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Systems of Hermitian Quadratic Forms

Ma Li and Chen Dezhong

Abstract. In this paper, we give some conditions to judge when a system of Hermitian quadratic forms

has a real linear combination which is positive definite or positive semi-definite. We also study some

related geometric and topological properties of the moduli space.

1 Introduction

E. Calabi studied linear systems of real quadratic forms in [1], [2]. He considered the
necessary and sufficient conditions for existing a positive definite linear combination
of two real quadratic forms with real coefficients. Let’s review his results in the fol-

lowing way. Given 1 ≤ k ∈ N. Let V be a k-dimensional vector space of n by n real
symmetric matrices S

n (or equivalently quadratic forms), and we write

V = span R{S1, . . . , Sk}.

Then it is clear that k ≤ m = n(n + 1)/2. Then we come to a question: Does V

contain a positive definite matrix? Consider a mapping

F : Rn → Rk (n ≥ k)

defined by

F(x) = (x∗S1x, . . . , x∗Skx)T , ∀x ∈ Rn.

Assume that

K := ker F = {x ∈ Rn | F(x) = 0} = {0}

Then “yes” trivially, if k = 1; E. Calabi showed in [1] that the answer is “yes” again if

k = 2 and n > 2; and “no” for all other cases, i.e., for k = n = 2 and for 2 < k < m.
So every case is settled!

So one may ask if the inverse is true or not. E. Calabi showed in [2] that:

Theorem A (See Theorem, [2, p. 331]) When k = 3, the image set under the map

F is a convex cone provided some linear combination of these three quadratic forms is

positive definite.
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E. Calabi gave counter-examples in [2] to show that when k = 3, there exists only
a positive semi-definite linear combination of these three quadratic forms, and the

image of F is not convex. When k = 4, no such theorem is true at all.
All of these results of E. Calabi are fundamental and interesting. It seems to many

people that E. Calabi’s results are the last word. To get new results, one has to add
restrictions. Based on his work we consider similar problems of linear systems of Her-
mitian quadratic forms. But Hermitian quadratic forms can be seen as real quadratic
forms in some cases. In fact, let H be a Hermitian matrix. Write H = U + iV , with

U ,V ∈ Mn(R). From H̄T
= H, we have

U T − iV T
= U + iV ⇒ U T

= U , V T
= −V.

For ∀z ∈ Cn, write z = x + i y, with x, y ∈ Rn. Then

H(z) = z̄THz = (xT − i yT)(U + iV )(x + i y) = xTU x + yTU y − 2xTV y.

So we can view H as a real quadratic form over R2n:

(1) H̃ =

(

U −V

V U

)

Then, by Theorem 1 in [1], we have:

Theorem B Let P(z), Q(z) be two Hermitian quadratic forms over C n, where z ∈ Cn

and 2 ≤ n < ∞. Then P(z) and Q(z) satisfy the property that the only z ∈ C n satisfying

P(z) = Q(z) = 0 is z = 0, if and only if there is a real linear combination of P and Q

that is a positive definite quadratic Hermitian form.

On the other hand, we have for each symmetric matrix U , we can identify it with
a Hermitian matrix H on Cn by the definition:

(2) H̃ =

(

U 0

0 U

)

However, we can obtain new results about Hermitian forms over C n by restricting the

Hermitian forms with more properties. We believe that our results are useful. Our
results, for example, Theorems 8, 9, 11, and 12 etc., can be considered as generaliza-
tions of E. Calabi’s results. So it is appropriate to treat the Hermitian case separately.

To express our results in more detail, let introduce some notations and assump-
tions.

Let H1, . . . , Hm be linearly independent members of the real vector space H
n of

complex n-by-n Hermitian matrices. We shall refer to a Hermitian matrix H as a
form whenever it is convenient. The form we have in mind is z −→ z∗Hz = H(z).

By comparing dimensions we see that m cannot exceed n2. Let GPD (resp. GPSD)
denote the sentence: G = span {H1, . . . , Hm} contains a positive (resp. nonzero
positive semi-) definite matrix. Let K = Kn (resp. R = Rm) denote the kernel

(resp. range) of the mapping F(z) = Fn,m(z) = [H1(z), . . . , Hm(z)]T from Cn into
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Rm. If m = n2, I is in G so GPD holds, but if m < n2, GPD may be false e.g. if every
Hi lies in {H ∈ H

n ; trace H = 0}. So the property GPD (resp. GPSD) is not easily

tamed.
Some of our new results can be summarized as follows:

Typical Theorem Let m ≥ 3.

(1) If K = {0} and R \ {0} is convex, then GPD holds.

(2) If K = {0} and {Hi}
m
i=1 are pairwise commutative, then R is convex, and GPD.

This result is an easy consequence of Theorem 8 and Theorem 12 below. The case

when m < 3 is treated in Theorem 1 below. One may find more results in the next
section. In the last section we consider some geometric property of the moduli space,
which will be defined below.

2 Algebraic Results and Proofs for Hermitian forms

We let 〈 , 〉 denote the inner product in Rm. We state the following:

Theorem 1 If m < 3, then GPD holds iff K = {0}.

Remark 2 As we mentioned in the introduction, this result follows from Calabi’s
result. Since we can give a simpler proof of Theorem 1, we present a full proof of it

here.

Proof The necessary condition is obvious. We will only prove the sufficient condi-
tion. Case ‘m = 1’ is trivial. We will only prove case ‘m = 2’.

Define the map

f : Cn \ {0} → S1, z 7→

(

H1(z)

d2(z)
,

H2(z)

d2(z)

)

,

where
d2(z) =

√

H1(z)2 + H2(z)2.

Denote D = f (Cn \ {0}). For n < ∞, D is a connected, closed subset.

Claim D contains no antipodal points.

If not, say, (a, b) and (−a,−b) are both in D. Let

X = {z ∈ Cn \ {0} | bH1(z) − aH2(z) = 0}.

Then by the definition of f , we have f (X) = {(a, b), (−a,−b)}, which is a dis-
connected subset of D. Since X is connected, so is f (X), a contradiction.

By the claim, D is strictly contained in some open half-circle Γ. Take the midpoint
(c, d) of Γ. Geometrically, the angles between the point (c, d) and the end points of
D are less than π/2. Then we have 〈(c, d), f (z)〉 > 0, for all z in Cn \ {0}. That is
cH1 + dH2 is positive definite.
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Corollary 3 If m = 3, then GPD holds iff (i) K = {0} and

(ii)

{

H2(z)

H3(z)

∣

∣

∣

∣

H1(z) = 0, H3(z) 6= 0

}

6= R1.

Proof We begin to prove the necessary condition.
(i) is obvious. We only prove (ii) here.
Assume aH1 + bH2 + cH3 is positive definite, with a, b, c ∈ R1. Clearly, we can take

b 6= 0. Otherwise, we can perturb (a, b, c) to make b 6= 0. Then aH1 + b(H2 + c
b
H3)

is positive definite. By Theorem 1, we have

(1) H1(z) = H2(z) +
c

b
H3(z) = 0 ⇔ z = 0.

If (ii) fails, then ∃z0 ∈ Cn, s.t. H2(z0)
H3(z0)

= − c
b
, H1(z0) = 0, H3(z0) 6= 0. So we have

H2(z0) + c
b
H3(z0) = 0. By (1), it must be that z0 = 0. Therefore H3(z0) = 0, a

contradiction. (ii) is proved.
We now prove the sufficient condition.

Take

s ∈ R1

∖{

H2(z)

H3(z)

∣

∣

∣

∣

H1(z) = 0, H3(z) 6= 0

}

.

Claim H1(z) = H2(z) − sH3(z) = 0 ⇔ z = 0.

In fact, if ∃z1 ∈ Cn, s.t. H1(z1) = H2(z1) − sH3(z1) = 0, then

Case 1 H3(z1) = 0 ⇒ H2(z1) = 0. By (i), z1 = 0.

Case 2 H3(z1) 6= 0 ⇒ s =
H2(z1)
H3(z1)

. This contradicts the choice of s.
So it must be that z1 = 0.

The claim is proved.
By Theorem 1, there exists a positive definite real linear combination of H1 and

H2 − sH3, i.e., GPD holds.

Remark 4 We give some geometric interpretation of Corollary 3.
(A) Assuming condition (i) of Corollary 3, we define a mapping

f : Cn \ {0} → S2, z 7→

(

H1(z)

d(z)
,

H2(z)

d(z)
,

H3(z)

d(z)

)

,

where
d(z) =

√

H1(z)2 + H2(z)2 + H3(z)2.

Denote D = f (Cn \ {0}). By condition (ii), D contains no antipodal points. Then it
is easy to see that D is contained in some open half ball. Arguing as in the last part of
the proof of Theorem 1, we know that the sufficient condition of Corollary 3 is true.

(B) By (A), we can easily find that D is spherical convex. In fact, if not, there exists
some great circle whose intersection with D is not connected, which is impossible.
Since we believe this fact is useful, we formulate it as a theorem.
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Theorem 5 If m = 3, then GPD ⇒ R is convex.

By considering Hermitian matrices as symmetric matrices in R2n, Theorem 5 can
be obtained from the theorem of [2] directly. An interesting corollary is:

Corollary 6 If m = 2, then R is convex and either (1) R = R2 or (2) GPSD holds.

Proof Let H3(z) = |z|2. Then 0 ·H1 +0 ·H2 +1 ·H3 is positive definite. By Theorem 5,

R̃ :=
{(

H1(z), H2(z), H3(z)
)

∣

∣ z ∈ Cn
}

is convex. Denote Π : w = 1. Then R̃ ∩ Π is convex, i.e.,

R̄ :=
{(

H1(z), H2(z)
)

∣

∣ |z|2 = 1
}

is convex. From this, one can get the conclusion easily.

Remark 7 By Remark 2 and the reason in [2], Theorem 5 cannot be improved in
the following two cases:

(i) If m = 3 and GPSD holds, then R may not be convex.

(ii) If m = 4 and GPD holds, then R may not be convex.

The reverse of Theorem 5 is a special case of the following theorem.

Theorem 8 If K = {0} and R \ {0} is convex, then GPD holds.

Proof R \ {0} has an interior point in the topology of R, and {0} is convex and

disjoint from R \ {0}, so there exists a functional g in W ∗ strictly separating {0}
from R \ {0} (cf. e.g. [4]), where W is the smallest linear space containing R. Extend
g to be 0 on the orthogonal complement of W . Then g composed with F is positive
definite.

From the discussion above, we can see that K = {0} can’t prevent R from con-
taining antipodal points, and then R \ {0} may not be convex. A weaker conclusion
is:

Theorem 9 If R is convex and not Rm, then GPSD holds.

The proof of Theorem 9 is similar to that of Theorem 8, but simpler. So we omit
it.

We will give an application of Theorems 8 and 9. For that, we need the following
lemma.

Lemma 10 Let {Hi}(i ∈ S) be a family of n-by-n Hermitian matrices, pairwise com-

mutative. Then there exists a unitary matrix s.t. {Hi}(i ∈ S) are simultaneously diago-

nalized.
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Note that the concept of ‘pairwise commutative’ is for matrices and for hermitian
operators, not for forms. The proof of Lemma 11 can be found in books on linear

algebra.
Combining Lemma 10 with Theorem 9, we have:

Theorem 11 If {Hi}
m
i=1 are pairwise commutative, then R is convex, and either

(1) R = Rm or

(2) GPSD holds.

Combining Lemma 10 with Theorem 8, we have:

Theorem 12 If K = {0} and {Hi}
m
i=1 are pairwise commutative, then R is convex,

and GPD holds.

The proofs of Theorem 11 and 12 is quite similar. We will only give the proof of
Theorem 12.

Proof By Theorem 8, we only need to check that R \ {0} is convex.

By Lemma 10, there exists a unitary matrix U = (u1, . . . , un) s.t. {Hi}
m
i=1 are

simultaneously diagonalized. Then for all zi in Cn (assume zi = a
j
i u j , a

j
i ∈ C , i =

1, 2; j = 1, . . . , n), and for all t ∈ (0, 1), we have

tHl(z1) + (1 − t)Hl(z2) = Hl(z3),

where

z3 =

√

t|a
j
1|

2 + (1 − t)|a
j
2|

2 u j .

This is an easy calculation. By the condition, we know if z1, z2 6= 0, then z3 6= 0.

Therefore ∃ l0 ∈ {1, . . . , m}, s.t. Hl0 (z3) 6= 0. By this we have
(

H1(z3), . . . , Hm(z3)
)

∈ R \ {0}.

Then Theorem 12 is proved.

Example 13 Here are two counter-examples for Theorem 9 and Theorem 11.

(1) For n = 4, m = 2, consider

P1(z) = |z1|
2 − |z3|

2, P2(z) = |z2|
2 − |z4|

2.

P1, P2 are pairwise commutative. R = R2.

(2) For n = 3, m = 2, consider

P1(z) = |z1|
2 − |z2|

2, P2(z) = |z3|
2.

P1, P2 are pairwise commutative. R = R2
+ = {(x1, x2) ∈ R2 | x2 ≥ 0}.

Remark 14 Most of our results and proofs can be extended to infinite-dimensional

unitary space. However, because the unit sphere of infinite-dimensional unitary
space is no longer compact, we can only get weaker results. We will not list the cor-
responding conclusions here.
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3 Geometric Property of the Moduli Space

To state the results, we introduce a definition.

Definition 15 Let H1(z) := P(z), H2(z) := Q(z) be two hermitian quadratic forms
over Cn. We say that H1(z) and H2(z) satisfy property (C) if H1(z) = H2(z) = 0

implies that z = 0. We write Ω := Ω(n) as the space of the ordered pairs (H1, H2)
with property (C) when 2 ≤ n < ∞. Ω is called moduli space.

Remarks (a) It is clear that if one of H1, H2 is positive definite, then property (C) is

automatically true.

(b) There are two group actions on the pair (P, Q). One is the GL(n,C)-action
defined as follows. Given A ∈ GL(n,C). Let TAP = A∗PA be the conjugate action
of A to P. Then it is clear that if P and Q satisfy property (C), then TAP and TAQ

also satisfy property (C). The other action is the R2
∗

:= R2 − 0 × R ∪ R × 0 action

defined by (P, Q) → (xP, yQ) where (x, y) ∈ R2
∗
. The property (C) is also R2

∗
action

invariant.

(c) Assume n < ∞. Using the continuity property, we can easily see that for any
pair (P, Q) with property (C) there is a positive constant ε0 such that for every pair
(P1, Q1) with |P1 − P| + |Q1 − Q| < ε0, we have that P1 and Q1 satisfy property (C).

Therefore, Ω(n) is an oriented smooth manifold of real dimension 2n2 with group
actions. Note that the manifold Ω(n) is non-compact with the induced topology
from the standard norm on Cn. A interesting question may be that one studies some
(symplectic) geometric properties of Ω(n) and its quotient by the group actions.

Now we want to study some related geometric and topological properties of the
family.

(1) For all (H1, H2) in Ω, denote

F(H1,H2) =
{(

H1(z), H2(z)
) ∣

∣ z ∈ Cn \ {0}
}

∩ S1.

Take the midpoint of F(H1,H2) along S1, denoted by (a(H1,H2), b(H1,H2)). Let

f : Ω → S1, (H1, H2) 7→ (a(H1,H2), b(H1,H2))

and

g : S1 → Ω, (a, b) 7→ (aI, bI).

Obviously, f , g are continuous, and g ◦ f : Ω → Ω; f ◦ g : S1 → S1.

We want to show that g ◦ f ' idΩ.

Let

J
(

(H1, H2), t
)

= t(H1, H2) + (1 − t)
(

a(H1,H2)I + b(H1,H2)I
)

.

Claim For all t in [0, 1], J
(

(H1, H2), t
)

in Ω.
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In fact,

a(H1,H2)[tH1 + (1 − t)a(H1,H2)I] + b(H1,H2)[tH2 + (1 − t)b(H1,H2)I]

= t[a(H1,H2)H1 + b(H1,H2)H2] + (1 − t)[a2
(H1,H2) + b2

(H1,H2)]I,

which is always positive definite. So the claim is proved.
Obviously, J is continuous. We have that

J
(

(H1, H2), 0
)

= g ◦ f
(

(H1, H2)
)

, J
(

(H1, H2), 1
)

= idΩ .

Therefore
g ◦ f ' idΩ .

Obviously,
f ◦ g = idS1 .

Then Ω ' S1. Then we have

π1(Ω) = π1(S1) = Z.

(2) Obviously, Ω is an open subset of H
n × H

n. For (a, b) ∈ S1, define

Ω(a,b) = {(H1, H2) ∈ Ω | aH1 + bH2 > 0}.

it is easy to prove that Ω(a,b) is an open convex subset of Ω. Also it is easy to see that
Ω(a,b)

∼= Ω(c,d), for all (a, b), (c, d) in S1.

Denote

A(θ) =

(

cos θ sin θ
− sin θ cos θ

)

,

r0 = (1, 0)t , a(θ) = (cos θ, sin θ)t , θ ∈ R1.

Then r0 = A(θ)a(θ). So

Ωa(θ) = Ωr0
· A(θ) = {(H1, H2)A(θ) | (H1, H2) ∈ Ωr0

}.

Notice
(H1, H2) ∈ Ωr0

if and only if H1 is positive. We denote all n-by-n positive definite Hermitian matrices
by Hn

p . Then Ωr0
= Hn

p × H
n. We have a continuous surjection

h : Ωr0
× R1 → Ω,

(

(H1, H2), θ
)

7→ (H1, H2)A(θ).
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Define an equivalence relation:

∼ : (H1, H2) ∼ (H3, H4) ⇔ ∃θ ∈ R1,

s.t.
(H1, H2) = (H3, H4)A(θ).

Then
Ω/∼ ∼= Ωr0

/∼.

Finally, we point out the following fact: (H1, H2) ∼ (H3, H4) ⇒ H1, H2, H3, H4 can
be diagonalized simultaneously. This comes from the following fact: if there exists a
positive definite real linear combination of H1, H2, then H1, H2 can be diagonalized

simultaneously.
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