Ω) · d arises from the viscous stress, 2η′eStokes. A freely suspended sphere’s rotation
effectively negates the rotation part (Ω) of the imposed linear flow and the sign of the
force arising from the straining part (E) is same from all the decomposed components
discussed above (σ Stratified, 2η′eStokes and (η′/η0)pStokes). Therefore, we use the contours
of pStokes along with the background viscosity variation to shed light on the origins of the
force arising from (η′/η0)pStokes, i.e., fPressure

A,sphere = (8π/3)βl3E · d in uniaxial extension and
simple shear flows. The other components of the stratification-induced force in straining
flows follow a similar mechanism.

Consider a simple shear flow with strain rate Ei j = 0.5(δi2δ j1 + δ j2δi1) such that 1 is the
flow, 2 the velocity gradient and 3 the vorticity direction such that, E · d = 0.5

[
d2 d1 0

]T .
A sphere in simple shear flow of uniform viscosity fluid is force-free. However, if
the fluid’s viscosity increases along the velocity gradient direction (d1 = 0, d2 = 1 and
d3 = 0), the particle will experience a force along the flow direction (perpendicular to the
viscosity gradient). Alternatively, if the viscosity increment is along the flow direction
(d1 = 1, d2 = d3 = 0), the stratification-induced force is in the velocity gradient direction
(again perpendicular to viscosity gradient). The contribution of this force coming from
η′ pStokes for a horizontal (flow direction) viscosity stratification can be understood through
figure 6(a). Relative to the mean, pStokes does not create a force in a constant viscosity fluid
as this pressure is both left-right and top-down anti-symmetric. The pressure (η′/η0)pStokes

is also top-down anti-symmetric, but left-right symmetric. This leads to a net force
upwards, i.e., across the streamlines of imposed flow. Similarly if viscosity increases
upwards instead (d1 = 0, d2 = 1, d3 = 0), η′ pStokes, is left right anti-symmetric, but top
down symmetric creating a force towards the flow direction. The pressure distribution is
the same on the back half of the sphere (not shown). Therefore, if viscosity stratification
is entirely along the vorticity direction (perpendicular to the plane of the picture) of the
imposed simple shear flow the stratification-induced force is zero.

Stratification also leads to a force on an otherwise force-free sphere in uniaxial
extensional flow (strain rate Ei j = δi1δ j1 − 0.5(δi2δ j2 + δi3δ j3)). If the viscosity increases
along the extensional axis this force is towards the higher viscosity region. This can be
explained through the pStokes contours on the particle surface along with background η′
shown in figure 6(b). The distribution of pStokes on the particle surface is such that it
is negative near the extensional axis and positive near the compression plane. Despite
local compressive and extensional forces the net force is zero, so a sphere does not
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Figure 6. Stokes pressure pStokes on the particle surface in (a) simple shear flow and (b) uniaxial extensional
flow with viscosity increasing along the horizontal direction. Red (blue) represents a positive (negative) pStokes

and light (dark) green represents higher (lower) η′(= η − η0). Streamlines are of the Stokes velocity field for
the respective flows. In (a) the imposed shear flow is towards the right on the top and left on the bottom half of
the figure. The extensional flow in (b) is axisymmetric about the horizontal/ extensional axis. It approaches the
particle’s center along the vertical (compression plane) and leaves it along the extensional axis.

move in a constant viscosity fluid. However, if viscosity increases towards the right as
in figure 6(b), such that the two horizontal ends that are pulling the surface of the sphere
outwards are in different viscosity environments, the force due to pressure (η′/η0)pStokes

is towards the right. Similarly, if viscosity increases upwards and considering that pStokes

pushes the particle inwards on top and bottom, (η′/η0)pStokes causes the particle to go
downwards. Therefore, in a uniaxial extensional flow if the viscosity gradient lies along
the compression (extensional) direction, the sphere will move towards the lower (higher)
viscosity region. A sphere freely suspended in uniaxial extensional flow of uniform
viscosity fluid has a saddle fixed point at the origin of the imposed flow. However, for
the case of viscosity stratified fluid, the saddle point for the particle trajectory is shifted
towards the lower viscosity fluid relative to the stagnation point of the imposed flow. The
effect of stratification induced pressure (not shown) is similar to that of (η′/η0)pStokes

described above through figure 6 for both shear and extensional flow.
In the next two sections, we will consider the motion of a freely suspended spheroid in

settling due to gravity and a freely suspended neutrally buoyant particle in a linear flow
field due to stratification-induced forces and torques.

5. Freely sedimenting spheroids in viscosity gradients

5.1. Spheres (κ = 1)
The rotational and translational velocities of a sedimenting sphere in a linearly stratified
fluid are coupled via (3.14) and (3.16) which in the limit κ → 1 leads to angular and
translation velocities ωparticle and uparticle given by

ωparticle = β
g × d

24πlη2
0

+O(β2),

uparticle = g
6πlη0

− β
l2

3η0
ωparticle × d +O(β2) = g

6πlη0
+O(β2). (5.1)

From the O(β) analysis conducted here we observe that the sedimenting velocity of the
sphere in a linearly stratified fluid does not change from that in a uniform viscosity fluid.
However, at O(β) the stratification induces a rotation to the particle. A fluid rotating
relative to a sphere at an angular velocity ω f low experiences a stratification induced force
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proportional to βω f low ((3.11) and figure 5b). The relative rotation here arises at O(β),
and part of the stratification induced velocity at O(β2) lies along ωparticle × d ∝ d(d · g). In
other words, beyond the formally valid O(β) effects from the calculation conducting here,
we may expect the velocity of a sedimenting sphere to have a finite component proportional
to β2dgd, where the parameter,

dg = 1
||g||2 d · g, (5.2)

measures the alignment between gravity and the viscosity variation direction (dg =
0, −1 and 1 imply that viscosity increases perpendicular, opposite and towards the gravity
direction, respectively). This parameter is qualitatively important in discussion throughout
§ 5 where it plays a role in the O(β) effect on spheroids. For spheres, when dg �= 0 and d
is not aligned with gravity g, we may expect that a sedimenting sphere will fall in a curved
path instead of straight line along gravity. Quantitative conclusions about this change in
the sphere’s trajectory can not be made from the O(β) calculation conducted in this paper.
Two spheres in an inertia-less fluid with uniform velocity fall with no relative motion.
However, another impact of the O(β) rotation rate induced by stratification is likely to be
a change in the relative motion of the spheres.

5.2. Spheroids with κ �= 1
We discussed above that a sedimenting sphere (a spheroid with κ = 1) starts rotating due
to viscosity stratification at O(β) and may undergo a horizontal drift at O(β2). However, a
similar stratification induced rotation on a spheroid with κ �= 1 leads to change in settling
behavior at O(β), as its settling velocity (even in a constant viscosity fluid) depends on its
centerline orientation, p. As a consequence, for a non-spherical spheroid, the rotational-
translational coupling due to stratification leads to novel sedimenting behavior even at
O(β) obtained from equation (3.3) and (3.18). We consider η0 = 1 in the results presented
below. The non-linear dynamics defined by the equation (3.18) for the particle rotation
suggests a rich set of behaviors where, depending upon the values of t2 and t3 defined in
(3.17) and the parameter dg (5.2), the orientation phase space has neutral orbits, spirals
and fixed points (saddle, stable and unstable). Our complete analysis of these dynamics is
given in appendix B. We summarize our results below.

The parameters t2 and t3 are only dependent on the particle aspect ratio κ , and this
variation for a wide range of κ is shown in figure 7 (the expressions for t2 and t3 for a
spheroid are provided in (D6) and (D7)). We observe that, particle orientation dynamics
(and hence the translational dynamics, which is coupled with p) depend only on κ and
dg . Thus, in κ − dg phase space, we obtain qualitatively different orientation behaviors
demarcated by the boundaries shown in figure 8.

To describe the particle dynamics in more physical terms than in appendix B, it is
useful to define a coordinate system aligned with the gravity vector g and the stratification
direction d. In this coordinate system, two of the three orthogonal axes are within the
gravity-stratification (GS) plane: one of the axes in this plane is along the unit vector
along gravity, ĝ, and along the other axis, ê, the viscosity gradient is non-decreasing such
that ĝ · ê = 0 and d · ê = ||d · ê||2 =

√
1 − d2

g > 0. The third orthogonal axis is normal to

the gravity-stratification (GS) plane and is defined by the vector ĝ × ê. Thus, the gravity
and stratification directions can be expressed as

g = ||g||ĝ, d = dg ĝ +
√

1 − d2
g ê, (5.3)
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Figure 7. Variation of shape-dependent parameters ti , i ∈ [1, 3] (defined in (3.17)) with aspect ratio, κ , for the
rotation of (a) oblate and (b) prolate spheroids during sedimentation in a stratified environment. The parameters
t2 and t3 change the particle’s orientation, p, at O(β) (3.18) analyzed in § 5.2, whereas t1 causes rotation of
the particle about it centerline that alters p if higher orders in β are included through full the rotation rate
equation (3.18). The focal length is chosen such that the major axis of the particle is l = 1 for each particle type
irrespective of κ . The terms are multiplied with 12π for oblate and 8π/ log(2κ) for prolate particles.
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Figure 8. Phase diagram in dg − κ space of the orientation dynamics described by equation (B1) for spheroidal
particles, i.e., t2 and t3 given by equations (D6) and (D7). Inside the boundaries marked t2t3 = 0, t2t3 is negative,
and it is positive otherwise. Here, GS refers to the gravity-stratification plane, and the superscripts ‖ and ⊥
refer to the final orientation of the particle’s axis of symmetry lying parallel and perpendicular to the GS plane
respectively. In the regions labeled with subscript “spiral” the orientation trajectory towards its equilibrium
position/orbit occurs in a spiraling motion, instead of a monotonic drift towards these positions.

and the particle orientation vector is expressed in this newly defined coordinate system as

p = pg ĝ + peê +
√

1 − p2
g − p2

e ĝ × ê. (5.4)

The invariant objects (neutral orbits, spirals, limit cycles and stable/ unstable/ saddle
fixed points) of the dynamical system either lie on the ĝ × ê axis or within the GS plane.
The sign of the parameter s = dg(t3 − t2) also plays a key role. The key points from
appendix B (the different regions, L1, L2 and Ri , i ∈ [1, 6], are shown in figure 8) are:

(i) Region L1: When gravity and stratification are perpendicular, i.e., dg = 0, and t2t3 >

0, the particle’s orientation follows a non-uniform neutral orbit with a time period
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2π/(
√

t2t3||g||2β/η2
0). This is similar to the Jeffery orbits observed for particles with

Bretherton constant |q4/q1| < 1 in simple shear flows.
(ii) Region L2: If gravity and stratification are collinear, i.e. dg = ±1, the particle aligns

with gravity if s < 0 and perpendicular to gravity if s > 0.
(iii) Regions R1 = GS⊥

spiral and R2 = GS‖
spiral : For t2t3 > 0 and 0 < |dg| < |dg|spiral =

2
√

t2t3/t2 + t3, the GS plane is a limit cycle (stable if s > 0 and unstable otherwise)
and the ĝ × ê axis is a spiral (stable if s < 0 and unstable otherwise). Therefore, the
particle’s axis of symmetry spirals towards the gravity-stratification (GS) plane if
s < 0 (R2) or towards the ĝ × ê axis if s > 0 (R1).

(iv) Regions R3 = GS⊥
1 and R4 = GS‖

3 : When t2t3 > 0 and |dg| > |dg|spiral , the ĝ × ê
axis is a stable node when s > 0 and unstable otherwise. Hence, for s > 0, the
particle aligns along the ĝ × ê axis irrespective of the initial condition (R3). For s < 0
(R4), a stable fixed point occurs on the GS plane, attracting all particle orientation
trajectories.

(v) Regions R5 = GS‖
1 and R6 = GS‖

2 : The axis ĝ × ê is a saddle node for t2t3 < 0, but
trajectories approach the node faster along its stable direction than they depart along
the unstable direction when s > 0 (R5). If s < 0, the unstable direction is sampled
faster (R6). In both scenarios the particle orients at a stable fixed point in the GS
plane, but, in region R5, a larger proportion of the trajectories approach ĝ × ê before
departing it towards the GS plane.

Since s/dg = t3 − t2 > 0 for prolate spheroids and s/dg < 0 for oblate spheroids
(figure 7), the orientation dynamics behavior observed for a positive dg for prolate
spheroids is qualitatively replicated by a negative dg in oblate spheroids. As discussed
above, the GS plane has fixed points when |dg| > |dg|spiral . The fixed points come in pairs
due to the fore-aft symmetry of the particle, so there are an even number (four) of fixed
points on the GS plane. When the GS plane is a stable attractor, two of the fixed points
are stable nodes and the other two are saddle nodes. In the case when the GS plane is
an unstable attractor, two fixed points are saddle nodes and the other two unstable nodes.
Figure 9 shows the contours of p(0,2)

g , i.e., the magnitude of the projection of the least
unstable fixed points (stable nodes for a stable attractor on GS and saddle nodes for an
unstable attractor on GS), ±pstable

GS , projected along the gravity direction, in κ − dg space,
where,

± p(0,2)
g = ±pstable

GS · ĝ. (5.5)

The 0 in the superscript refers to a fixed point, and 2 refers to the second of the three pairs
of fixed points (listed in (B7)) of the corresponding dynamical system given by (3.18).

Figures 10 to 16 show the particle trajectories in black, and axes ĝ, ê and ĝ × ê are shown
in green, red and blue respectively. These figures depict qualitatively different orientation
(and hence the resulting translation) dynamics corresponding to regions L1 (figures 10
and 11 for orientation and translation trajectories, respectively) and Ri , i ∈ [1, 6] discussed
above. Trajectories in R1 are illustrated in figure 12 and those in R2 in figures 13 and 14.
Figure 15 shows orientation trajectories in regions R3 and R4 and figure 16 shows these
trajectories in regions R5 and R6.

The oscillatory behavior of orientation dynamics within R1 ∪ R2 ∪ L1 requires part
of the viscosity variation to lie perpendicular to gravity, i.e. |dg| �= 1, and this region is
centered around κ = 1, i.e., a sphere. Any vector on a sphere can act as the orientation
vector, which must necessarily undergo a neutral periodic orbit as a settling sphere
always experiences the same stratification-induced torque, leading to continuous rotation.
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Figure 9. Contours of p(0,2)
g in dg − κ phase space for spheroids. As defined in equation (B7), p(0,2)

g is
the magnitude of the projection of the location of the stable fixed point (when it exists) within the gravity-
stratification (GS) plane along the gravity direction ĝ. Yellow (p(0,2)

g ≈ 1) indicates the stable fixed point
location to be closer to ĝ and blue (p(0,2)

g ≈ 0) indicates a location closer to ê, i.e., perpendicular to ĝ.
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Figure 10. Orientation dynamics in the region L1, i.e. dg = 0 and for (a) κ = 0.56, (b) κ = 0.7, (c) κ = 1.5, and
(d) κ = 2.0. Each curve represent the trajectory of the orientation vector of the particle’s axis. The magnitudes
of η0, β and g change the rate of rotation along these orientation trajectories, but not their shape. Green, red
and blue axes represent the direction of vectors ĝ, ê and ĝ × ê respectively. For dg = 0 considered here the red
axis (ê) correspond to the viscosity stratification direction.

Therefore, in the κ − dg space plot of figure 8, each point on the vertical dashed line κ = 1
denotes neutral or closed periodic orbits, with the rotation rate decreasing in magnitude
as |dg| increases from 0. At |dg| = 1 (d × g = 0) the sphere experiences no stratification-
induced rotation. The sphere line in figure 8, κ = 1, acts as a bifurcation boundary for
different possible behaviors upon changing κ .
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Figure 11. Translation dynamics of κ = 2.0 particle with dg = 0, ||g|| = 1 and β = 0.05 and 0.5 compared with
that for unstratified fluid (β = 0). Each curve represents the trajectory of the particle’s centroid. Green, red and
blue axes represent the direction of vectors ĝ, ê and ĝ × ê respectively. For dg = 0 considered here the red axis
(ê) correspond to the viscosity stratification direction.
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Figure 12. Orientation dynamics in R1 exemplified with (a) oblate particle, κ = 0.65 with dg = −0.5 and (b)
prolate particle, κ = 1.5 with dg = 0.5. The magnitudes of η0, β and g change the rate of rotation along these
orientation trajectories, but not their shape. Green, red and blue axes represent the direction of vectors ĝ, ê and
ĝ × ê respectively. For dg < 0 considered here, the stratification direction lies in the plane of red (ê) and green
(ĝ) axes and the viscosity increases in the positive ê and negative ĝ directions.
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–ĝ
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Figure 13. (a) Orientation dynamics (the magnitudes of η0, β, and g change the rate of rotation along these
orientation trajectories, but not their shape) and (b) Translation dynamics in R2 for a prolate spheroid, κ = 1.5
with dg = −0.5. Green, red and blue axes represent the direction of vectors ĝ, ê and ĝ × ê respectively. For
dg < 0 considered here, the stratification direction lies in the plane of red (ê) and green (ĝ) axes and the viscosity
increases in the positive ê and negative ĝ directions.
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Figure 14. (a) Orientation dynamics and (b) Translation dynamics in R2 for an oblate particle, κ = 0.65 with
dg = 0.5. Green, red and blue axes represent the direction of vectors ĝ, ê and ĝ × ê respectively. For dg > 0
considered here, the stratification direction lies in the plane of red (ê) and green (ĝ) axes and the viscosity
increases in the positive ê and positive ĝ directions.
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Figure 15. Orientation dynamics in R3 (κ = 0.65, dg = −0.9) and R4 (κ = 1.5, dg = −0.9). Green, red and
blue axes represent the direction of vectors ĝ, ê and ĝ × ê respectively. For dg < 0 considered here, the
stratification direction lies in the plane of red (ê) and green (ĝ) axes and the viscosity increases in the positive
ê and negative ĝ directions.
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Figure 16. Orientation dynamics in R5 (κ = 3.0, dg = 0.9) and R6 (κ = 1/3, dg = 0.9). Green, red and blue
axes represent the direction of vectors ĝ, ê and ĝ × ê respectively. For dg > 0 considered here, the stratification
direction lies in the plane of red (ê) and green (ĝ) axes and the viscosity increases in the positive ê and positive
ĝ directions.
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When the viscosity variation is entirely perpendicular to gravity, i.e., along the dashed
horizontal dg = 0 line, the condition t2t3 > 0 implies closed non-uniform, initial condition
dependent periodic orbits for particle orientation with a time period 2πη2

0/(
√

t2t3||g||2β).
For spheroids, this occurs when 0.56 � κ � 2 and is indicated as L1 in figure 8. As
discussed in appendix B, these closed orbits are analogous to the Jeffery orbits of a freely
rotating spheroid in simple shear flow of a constant viscosity fluid. The GS plane in the
stratification-induced rotation of a sedimenting spheroid is analogous to the shearing plane
in Jeffery orbits.

Orientation trajectories for four different κ in the regime L1 are shown in figure 10
(multiple curves in each plot for a κ represents different initial orientations). For a sphere,
the orientation trajectories are concentric circles parallel to the GS plane and centered
around the ĝ × ê axis. For a prolate spheroid in this regime, 1 < κ � 2, the orientation
trajectories deviate from circles and point downwards at the ĝ axis. On the contrary, for
oblate particles within L1 (0.56 � κ � 1) the orientation trajectories point downwards at
the ê axis. Similar to the Jeffery orbits, for κ �= 1 the particle spends different amounts
of time in different parts of its orientation trajectory for sedimentation induced rotation
within region L1.

In particular, the particle spends more time (not shown) in the region of the orientation
trajectory that points towards the GS plane (similar to Jeffery orbits pointing towards the
shearing plane). Therefore, prolate spheroids in the L1 regime spend more of the time
with their axes of symmetry aligned with the gravity, ĝ axis, and oblate spheroids spend
more time with their axes of symmetry aligned with the viscosity stratification, ê axis.
In other words, during the majority of their orientation trajectory, the prolate spheroid’s
axis of symmetry and the oblate particle’s face are aligned with gravity. This has profound
implications for the sedimenting direction of the particle as shown in figure 11, where we
compare the motion of a κ = 2.0 particle initially placed at two different non-zero initial
angles relative to gravity for unstratified and stratified fluids.

The dashed grey lines in each of the panels of figure 11 show that for a uniform viscosity
fluid, the particle sediments at a constant initial orientation-dependent angle relative to
gravity. Therefore, along with vertical settling, a spheroid drifts horizontally. However,
with a viscosity gradient perpendicular to gravity, the non-uniform periodic nature of
the orientation trajectory ensures that the particle falls mostly along the gravity direction
without drifting too far horizontally. There is an instantaneous drift, but it is centered about
the initial location normal to gravity with the maximum drift bounded, because either
the particle’s axis of symmetry (prolate) or its face (oblate) is aligned with the gravity
direction for the majority of the time during its orientation trajectory. The time period of
the orientation trajectory reduces with increasing β, reducing the time spent in orientations
other than when its axis of symmetry (prolate) or face (oblate) is aligned with gravity.
Therefore, the translation trajectory of the particle’s centroid becomes more confined
as β, i.e., the magnitude of the viscosity gradient, increases (compare black curves in
figure 11a vs. 11b). Similar behavior (not shown) is observed for an oblate spheroid where
the orientation is mostly along the stratification direction (figure 10a) which also leads to
a translation direction that is more confined and aligned with gravity. This confinement
effect is more pronounced for κ close to 0.56 and 2 within the regime L1 as closer to these
κ , the particle’s rotation rate is more non-uniform than for particles with κ closer to 1.

When dg �= 0, changing κ from 1 causes a bifurcation in the orientation trajectories.
While the boundaries between regions R1 and R2 (κ = 1) are characterized by neutral
closed orbits, spiraling trajectories are observed within regions R1 and R2, with the rate
of spiraling increasing as κ deviates from 1 in these regions. A similar bifurcation can

1007 A53-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.104


Journal of Fluid Mechanics

also be observed as dg is altered from 0 when going from L1 to R1 and R2. A prolate
particle (κ > 1) spirals towards an orientation perpendicular to the GS plane if viscosity
increases along gravity (dg > 0), i.e., the region R1 = GS⊥

spiral . Conversely, if dg < 0, it

spirals towards the GS plane in the region R2 = GS‖
spiral . For an oblate particle, region

GS⊥
spiral occurs if dg < 0 and GS‖

spiral if dg > 0. The switching of behaviors between
prolate and oblate spheroids with the sign of dg is related to the reversed sign of t2 − t3
(positive for oblate and negative for prolate spheroids) for these particles shown in figure 7.
The orientation trajectories for a few starting orientations in region R1 for both an oblate
and prolate particle are shown in figure 12. The magnitudes of β and g do not affect the
shape of these trajectories, but they change the spiraling rate towards the ĝ × ê axis. Since
the particle orientation is ultimately aligned normal to gravity, the particle settles parallel
to gravity after the initial transient effects (not shown). The duration of the transient
is inversely proportional to the rate of spiraling, which itself is proportional to β||g||.
Figure 13(a) shows the orientation trajectories of a κ = 1.5 spheroid within the R2 region,
where spiraling towards the GS plane is observed. A portion of each spiral in this figure
points downwards towards the GS plane. Similar to the Jeffery orbits or the neutral orbits
shown in figure 10 for stratification-induced rotation of a sedimenting spheroid in region
L1, this downward pointing portion is the slowest part of the spiral. The projection of
this bottleneck region in the GS plane (of the trajectories shown in figure 13a) is slightly
misaligned with the gravity, ĝ, axis for a κ = 1.5 particle exemplifying prolate spheroids
in R2. For oblate spheroids in R2, this projects close to, but slightly misaligned from,
the ê axis (figure 14a). When the particle orientation ultimately reaches the GS plane, it
continues to tumble there, but in a non-uniform fashion. This has a direct consequence on
the translation trajectories shown in figure 13(b) and 14(b). The bottleneck or slow region
in each spiral leads to an independence of the sedimenting angle from the initial orientation
compared to the constant viscosity case (grey lines). Irrespective of initial condition, a
spheroid orients within the GS plane and due to the bottleneck, it falls at a similar average
angle relative to gravity. The time period for each spiral is inversely proportional to β, and
at higher β the time spent outside of the bottleneck region is smaller, leading to straighter
trajectories at larger β shown in figures 13(b) and 14(b).

One notable difference appears between the sedimentation of prolate and oblate
spheroids in R2. This requires dg > 0 for oblate and dg < 0 for prolate spheroids, i.e., it
requires stratification to be misaligned with gravity but viscosity to increase along gravity
for oblate and decrease for prolate spheroids (figure 8). The direction of ê is perpendicular
to ĝ and at least a part of viscosity increase is along ê (when |dg| �= 1). Prolate particles
in R2 migrate towards the positive ê (figure 13b) while the oblate particles towards the
negative ê (figure 14b) axis. Therefore, the horizontal drift of prolate spheroids is towards
higher viscosity fluid, while that of oblate spheroids is towards lower viscosity fluid in the
region R2.

Within R2, as a particle is made less spherical, i.e., as κ deviates further from one,
the spiral points more downwards and, as mentioned above, the spiraling rate increases.
Towards the edge of R2 further from κ = 1, the downwards pointing part of the spirals
almost completely touches the GS plane such that at the edge between R2 to R4 in figure 8
another bifurcation is observed. Hence, in R4, spirals no longer exist, and instead, two
fixed points appear on the GS plane as the GS plane bifurcates from a stable limit cycle to a
stable sub-space, and the axis ĝ × ê bifurcates from an unstable spiral to an unstable node.
The orientation trajectories of a κ = 1.5 particle with dg = −0.9 are shown in figure 15(b)
and comparing them with figure 13(a) shows the bifurcation. The stable fixed point is
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closer to the ĝ axis for prolate spheroids, in continuation with the bottleneck region from
R2 for such particles. This alignment of the particle closer to gravity is also illustrated by
a p(0,2)

g ≈ 1 (5.5) for prolate spheroids in the region corresponding to R4 in figure 9. A
similar topology of orientation trajectories is observed for oblate spheroids (not shown),
but the location of the stable fixed point within the GS plane is more sensitive to the
values of κ and dg (as shown by the rapidly changing p(0,2)

g in the R4 region for κ < 1
particles than κ > 1 in figure 9). An oblate particle is aligned closer to ê axis near the
R2 − R4 boundary (p(0,2)

g ≈ 0 near this boundary in figure 9), and as κ reduces (such that
the particle is more disc-like), it moves towards the ĝ axis (indicated in figure 9 by p(0,2)

g
being closer to 1 than 0 upon reducing κ for oblate particles in R4). A similar effect is
found upon increasing dg from 0 to 1 for oblate spheroids. The translation trajectories in
region R4 (not shown) follow a similar initial orientation independent trend as discussed
above for R2 for prolate and oblate spheroids, except that particles fall in a (perfectly)
straight line as their orientation reaches a steady state in R4.

The bifurcations that occur between R1 and R3 are similar to the R2 to R4 bifurcation
just discussed. Region R1, discussed earlier, is similar to R2 but with spiraling away from
the GS plane. Therefore, similar to the bifurcation from R2 to R4 discussed above, a
bifurcation occurs at the edge between R1 and R3 in figure 8 as the spiraling rate reaches
infinity. Figure 15(a) illustrates the orientation trajectories of a κ = 0.65 particle with
dg = 0.9, a case within R3. In R3, coming from R1 (comparing figure 12a with 15a),
the GS plane changes from an unstable limit cycle to an unstable subspace with two fixed
points (one saddle and the other unstable node), and the axis ĝ × ê bifurcates from a stable
spiral node to a stable node. Since the ultimate orientation is perpendicular to gravity, the
particle falls along gravity in R3 (not shown).

When gravity and stratification are collinear, i.e., |dg| = 1, a spheroid will orient either
parallel or perpendicular to gravity irrespective of its starting orientation. In either case,
it sediments along the gravity direction. A prolate spheroid orients perpendicular to
gravity if viscosity increases along gravity, i.e., dg = 1, and parallel if dg = −1. An oblate
spheroid shows the opposite trend relative to the sign of dg . Regions where particles orient
perpendicular to gravity are labeled as L2 in figure 8. This behavior is similar to that
observed by Anand & Narsimhan (2024) and can also be deciphered for prolate spheroids
from the formulae of Gong et al. (2024).

In the region R5 ∪ R6, demarcated by vertical lines at κ � .56 and κ � 2 and horizontal
lines for dg = 1, κ > 1 and dg = −1, κ < 1, the ĝ × ê axis is a saddle node. Transitioning
from R4 to R6 (comparing figures 15b and 16b) involves a bifurcation where the saddle
node on the GS plane becomes an unstable node, and the unstable node at the ĝ × ê axis
becomes a saddle. This does not alter the topology around the stable fixed point on the
GS plane. Similarly, transitioning from R3 to R5 (comparing figures 15a and 16a) causes
the stable node at ĝ × ê axis to bifurcate into a saddle node, and the saddle node on the
GS plane becomes a stable node without altering the topology around the unstable fixed
point on the GS plane. Therefore, in both R5 and R6, the particle ultimately orients within
the GS plane, but in a different fashion. In R5, the stable direction of the saddle at ĝ × ê
is sampled faster than its unstable direction, so the spheroids first approach a plane that
includes the ĝ × ê axis before traversing towards the GS plane, as shown in figure 16(a).
In R6, the unstable eigenvalue of the saddle point at ĝ × ê has a greater magnitude than
the stable eigenvalue, so the particle reaches its final location in the GS plane faster than
in R5 (figure 16b).

The contours of p(0,2)
g (equation (5.5)) in figure 9 depict the final orientation of the

spheroid’s axis of symmetry relative to the gravity direction. As shown in this figure, for
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dg < 0, the final orientation in region R5 ∪ R6 is closer to ĝ for prolate and to ê for oblate
spheroids. The final orientation is more sensitive to dg and κ within R5 ∪ R6 for dg > 0,
where both oblate and prolate spheroids orient closer to ĝ (yellow region in figure 9) as κ

decreases. Increasing dg , i.e., increasing the alignment between stratification and gravity,
within R5 ∪ R6 for dg > 0 makes prolate and oblate spheroids orient towards ê (blue) and
ĝ (yellow), respectively. The influence of stratification-induced rotation on sedimentation
in R5 and R6 (not shown) is similar to that discussed earlier for R3 and R4. The particle
falls ultimately in a straight, initial condition independent path, with its angle relative to
gravity depending on the location of the stable fixed point on the GS plane, p(0,2)

g .
At the intersection of the regions marked R5 and R6 when gravity is perpendicular to

stratification, dg = 0, for particles with aspect ratio much different from a sphere Anand
& Narsimhan (2024) also found a single stable orientation that is independent of the
initial orientation. The value of p(0,2)

g , from our calculations shown in figure 9 varies
from about 0.998 to 0.931 for 2 � κ � 10 compares favorably with an equivalent value
of about | cos(57π/74)| ≈ 0.9 ≈ 0.94 displayed in figure 14(a) of Anand & Narsimhan
(2024). However, for 0.1 � κ � 0.5, we find p(0,2)

g to vary between 0.49 and 0.12, whereas
for the same κ range values displayed in figure 14(b) of Anand & Narsimhan (2024) vary
between 0.5 and 0.25. Furthermore, Anand & Narsimhan (2024) find stable orientations
for oblate spheroids with κ as low as 0.01, which is well within the L1 (figure 8) region
where neutral orbits are predicted by our calculations. Thus, the final orientation predicted
by our calculations for large κ spheroids agrees well with the previous investigations, but
the orientation predicted for oblate spheroids is different. A future numerical investigation
of oblate spheroids, akin to that conducted for prolate spheroids in § 4.2.1 (black markers
in figure 5), could serve as an independent validation of our findings.

6. Freely suspended spheroids in linear flows with viscosity gradients

6.1. Spheres (κ = 1)
A freely suspended sphere in a linear flow of uniform viscosity fluid simply rotates
with the imposed fluid rotation, ω∞ = −0.5ε : Ω , where Ω is the anti-symmetric part
of the imposed velocity gradient, and translates with the local velocity of the imposed
flow, u f luid . Coupling between the translational and rotational motion due to viscosity
stratification leads to the following particle motion,

uparticle = u f luid + βl2

η0
E · d +O(β2). (6.1)

In a simple shear flow, with strain rate γ̇ , the velocity of a sphere relative to the viscosity
stratified fluid is γ̇ βl2/(2η0)

[
d2, d1, 0

]
, where the directions 1, 2 and 3 are respectively

in the flow, gradient and vorticity direction of the imposed flow. Thus, for magnitude β

and direction d = [
d1, d2, d3

]
of viscosity stratification, a sphere of radius l can be moved

across the flow streamlines with a speed γ̇ βl2d1/(2η0).
Observing the effect of stratification in simple shear flow, we may conjecture this effect

in particle-filled heated Couette and Poiseuille flows. If the viscosity is uniform, the
position of the particles relative to the walls does not change (figures 17a and 18a). If
the inlet of a channel is at a different temperature than the outlet such that the viscosity
increases along the channel length, in Couette flow, as schematically depicted in figure 17,
dispersed spheres will migrate towards the wall that moves in the same direction as the
increasing viscosity. In the case of Poiseuille flow, if the viscosity increases along the
flow direction, the particles migrate towards the center of the channel (figure 18b). If
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(a) (b)

∇η

Figure 17. Schematic of spheres dispersed in Couette flow of (a) unstratified and (b) stratified fluid with
viscosity increase towards right. Based on the results of a single particle in an unbounded fluid, the particles
migrate towards the wall that moves in the direction of increasing viscosity.

∇η ∇η

(a) (b) (c)

Figure 18. Schematic of spheres dispersed in Poiseuille flow of (a) unstratified and stratified fluid with
viscosity (b) increase and (c) decrease towards the flow direction.

viscosity increases in the opposite direction, they move towards the walls due to the
stratification-induced force and local shear (figure 18c). These hypotheses ignore inter-
particle hydrodynamic interactions and assume the particles to be small enough such that
locally they observe a simple shear flow in an unbounded fluid.

In the case of uniaxial extensional flow, spheres move towards more viscous fluid if
viscosity varies along the extensional axis, and towards less viscous fluid if viscosity
varies along the compression axis. n the case of uniaxial extensional flow, the stratification-
induced relative velocity is βl2/η0E · d +O(β2). Therefore, spheres move towards more
viscous fluid if viscosity varies along the extensional axis, and towards less viscous fluid
if viscosity varies along the compression axis.

6.2. Spheroids with κ �= 1
Next, we consider the effect of viscosity stratification on the translation trajectories of
a spheroid with κ �= 1, where the particle’s orientation also influences these dynamics
(3.21), resulting in a more complex effect. The translation velocity of the particle relative
to the fluid for a spheroid is given by

uparticle − u f luid = β

η0
(m1E + m2(p · E · p)I + (m2 + m3)(p · E · p)pp

+ m4[E · pp + pp · E]) · d +O(β2), (6.2)

where mi , i ∈ [1, 4] as a function of κ are displayed in figure 19, and their analytical
expressions are in (D10) (the functional dependence of mi , i ∈ [1, 4] on f1, f3, q1, q3

and FΓk
i j , i, j ∈ [1, 4], k ∈ [1, 8] can be ascertained by comparing the RHS of the above

equation with that of (3.21)). Here, only the first effects of the stratification-induced force
on a rotating particle are accounted for, which arise from the rotation rate of the particle’s
axis of symmetry up to O(β). Thus, the particle rotates along Jeffery orbits (3.8).
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Figure 19. Variation of coefficients, mi , i ∈ [1, 4] in O(β) translation velocity (6.2) in linear flows around
spheroids with aspect ratio κ and major radius 1.

6.2.1. Spheroids in uniaxial extensional flow
Consider an extensional flow such that the imposed velocity gradient is Γi j = δi1δ j1 −
0.5(δi2δ j2 + δi3δ j3) = Ei j , resulting in u f luid = r · E. According to the particle rotation
rate in a uniform viscosity fluid given by (3.8), a spheroid obtains a steady state orientation
such that E · p = αp, for a constant α. Two possible values of α are + 1 and -1/2, where one
corresponds to a stable fixed point and the other to an unstable fixed point, depending upon
the sign of q4/q1. In other words, a prolate spheroid orients with its major axis along the
extensional axis (α = 1 is the stable case), and an oblate particle orients its face in a plane
consisting of the extensional axis and one of the compressional directions (α = −1/2 is
the stable case). At this steady orientation, the spheroids move with the relative translation
velocity,

uparticle − u f luid = β

η0 f1
[m1E · d + α(m2d + (m2 + m3 + m4)d · pp)] +O(β2), (6.3)

where α = 1 for prolate and –1/2 for oblate spheroids. If the stratification d is directed
along the extensional axis, the translation of the particles follows,

uparticle − u f luid = β

η0 f1

{
(m1 + 2m2 + m3 + m4)d, κ > 1
(m1 − m2/2)d, κ < 1

. (6.4)

In the case where the stratification d is directed along the compressional axis,

uparticle − u f luid = β

η0 f1

{
(−m1/2 + m2)d, κ > 1
−1/2(m1 + 2m2 + m3 + m4)d, κ < 1

. (6.5)

The coefficients of d inside the curly brackets in (6.4) are positive, and those in (6.5) are
negative for all κ , with the largest magnitude occurring for a sphere (not shown). Hence, a
viscosity gradient along the extensional axis makes prolate, oblate and spherical particles
move towards more viscous fluid, and a viscosity gradient along a compression axis moves
the spheroids towards the lower viscosity region.

6.2.2. Spheroids in simple shear flow
In simple shear flow with velocity gradient Γi j = δi2δ j1, such that at the particle’s
center ui, f luid = r2,spheroid , and considering just the Jeffery rotation of the spheroid’s
orientation, p = [

p1 p2 p3
]T , the relative translation velocity is,
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ui,particle − ui, f luid = β

η0
[0.5m1(d1δi2 + d2δi1) + p1 p2(m2di + (m2 + m3)p j d j pi )

+ m4((p1δi2 + p2δi1)pkdk + pi (p2d1 + p1d2))] +O(β2).

(6.6)

The Jeffery orbits, or orientation trajectories, of spheroids in simple shear flow of
a uniform viscosity fluid can be broadly classified into four types: (a) log-rolling,
(b) tumbling, (c) flipping, and (d) wobbling orbits. The effect of stratification on the
translation of a particle undergoing these orientation trajectories, along with the orbit
descriptions, are discussed below.

Log-rolling orbits
A spheroid initially oriented along the vorticity direction (i.e. p1 = p2 = 0 and p3 = 1)
does not change its orientation with time but simply rolls about its axis at angular velocity
equal to half of the shear rate. This motion is thus referred to as log-rolling, where the
translation velocity is

ui,particle − ui, f luid = 0.5m1
β

η0
((d1δi2 + d2δi1)) +O(β2). (6.7)

Since, m1 does not change sign with κ (figure 19), the effect of stratification on a log-
rolling spheroid is qualitatively similar to the motion of a sphere discussed in § 6.1.
The magnitude of the stratification-induced velocity is largest for the sphere. In the
case of a log-rolling spheroid, if stratification is along the vorticity direction of the
imposed flow, i.e., d = [

0 0 1
]
, the stratification-induced velocity is zero. Otherwise, the

trajectory of the particle’s centroid initially located at
[
0, 0, 0

]T moves along the parabola

0.5m1tβ
[
0.5d1t + d2, d1, 0

]T . Hence, a particle placed at the origin moves along the flow
direction if stratification is along the velocity-gradient direction of the imposed flow. For
stratification along the flow direction, the particle is displaced along the gradient direction
and then also swept along the flow direction by the imposed flow. Since m1 > 0 for all
spheroids (figure 19), the particle is ultimately swept towards higher viscosity regions.

Tumbling orbits
A spheroid with initial orientation in the flow-gradient plane (p3 = 0) remains there and
continues to tumble in this tumbling orbit with a time period TJeffery = 2π(κ + 1/κ)

(normalized with the shear rate). The stratification-induced translation velocity of a
tumbling spheroid is,⎡⎣u1,particle − u1, f luid

u2,particle − u2, f luid
u3,particle − u3, f luid

⎤⎦
= β

η0

⎡⎣0.5m1d2 + m2d1 p1 p2 + (p1d1 + p2d2)(p2
1 p2 + m4(p1 + p2))

0.5m1d1 + m2d2 p1 p2 + (p1d1 + p2d2)(p1 p2
2 + m4(p1 + p2))

m2d3 p1 p2

⎤⎦ . (6.8)

Considering first the simpler case of stratification along the vorticity direction, i.e.,
d1 = d2 = 0, d3 = 1, the particle moves along the viscosity gradient direction with a
rate βp1 p2m2. From figure 19, we observe that m2 changes sign at κ = 1; therefore,
at a particular orientation within the shearing plane, an oblate spheroid moves in the
opposite direction to the prolate spheroid due to stratification effects. However, either
particle’s motion along the vorticity direction in this case is reversed when the particle
is in the extensional quadrant (p1 p2 > 0) compared to when it is in the compression
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Figure 20. (a) Excursion of spheroids (with major axis, l = 1), �z/β, tumbling in the flow-gradient (shearing)
plane of simple shear flow along the vorticity direction when viscosity varies along the vorticity direction
for different aspect ratio, κ . (b) Maximum excursion from the initial location as a function of κ . The largest
magnitude of �z toward higher viscosity occurs for κ ≈ 0.5 and towards less viscous fluid for κ ≈ 20.

quadrant (p1 p2 < 0). Since a spheroid spends equal amounts of time in these quadrants,
its centroid’s translation velocity oscillates about the initial value. Therefore an oblate
(prolate) particle, started with its centerline along the gradient direction, makes an
excursion towards the higher (lower) viscosity region and periodically returns to its
original location. A few examples of the particle’s normalized displacement from its
original location in the vorticity direction �z/β are shown in the left panel of figure 20.

Not only does m2 decrease for aspect ratios further from the sphere (κ � 1 and κ � 1
in figure 19), but for the majority of Jeffery orbits, a prolate spheroid spends most of
the time oriented along the flow direction (p1 = 1, p2 = p3 = 0) and an oblate with its
face in flow-vorticity plane (p2 = 1, p1 = p3 = 0), i.e., the orientations where the induced
velocity βp1 p2m2 is zero. This implies that for κ � 1 and κ � 1, the amplitude of the
aforementioned oscillations in the position of the particle’s centroid is smaller for these
extreme values of κ . Oscillations are zero for a sphere, and hence an optimal κ exists for
both the κ < 1 and κ > 1 regimes where the particle oscillates with the largest amplitude.
The right panel of figure 20 shows the κ variation of the location of the particle’s maximum
excursion from its original location in the vorticity direction for a viscosity increase along
the positive vorticity direction.

Similar to the log-rolling case discussed above, for a particle in a tumbling orbit, if
the stratification is in the flow-gradient plane (i.e., d3 = 0) the particle will only translate
within this plane as from equation (6.8) dr3,spheroid/dt |tumbling = 0. However, unlike the
log-rolling scenario, here a stratification purely in the gradient direction (d1 = d3 = 0)
will cause the particle to not only move along the flow but also along the gradient or the
shearing direction. The trajectories of κ = 1/2, 1, 2 and 10 particles over one respective
Jeffery time period are shown in figure 21(a) when the viscosity increases along the
gradient direction and β = 0.1. Figure 21(b) shows the trajectory for the same parameters,
but with viscosity increasing along the flow direction.

Flipping and wobbling orbits
For an initial orientation close to but not on the flow-gradient plane, a spheroid with either
large (prolate) or small (oblate) κ spends most of its Jeffery orbit near the flow direction.
Within a small time frame, it flips from one side of the gradient-vorticity plane to the other,
and during this time, it traverses a larger three-dimensional orientation space. These are
termed flipping orbits. For initial orientations close to but not on the vorticity axis, Jeffery

1007 A53-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.104


A. Sharma, P.A. Bosler, R. Govindarajan and D.L. Koch

32
r1, spheroid

10
–0.02

0

0.02

0.04

0.06

0.08

64
r1, spheroid

r 2
, s
ph
er
oi
d

r 2
, s
ph
er
oi
d

2

Direction
of
viscosity
increase

Direction
of viscosity
increase

κ = 2.0

κ = 2.0

κ = 1/3
κ = 1/2

κ = 0.5
κ = 1.0

κ = 1.0κ = 10.0

κ = 10.0

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

Figure 21. Translation trajectories for various spheroids (with major axis, l = 1) when viscosity varies along
(a) gradient direction and (b) flow direction. The viscosity gradient magnitude, β = 0.1.
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Figure 22. Translation trajectories ((b), (c) and (d)) of a κ = 10 spheroid with β = 0.1 for different flipping
(b, c) and wobbling (d) orientation trajectories shown in (a) and different directions of viscosity

stratification, d.

orbits are also three-dimensional, but in these wobbling trajectories, the rotation of the
particle throughout its orbit is more uniform than in the flipping orbits. Due to the three-
dimensional rotation of the particle, shown in figure 22(a) for κ = 10, the stratification-
induced force translates the particle in a three-dimensional manner.

In § 5.1 we speculated that beyond the O(β) effects considered in this paper,
a sedimenting sphere is expected to follow a curved settling trajectory due to the
stratification induced force on the rotating particle. There the rotation induced at O(β)
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might be expected to induce a stratification force and modify the particle’s translation
motion at O(β2). Similarly, here, for a spheroid in simple shear flow a stratification
induced torque at O(β2) may lead to a rotational motion of the particle that deviates from
Jeffery orbits.

7. Conclusion and future directions
We have demonstrated the effect of small viscosity gradients in an inertia-less,
incompressible fluid on the force, torque, and motion of a spheroid in various flow
situations. The viscosity stratification (VS) induced torques and forces are obtained
analytically through a combination of previously presented spheroidal harmonics (Dabade
et al. 2015, 2016) and a generalized reciprocal theorem. In a uniform flow, where a particle
in a constant viscosity fluid only experiences hydrodynamic drag, VS introduces a torque.
In linear flows (such as simple shear, uniaxial extension, etc.), a spheroid may experience
only a torque in a constant viscosity fluid, but VS leads to a force. Consequently, a freely
sedimenting particle under gravity settles differently in a stratified fluid than in a uniform
viscosity fluid. In a linear flow (such as a relative rotation between particle and fluid), while
a spheroid does not translate relative to the local fluid with constant viscosity, the effect
of variable viscosity breaks this symmetry as well. Therefore, the coupling between the
imposed flow and the particle’s rotation and translation due to VS leads to novel behavior
even in the motion of the simplest spheroid, i.e., a sphere. It moves across the streamlines
in simple shear flow and does not stay at the stagnation point of uniaxial extensional flow.
Motion in simple shear may inspire particle sorting strategies based on controlling the
viscosity of the fluid by altering temperature in microfluidics applications (figures 17 and
18). The effect of the VS force and torque is more profound for non-spherical spheroids,
where the particle orientation plays an important role.

If viscosity stratification is perpendicular to the free-stream velocity, a VS torque is
induced on a fixed spheroid perpendicular to the flow-stratification plane. The torque
that occurs when viscosity variation is along the spheroid’s axis of symmetry and flow
is perpendicular to it changes sign at κ ≈ 0.56 and the torque when the stratification
and flow directions are switched, changes sign at κ ≈ 2.0. This sign change is the
result of competition between the VS torque arising from (η′/η0)σ

Stokes, i.e., the Stokes
stress acting in variable viscosity environment, and that from σ Stratified, i.e., the stress
created due to modification of velocity and pressure by stratification. Near κ = 1 (sphere),
(η′/η0)σ

Stokes dominates the torque generating mechanism, whereas σ Stratified has a
greater effect in the κ � 0.56 and κ � 2.0 regimes. Within σ Stratified, the stratification-
induced pressure is dominant, and contours of this variable, pStratified, as well as η′ pStokes

(figure 3 and 4), are used to illuminate the VS torque generation mechanism. Unlike the
constant viscosity scenario, the pressure distribution is anti-symmetric in the directions
perpendicular and parallel to the flow, leading to a torque (but still no force). A similar
breaking in symmetry of pressure explains a VS force generated on a particle fixed in
linear flows (figure 6). Extra viscous stress in stratified fluid also plays a similar role to
pressure in generating VS force and torque.

A sphere settling under gravity in a fluid with a linear viscosity gradient (with magnitude
β) may experience a horizontal drift along with vertical settling due to O(β2) effects of
viscosity stratification perpendicular to the gravity direction. For a spheroid with κ �= 1,
novel settling dynamics arise at O(β). The types of orientation dynamics is illustrated
using a two dimensional phase diagram (figure 8) in variables κ and dg = d · g/||g||2 (the
alignment of stratification, d, and gravity, g/||g||2). Depending upon κ and dg , a particle
may obtain a stable steady state orientation in the gravity-stratification plane or on an
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axis perpendicular to it, spiral towards or away from the gravity-stratification plane, or
rotate in non-uniform periodic orbits (in orientation space). Apart from periodic orbits,
all the particle orientation trajectories approach a stable attractor in orientation space,
thus showing an initial-orientation-independent behavior. A spheroid ultimately settles at
a constant angle relative to gravity. This is in contrast to the motion in constant viscosity
fluid, where the particle maintains its original orientation, and hence its settling angle is
set by its initial condition (and κ). The sign switching discussed in the preceding paragraph
plays a key role, as the orientation dynamics behavior is qualitatively most sensitive around
κ � 0.56 and κ � 2.0. Interestingly, the aspect ratios of Paramecium and Escherichia coli
(Kaya & Koser 2009; Kreutz et al. 2012; Liu et al. 2014) are around 2.0 and micro-plastic
population within the oceans is found to mostly have aspect ratio in the range 0.5 < κ < 2.5
(Kooi et al. 2021).

Rotational-translation coupling due to viscosity stratification may affect the settling
dynamics of a spheroid in two ways. Firstly, the VS torque changes the orientation of the
particle’s axis of symmetry, p. This alters the sedimentation velocity, as the Newtonian
sedimentation of a spheroid in a constant viscosity fluid depends on p. Trivially, this
does not affect sedimentation in the case of a sphere. Secondly, as the spheroidal particle
rotates, the relative rotation between fluid and the particle leads to a stratification-induced
force. For a freely settling particle, this second mechanism of altering the dynamics is
activated only at higher orders in β and requires continuous rotation of the particle. It is
not accounted for in the present study at O(β), but may play an important role in larger
viscosity gradients in an experiment.

The dynamics of freely suspended spheroids is studied in two types of linear flows:
simple shear and uniaxial extension. In uniaxial extension, a spheroid in a constant
viscosity fluid orients its axis of symmetry along the extensional axis. In this orientation,
a VS force is generated on the particle that moves it towards more viscous regions due
to stratification along the extensional axis and lower viscosity fluid due to stratification
along the compression axis. This can be explained simply by considering the η′ pStokes

component of the extra stress in the stratified fluid. The pressure pStokes acts to pull the
particle surface outwards in the extensional direction on both sides of the particle, whereas
it pushes the surface inwards in the compression direction. The variable component of
viscosity η′ breaks this symmetry, thus translating the particle. In simple shear flow,
in addition to the direction of stratification, the translation is influenced by the initial
orientation of the spheroid and has a three dimensional structure if the particle is not
initially oriented in the flow-gradient plane or the vorticity direction of the imposed flow.
Similar to the curved settling trajectory of a freely sedimenting sphere, we speculate that
the viscosity stratification will alter the orientational dynamics of a spheroid at O(β2).

Our demonstration of VS induced torque and force, as well as the rotation-translation
coupling in VS fluids, inspires further studies and applications. In liquids and gases,
viscosity is determined by another factor or scalar, s, such as temperature (Kampmeyer
1952), or concentration of a secondary species like salt (Jones & Talley 1933). While
we have only considered linear spatial variation in viscosity, experimental observations
indicate that viscosity dependence on these scalars is often non-linear (Ferreira et al. 2017).
Therefore, even if such scalars vary linearly in space, for example, in the case of a linear
temperature change across a Couette cell, the spatial dependence of viscosity will be non-
linear. The VS force on a spheroid experiencing relative uniform flow, or the VS torque
on a spheroid experiencing linear flow, is zero because the relevant integrand is an odd
function of position. However, as discussed in the beginning of § 3, if the quadratic and
higher-order spatial variations in the viscosity field are accounted for, a finite VS force in
uniform flow and a VS torque in linear flows will be generated. Investigations of particle
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dynamics that incorporate more realistic viscosity properties such as by solving the scalar
transport equation, perhaps using numerical techniques, are also useful extensions of the
current work and are likely to reveal more novel particle dynamics that can be harnessed
for practical applications.

Based on the observation of the force exerted on a sphere in simple shear flow, we have
conjectured the lateral migration of particles in Couette and Poiseuille flow in § 6. These
conjectures can be tested analytically or numerically by accounting for the finite size of the
particle and its proximity to the wall, and they motivate future experiments and particle
sorting applications.

As a sphere rotates upon settling in a constant viscosity gradient, it will induce a
velocity on another particle perpendicular to the vector joining their centers. While two
identical spheres sediment with no relative velocity in a uniform viscosity fluid, the
effects of particle-particle interaction in a stratified fluid may break this symmetry and
cause them to approach and rotate around one another. This may be further explored
analytically using the method of reflections following the work of Ziegler & Smith (2022),
possibly elucidating yet another novel mechanism generated by viscosity variation. Lastly,
as mentioned at the end of § 1 and at the beginning of § 3, the dynamics of other fore-aft
and axisymmetric particles such as cylinders, biconcave discs (red blood cells), bispherical
objects, dumbbells, rings, etc., in a viscosity-stratified fluid for a variety of flows can be
obtained using the equations presented in § 3.3. This can be achieved after acquiring only
limited data (non-zero force and torque components listed in table 1) for the particle shape
under consideration from a suitable numerical solver. Viscosity variation provides a new
avenue to control the particle motion within liquids in engineering applications and must
be accounted for to fully understand this motion in natural scenarios.
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Appendix A. Stratification-induced force and torque obtained using a generalized
reciprocal theorem
In this appendix we present the derivation of the stratification-induced force and torque as
a function of the Stokes flow fields, shown in (2.6) in the main text. To apply the reciprocal
theorem, it is convenient to write the stratified momentum equation (2.12) in an equivalent
form,

∇ · ũStratified = 0, ∇ · σ̃ Stratified + 2β∇ · [η′(eStokes − E∞)] = 0, (A1)

with boundary conditions,

ũStratified = 0, on the particle surface, and as x → xout . (A2)

1007 A53-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.104


A. Sharma, P.A. Bosler, R. Govindarajan and D.L. Koch

Here,

σ̃ Stratified = σ Stratified − σ
Stratified∞ − β

η′(x)

η0
pStokesI, (A3)

σ̃ Stratified = − p̃StratifiedI + (
η0 + βη′(x)

) [∇ũStratified +
(
∇ũStratified

)T
]

− β
η′(x)

η0
pStokesI, (A4)

ũStratified = uStratified − uStratified∞ , (A5)

p̃Stratified = pStratified − pStratified∞ . (A6)

The force and torque generated on the particle by σ̃ Stratified are given by

f̃Stratified =
∫

rp

d S (n · σ̃ Stratified), q̃Stratified =
∫

rp

d S x × (n · σ̃ Stratified). (A7)

In terms of σ̃ Stratified, the total fluid stress (2.8) is,

σ = σ Stokes + 2βη′eStokes + σ
Stratified∞ + σ̃ Stratified. (A8)

We can analytically obtain the force and torque due to the first two terms once the viscosity
profile is known. For the force and torque arising from remaining components we use the
regular perturbation in β followed by a generalized reciprocal theorem.

Performing a regular perturbation in β, we may express,

ũStratified = (̃uStratified)(0) + β(̃uStratified)(1) +O(β2), (A9)

p̃Stratified = ( p̃Stratified)(0) + β( p̃Stratified)(1) +O(β2). (A10)
From the stratified momentum equation (A1) at the leading order in β, (̃uStratified)(0) = 0
and ( p̃Stratified)(0) = 0. Thus,

σ̃ Stratified = β(σ̃ Stratified)(1) +O(β2)

= β
[
−( p̃Stratified)(1)I + η0

[
(∇ũStratified)(1)

+((∇ũStratified)(1))T
]]

+O(β2),

(A11)

leading to

∇ · (̃uStratified)(1) = 0, ∇ · (σ̃ Stratified)(1) + ∇ · [η′(eStokes − E∞)] = 0. (A12)

Let there be an auxiliary Stokes problems defined around the particle under
consideration, such that

∇ · B = 0, ∇ · b = 0, Bi jk = −δi j qk + ∂b jk

∂xi
+ ∂bik

∂x j
, (A13)

with boundary conditions,

bi j = bf
i j or bq

i j , on the particle surface, and bi j = 0, as |x| → xout , (A14)

where bf
i j = δi j and bq

i j = εi jkrk are 2-tensors. The physical relevance of this auxiliary
velocity field is as follows. For the problem when bi j = bf

i j , a vector bi j · U j is the Stokes
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velocity field around the particle translating with U j in a quiescent fluid. Similarly, for the
problem with bi j = bq

i j as particle surface condition, a vector bi j · ω j corresponds to the
velocity disturbance created by a particle rotating with angular velocity −ω j in a quiescent
fluid (i.e. a surface velocity ω × x). Using ∇ · B = 0 and from the symmetry of Blki and
σ̃

Stratified
lk about the l and k indices we obtain,

(̃σ
Stratified
lk )(1) ∂bki

∂rl
= ∂ Blki (̃u

Stratified
k )(1)

∂rl
, (A15)

which, using the chain rule and writing the volume integral in the fluid domain, bounded
by the particle surface on the inside and the outer boundary at xout , leads to∫

Fluid
dV

∂

∂rl

[(
σ̃

Stratified
lk

)(1)

bki − Blki

(
ũStratified

k

)(1)
]

=
∫

Fluid
dV bki

∂(̃σ
Stratified
lk )(1)

∂rl
. (A16)

Using the divergence theorem, the left side of the above equation can be written as
the sum of two surface integrals,

∫
|x|→|xout | d S nl [(̃σ Stratified

lk )(1)bki − Blki (̃u
Stratified
k )(1)] −∫

xp
d S nl [(̃σ Stratified

lk )(1)bki − Blki (̃u
Stratified
k )(1)], where the surface normal nl points into

the fluid (away from the particle) on the particle surface and outwards on the outer
boundary. A particle that exerts a force (or force dipole) on the fluid produces a velocity
which decays as 1/r (or 1/r2) in the far field, i.e., at xout . Hence, the velocities
ũStratified and b scale as 1/r and 1/r2, respectively, and the stresses σ̃ Stratified and B
scale as 1/r2 and 1/r3. Therefore, the first surface integral (at |x| → ∞) vanishes (this
is the reason for redefining the stratified momentum balance and associated variables).
In confined domains, i.e., when xout is a solid no-slip or a periodic boundary the
integral is more straightforwardly shown to vanish, since b = 0 and ũ = 0 on solid walls
and the terms cancel on the periodic boundaries. Depending on whether bf

i j or bq
i j is

used in the boundary condition in (A14), the surface integral at the particle surface,
β
∫

xp
d S nl (̃σ

Stratified
lk )(1)bki is either part of force or torque. Therefore, upon using (A12)

and (uStratified
k )(1) = 0 on the surface we obtain∫

xp

d S nl (̃σ
Stratified
lk )(1)bki = 2

∫
Fluid

dV bki
∂(η′(eStokes

lk − Elk))

∂rl
. (A17)

Thus, the net force acting on a particle placed at the origin in a fluid with viscosity η =
η0(t) + βη′(x, t) (such that η′(0, t) = 0) is,

f = η0fStokes + 2β

∫
rp

d S η′n · eStokes +
∫

rp

d S n · σ Stratified∞

+ 2β

∫
Fluid

dV ∇ ·
(
η′(eStokes − E∞)

)
· bf+O(β2). (A18)
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Noting that,
∫
|x|→|xout | d S bki (η

′nl(eStokes
lk − Elk)) → 0, and using ∇ · b = 0 (A13), ∇ ·

(σ
Stratified∞ + η′E∞) = 0 and the Gauss divergence theorem, we find the net force (and

similarly torque) on the particle to be,

f(t) = η0(t)fStokes(t) − 2β

∫
Fluid

dx η′(x, t)(eStokes(x; t) − E∞(t)) : ∇bf(x)+O(β2),

q(t) = η0(t)qStokes(t) − 2β

∫
Fluid

dx η′(x, t)(eStokes(x; t) − E∞(t)) : ∇bq(x)+O(β2).

(A19)

The above formulae are repeated in (2.6) in the main text.

Appendix B. Further analysis of the rotation of a freely sedimenting particle
The orientation of a freely settling fore-aft and axisymmetric particle under gravity is
governed by equation (3.18), i.e.,

ṗ = − β

η2
0

· [t3(p · d)g − t2(p · g)d
] · (I − pp) +O(β2). (B1)

The dynamical system of the O(β) rotation of the particle given in (B1) is amenable to
further analysis discussed in this section.

Case 1: Gravity and stratification are collinear, dg = ±1
First consider the case when g = ±||g||d, i.e., gravity and stratification are collinear. Here
(B1) simplifies to

ṗ = −dg(t3 − t2)
β

η2
0
||g||(p · d)(d − (d · p)p). (B2)

The two equilibrium orientations are (a) p ‖ d (i.e. p = d, (d · p)p = p), and, (b) p ⊥ d (i.e.
p · d = 0). The orientation space is a unit sphere, and if one of the equilibrium locations
(a) or (b) is stable, the other is unstable.

To analyze the stability, consider p ‖ d, i.e., (d · p)p = p, with p = d + l such that |l| �
1 is a small perturbation. The perturbation dynamics are given by

l̇ = β

η2
0
||g||dg(t3 − t2)(l + (d · l)d). (B3)

Hence, the equilibrium point p = d is unstable, i.e., l̇ = Al , with A > 0, if s = dg[t3 −
t2] > 0 and stable i.e., l̇ = −Al , if s < 0. In other words, for viscosity increasing in the
direction of gravity (dg > 0), the particle will approach the axis p = d if [t3 − t2] < 0
and the plane p ⊥ d if [t3 − t2] > 0. Alternatively, for viscosity decreasing in the gravity
direction, the particle will settle towards the plane p ⊥ d if [t3 − t2] < 0 and the axis p = d
if [t3 − t2] > 0.

Case 2: Non-collinear gravity and stratification
Richer orientation dynamics are found when g and d are not collinear, i.e. |dg| < 1.
Expressing the rotation rate in the basis defined by ê, ĝ and ĝ × ê ((5.3) and (5.4)) allows
us to obtain the following fixed points (ṗ = 0) of the dynamical system of equation (B1),
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p(0,1) = ±ĝ × ê, pg = pe = 0, (B4)

p(0,2) = ±(p(0,2)
g ĝ −

√
1 − (p(0,2)

g )2ê), (B5)

p(0,3) = ±(p(0,3)
g ĝ +

√
1 − (p(0,3)

g )2ê), (B6)

where

p(0,2)
g =

√√√√d2
g(t2 + t3) + dg

√
d2

g(t2 + t3)2 − 4t3t2 − 2t3

2(t2 − t3)
,

p(0,3)
g =

√√√√d2
g(t2 + t3) − dg

√
d2

g(t2 + t3)2 − 4t3t2 − 2t3

2(t2 − t3)
.

(B7)

One of the fixed points, p(0,1), is where the particle orients perpendicular to the GS plane.
Two other branches of fixed points, p(0,2) and , p(0,3), are for particle orientation within
the GS plane. Here, if the fixed points exist in the orientation space (i.e. p(0,2), p(0,3) ∈R),
p(0,2) is stable and p(0,3) is unstable within the plane. Globally, the nature of these fixed
points depends on if the plane is stable or unstable. These fixed points might not exist as
depending upon t2, t3 and dg non-real values and values greater than 1 of p(0,2)

g and p(0,3)
g

are possible. In that case, the GS plane is a (stable, or unstable) limit cycle or a neutral
orbit.

Consider the stability of the first fixed point, p(0,1) = ĝ × ê, through the linearization of
the dynamical system of (B1) at this fixed point. The reduced dynamics close to p = p(0,1)

projected in the GS plane are,

˙̃p = β

η2
0
||g||

⎡⎣−dg(t3 − t2) −
√

1 − d2
g t3√

1 − d2
g t2 0

⎤⎦ p̃. (B8)

The eigenvalues of this reduced system are,

γ p(0,1) = 1
2

β

η2
0
||g||

(
−dg(t3 − t2) ±

√
d2

g(t3 + t2)2 − 4t2t3
)

. (B9)

When,

d2
g(t3 + t2)

2 − 4t2t3 = (dg(t3 − t2))
2 + 4(d2

g − 1)t2t3 < 0 (B10)

the fixed point p(0,1) is a spiral (stable spiral when dg(t3 − t2) > 0 and unstable if dg(t3 −
t2) < 0). Since, d2

g ≤ 1, this condition is never satisfied when,

t2t3 < 0. (B11)

In other words, the particle’s orientation dynamics may behave in an oscillatory manner
near p(0,1) when t2t3 > 0. Within this regime, the spiraling/ oscillatory behavior requires,

|dg| < |dg|spiral , |dg|spiral = 2
√

t2t3
t3 + t2

. (B12)
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Among the cases when p(0,1) is not a spiral, it is a saddle node for all dg when t2t3 < 0.
Here, if dg(t3 − t2) > 0, the unstable eigenvalue of the saddle has a greater magnitude than
its stable direction and vice versa for dg(t3 − t2) < 0. When t2t3 > 0 and |dg| > |dg|spiral ,
p(0,1) is a stable node if dg(t3 − t2) > 0, and an unstable node if dg(t3 − t2) < 0. When
p(0,1) is an unstable spiral or node, i.e., dg(t3 − t2) < 0, the particle approaches the GS
plane irrespective of the initial orientation. From (B7), one can notice that no fixed
points exist on the GS plane (i.e., p0,2

g and p0,3
g are not real numbers) when the spiraling

conditions in (B10) are satisfied. Hence, the GS plane is a limit cycle when p(0,1) is a
spiral. A stable (unstable) spiral at p(0,1) corresponds to an unstable (stable) limit cycle at
the GS plane. When p(0,1) is an unstable node, p(0,2) is a stable node and p(0,3) is a saddle
node. When p(0,1) is a stable node, p(0,2) is a saddle node and p(0,3) is an unstable node.

When the stratification direction is perpendicular to gravity, dg = 0, and t2t3 > 0, a
unique rotational dynamics behavior occurs. This regime corresponds to a neutral periodic
orbit in the GS plane and a center at the p(0,1) axis which indicates that between the GS
plane and the ĝ × ê axis, the orientation trajectories may be such that the particle will
continue to rotate in a non-uniform periodic orbit depending on the initial orientation.
This is reminiscent of the Jeffery orbits of axisymmetric particles with ||q4/q1||2 ≤ 1 in a
simple shear flow of uniform viscosity fluid. We will now explore this analogy in further
detail.

The rotational dynamics of equation (B1) in the θ − φ system (p1 = sin(θ) cos(φ), p2 =
sin(θ) sin(φ), and p3 = cos(θ)) are expressed through the equations

dθ

dt
= β

η2
0
||g||(t2 − t3) cos(φ) sin(θ) cos(θ)(d · g cos(φ) +

√
1 − d · g2 sin(φ))

dφ

dt
= β

η2
0
||g||(−d · g(t2 − t3) sin(φ) cos(φ) +

√
1 − d · g2[t2 cos2(φ) + t3 sin2(φ)]).

(B13)

When d · g = 0, the particle dynamics can be written as,

dθ

dt
= β

η2
0
||g||(t2 − t3) cos(φ) sin(θ) cos(θ) sin(φ),

dφ

dt
= β

η2
0
||g||(t2 cos2(φ) + t3 sin2(φ)). (B14)

This equation is similar to the rotation dynamics of spheroids in simple shear flow with
shear rate γ̇ of a uniform viscosity fluid,

dθ Jeffery

dt
= γ̇

κ2 − 1
κ2 + 1

cos(φJeffery) sin(θ Jeffery) cos(θ Jeffery) sin(φJeffery),

dφJeffery

dt
= γ̇ (

κ2

κ2 + 1
cos2(φJeffery) + 1

κ2 + 1
sin2(φJeffery)).

(B15)

The closed-form solution of these equations, i.e. the Jeffery orbits, are

tan(φJeffery) = κ tan
(

γ̇ t

κ + 1/κ

)
, tan(θ Jeffery) = C

1

[κ2 cos2(φJeffery) + sin2(φJeffery)]1/2
.

(B16)

1007 A53-44

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.104


Journal of Fluid Mechanics

For our case (equation (B14)), with d · g = 0, the closed form solutions are

tan(φ(t)) =
√

t2
t3

tan

(
β

η2
0
||g||√t2t3t

)
, tan(θ(t)) = C

1

[ t2
t3

cos2(φ(t)) + sin2(φ(t))]1/2
.

(B17)
We can observe from these solutions as well that there is a non-uniform periodic solution
only when t2t3 > 0.

Appendix C. Effect of stratification on a sphere
In the results presented in § 4, the stratification-induced force and torque on the spheroids
are obtained by integrating (2.6) using the Stokes fields represented by the spheroidal
harmonics formulation (Dabade et al. 2015, 2016). A spheroid is a sphere in the limit
of particle aspect ratio approaching one. Hence, the forces and torques on a sphere can
also be obtained by considering the spheroidal particle’s expression in the appropriate
limit. However, the relevant expressions for the sphere can be obtained directly through the
simpler formula of Stokes flow fields around a spherical particle. Not only is this an easier
calculation, but it provides a source of validation for the use of the spheroidal harmonics
formulation. The following particle tensors are relevant for the sphere of radius l,

bf
ik = 3l

4|x|(δik + xi xk

|x|2 ) − l3

4|x|3 ( − δik + 3
xi xk

|x|2 ), bq
i j = εi jk xk

l3

|x|3 . (C1)

A sphere of radius, l, placed in a Stokes flow with a uniform imposed fluid velocity u f low

has the following pressure and velocity

uStokes
i =

[
δi j − 3l

4|x|
(

δi j + xi x j

|x|2
)

+ l3

4|x|3
(

−δi j + 3
xi x j

|x|2
)]

u j, f low, pStokes = p∞ − 3l

2
ui, f lowxi

|x|3 . (C2)

The velocity and pressure field around a sphere fixed in a linear flow, ∇u∞ = E + Ω , with
u∞ = x · ∇u∞ is

uStokes
i = ui,∞ +

(
− l5

|x|5 δik x j + 5
2

(
l5

|x|7 − l3

|x|5
)

xi x j xk

)
E jk − l3

|x|3 x jΩ j i , (C3)

pStokes = p∞ − 5l3

|x|5 E jk x j xk . (C4)

The force on a fixed sphere due to linear stratification in a uniform flow is zero
since bf · (2eStokes + ∇ pStokesx) · d is an odd function of n. There is however a finite
stratification-induced torque since bq · (eStokes + ∇ pStokesx) · d is an even function of n.
Evaluating equation (2.6) using the Stokes fields defined in this section we find the
stratification-induced torque on a sphere fixed in uniform flow with velocity, u f low to
be,

qStratified
u f low

= 2πl3βd × u f low, (C5)

and, the stratification-induced force on a sphere fixed in linear flow with velocity gradient
Γ = E + Ω (E and Ω being the symmetric and anti-symmetric parts of Γ ) is,

fStratified
Γ = 2πl3β(3E − Ω) · d. (C6)
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Appendix D. Force and torque expressions for a fixed spheroid
In the main text, we use the constant viscosity and stratification-induced forces and torques
on a fixed spheroid in various flows. While we discussed their trends with the particle
aspect ratio, κ , these unwieldy expressions are presented in this section. We consider a

prolate spheroid with an aspect ratio κ = ξ0/

√
ξ2

0 − 1 and major axis length 2l = 2dξ0 (d
is the focal length). When the expressions for an oblate spheroid are not presented, these
can be found from the corresponding prolate formulae through the transformation ξ0 →√

1 − ξ2
0 and d → −√−1d. An oblate particle has aspect ratio κ =

√
ξ2

0 − 1/ξ0 and major
axis length 2l = 2dξ0. The expressions for force and torque on a fixed spheroid in constant
viscosity fluids, stratification-induced torques in uniform flow, and stratification-induced
force in linear flows are presented in different subsections below. The stratification-induced
torques in uniform flow are compared with those calculated by Anand & Narsimhan
(2024).

D.1 Constant viscosity fluid
The forces and torques acting on a fixed prolate spheroid in a uniform flow and linear flow
of a fluid with unit constant viscosity (the coefficients in the columns two and three of
table 1) are,

f1 = 16πd

ξ0 + (3 − ξ2
0 ) coth−1(ξ0)

, f3 = 8πd

−ξ0 + (1 + ξ2
0 ) coth−1(ξ0)

,

q1 = 16πd3

3
1 − 2ξ2

0

ξ0 − (ξ2
0 + 1) coth−1(ξ0)

, q3 = 16πd3

3
ξ2

0 − 1

ξ0 − (ξ2
0 − 1) coth−1(ξ0)

,

q4 = q1

2ξ2
0 − 1

.

(D1)

For a prolate spheroid, the Bretherton ratio, q4/q1, appearing in the rotation rate equation
(3.8) of a particle freely suspended in a linear flow of a constant viscosity fluid is

q4

q1
= 1

2ξ2
0 − 1

= κ2 − 1
κ2 + 1

. (D2)

In the limit κ → 1 or ξ0 → ∞, i.e., in the limit of a sphere we obtain, the familiar
expressions,

lim
ξ0→∞( f1) = lim

ξ0→∞( f3) = 6πl, lim
ξ0→∞(q1) = lim

ξ0→∞(q3) = 8πl3, lim
ξ0→∞(q4) = 0, (D3)

where l is the sphere’s radius.

D.2 Uniform flow of stratified fluids
As indicated in the fourth column of table 1, no additional force is induced by stratification
on a spheroid in uniform flow (or on a sedimenting particle). However, stratification does
lead to an extra torque and the coefficients for a prolate spheroid are,
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QU1
32 = 16πd3

3
ξ2

0 − 1

−ξ0 + (ξ2
0 − 3) coth−1(ξ0)

,

QU1
23 = 8πd3

3

(
1

ξ0 + (3 − ξ2
0 ) coth−1(ξ0)

− ξ2
0

ξ0 − (1 + ξ2
0 ) coth−1(ξ0)

)
,

QU3
12 = 4πd3

3
−5ξ3

0 + (5ξ4
0 − 2ξ2

0 − 3) coth−1(ξ0) + 3ξ0

(ξ0 − (ξ2
0 + 1) coth−1(ξ0))2

.

(D4)

Based on the decomposition of stratification-induced torque introduced in (2.15) and
(2.16), the torques on a prolate spheroid due to (η′/η0)σ

Stokes are,

QU1
23 A = 16πd3

3
ξ2

0

ξ0 + (3 − ξ2
0 ) coth−1(ξ0)

, QU3
12 A = 8πd3

3
1 − ξ2

0

ξ0 − (ξ2
0 + 1) coth−1(ξ0)

.

(D5)

The other components due to σ Stratified are obtained as QU1
23 B = QU1

23 − QU1
23 A and QU3

12 B =
QU3

12 − QU3
12 A from equations (D4) and (D5). The sedimenting particle’s rotation at O(β)

(B1) depends upon ti , i ∈ [1, 3] (shown in (3.17)). For a prolate spheroid,

t1 = − ξ4
0

16dπ
(ξ0 + coth−1(ξ0)(1 − ξ2

0 )),

t2 = ξ4
0

32dπ(2ξ2
0 − 1)

(3ξ0 − 5ξ3
0 + (5ξ4

0 − 2ξ2
0 − 3) coth−1(ξ0)),

t3 = ξ4
0

32dπ(2ξ2
0 − 1)

(ξ3
0 − ξ0 + (−ξ4

0 + 4ξ2
0 + 1) coth−1(ξ0)),

(D6)

and for an oblate spheroid,

t1 = (ξ2
0 − 1)2

16dπ
(

√
ξ2

0 − 1 − ξ2
0 cot−1(

√
ξ2

0 − 1)),

t2 = (ξ2
0 − 1)2

32dπ(2ξ2
0 − 1)

((5ξ2
0 − 2)

√
ξ2

0 − 1 + (8 − 5ξ2
0 )ξ2

0 cot−1(

√
ξ2

0 − 1)),

t3 = (ξ2
0 − 1)2

32dπ(2ξ2
0 − 1)

((ξ4
0 + 2ξ2

0 − 4) cot−1(

√
ξ2

0 − 1) − ξ2
0

√
ξ2

0 − 1).

(D7)

D.2.1 Comparison with Anand & Narsimhan (2024)
As mentioned in § 1, Anand & Narsimhan (2024) recently studied the sedimentation of
spheroids in fluids with linearly varying viscosity. The angular velocity from (3.16) can
also be expressed as,

ωparticle = β

η2
0
[λ1d × g + λ2(p · d)g × p + λ3(p · g)d × p]. (D8)

In the Anand & Narsimhan (2024) study, the parameters λi , i ∈ [1, 3] are evaluated
through the numerical integration of the volume integral obtained via a reciprocal theorem
((2.6) in the present study and 2.7 of Anand & Narsimhan (2024)). Since (3.16) and (D8)
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10–2

l = dξ0 = κ1/3 l = dξ0 = κ–2/3
–0.5

0

0.5
6πλ1
6πλ2
6πλ3
Anand &
Narasimhan (2024)

100

κ

102

Figure 23. Comparison of κ variation of parameters in the angular velocity equation (D8) with that from
Anand & Narsimhan (2024). The major axis of the spheroid, l = dξ0, with aspect ratio κ is chosen to be κ−2/3

for prolate and κ1/3 for oblate spheroids, conforming to the length scale used in the comparison paper.

are equivalent, these parameters are related to ti , i ∈ [1, 3] defined earlier in equations
(D6) and (D7) as

λ1 = t1, λ2 = t1 + t3, and λ3 = −t1 − t2. (D9)

A comparison of the analytically obtained λi values and that through graph digitization of
the data presented in figure 6 of Anand & Narsimhan (2024) is shown in figure 23. The λ1
values for prolate spheroids match for the two studies except at the smallest κ presented in
the comparison work. The parameters, λ2 and λ3 for prolate spheroids match at moderate
3 � κ � 25 but values from our analytical expressions deviate from the data of Anand &
Narsimhan (2024) outside this range. Some of the results presented in discussions within
§ 5 are qualitatively consistent between two studies because the signs of the parameters
λi , i ∈ [1, 3] for a given κ (or equivalently ti , i ∈ [1, 3]) are the same in both studies. The
magnitude of λi , i ∈ [1, 3] are much larger in our study and show a qualitatively different
variation with κ for oblate spheroids. Since the scaling used in figure 23 is such that each
spheroid has the same volume as a sphere of radius 1, i.e., 4π/3, the values of λi , i ∈ [1, 3]
for a spherical particle must be the same whether this limit, κ → 1, is approached from
the right (prolate) or left (oblate). Unlike the data from Anand & Narsimhan (2024),
our expressions satisfy this requirement, as shown in figure 23. The violation of this
requirement can also be observed by comparing the two plots in figure 6 of the comparison
paper (Anand & Narsimhan 2024).

D.3 Linear flows
The presence of linear viscosity stratification leads to an extra force on an axisymmetric
and fore-aft symmetric particle. In the particle reference frame, this stratification-induced
force is Fbody

strat · dbody, where the non-zero components of Fbody
strat for a fore-aft and

axisymmetric particle fixed in the various linear flows defined in (3.1) are listed in the
fourth column of table 1. For a prolate spheroid, the different non-zero components of
Fbody

strat are
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FΓ1
11 = − 8πd3(ξ2

0 − 1)(−3ξ3
0 + (3ξ4

0 − 6ξ2
0 + 11) coth−1(ξ0) + 5ξ0)

3((ξ2
0 − 3) coth−1(ξ0) − ξ0)(−3ξ3

0 + 3(ξ2
0 − 1)2 coth−1(ξ0) + 5ξ0)

,

FΓ2
11 = 4πd3(−3ξ3

0 + 3(ξ2
0 − 1)2 coth−1(ξ0) + 5ξ0)

3((ξ2
0 − 3) coth−1(ξ0) − ξ0)((3ξ2

0 − 1) coth−1(ξ0) − 3ξ0)
,

FΓ2
33 = 4

3
πd3

(
ξ2

0

(ξ2
0 + 1) coth−1(ξ0) − ξ0

+ 1

(3ξ2
0 − 1) coth−1(ξ0) − 3ξ0

)
,

FΓ4
13 =

8πd3
(−3ξ5

0 + 5ξ3
0 + coth−1(ξ0)(6ξ6

0 − 8ξ4
0 − (ξ0 − 1)(ξ0 + 1)

(3ξ4
0 + 1)ξ0 coth−1(ξ0) + 4ξ2

0 + 2) − 2ξ0

)
(

(3(ξ2
0 − 3) coth−1(ξ0) − ξ0)((ξ

2
0 + 1) coth−1(ξ0) − ξ0)

(−3ξ2
0 + 3(ξ2

0 − 1)ξ0 coth−1(ξ0) + 2)

) ,

FΓ4
31 =

4πd3
(

(ξ0(ξ
2
0 − 3)(3ξ2

0 − 2) + (ξ2
0 − 1) coth−1(ξ0)

(−6ξ4
0 + 14ξ2

0 + (3ξ4
0 − 6ξ2

0 − 5)ξ0 coth−1(ξ0) + 6))

)
3(−3ξ2

0 + 3(ξ2
0 − 1)ξ0 coth−1(ξ0) + 2)(ξ0 − (ξ2

0 + 1) coth−1(ξ0))2
,

FΓ6
12 = 16πd3(ξ2

0 − 1)

3(ξ2
0 − 3) coth−1(ξ0) − 3ξ0

,

FΓ7
31 = 4πd3(ξ0(5ξ2

0 − 3) + (−5ξ4
0 + 2ξ2

0 + 3) coth−1(ξ0))

3(ξ0 − (ξ2
0 + 1) coth−1(ξ0))2

,

FΓ8
23 = 8

3
πd3

(
ξ2

0

ξ2
0 (− coth−1(ξ0)) + ξ0 − coth−1(ξ0)

+ 1

(ξ2
0 − 3) coth−1(ξ0) − ξ0

)
.

(D10)

The parameters used in the O(β) translation velocity (equation (6.2)) for a prolate spheroid
are

m1 = d2(ξ2
0 − 1)(−3ξ3

0 + (3ξ4
0 − 6ξ2

0 + 11) coth−1(ξ0) + 5ξ0)

6(−3ξ3
0 + 3(ξ2

0 − 1)2 coth−1(ξ0) + 5ξ0)
,

m2

= d2((ξ2
0 − 1) coth−1(ξ0)((3ξ4

0 + 6ξ2
0 − 1) coth−1(ξ0) − 2ξ0(3ξ2

0 + 2)) + (3ξ2
0 − 5)ξ2

0 )

6(−3ξ3
0 + 3(ξ2

0 − 1)2 coth−1(ξ0) + 5ξ0)((3ξ2
0 − 1) coth−1(ξ0) − 3ξ0)

,

m3 = −
d2(ξ0(3ξ4

0 − 8ξ2
0 + 4) + ξ0(3ξ6

0 − 30ξ4
0 + 37ξ2

0 − 10) coth−1(ξ0)
2

+(−6ξ6
0 + 38ξ4

0 − 34ξ2
0 + 4) coth−1(ξ0))

3(2ξ2
0 − 1)(−3ξ2

0 + 3(ξ2
0 − 1)ξ0 coth−1(ξ0) + 2)((3ξ2

0 − 1) coth−1(ξ0) − 3ξ0)
,

m4 =
d2 (9ξ7

0 − 30ξ5
0 + 31ξ3

0 + (ξ2
0 − 1)2 coth−1(ξ0)

(−18ξ4
0 + 90ξ2

0 + (9ξ5
0 − 78ξ3

0 + 45ξ0) coth−1(ξ0) − 22) − 10ξ0)

6(2ξ2
0 − 1)(−3ξ2

0 + 3(ξ2
0 − 1)ξ0 coth−1(ξ0) + 2)(−3ξ3

0 + 3(ξ2
0 − 1)2 coth−1(ξ0) + 5ξ0)

.

(D11)

For a sphere , lim
κ→1

(m1) = l2, lim
κ→1

(m2) = lim
κ→1

(m3) = lim
κ→1

(m4) = 0.
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