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Abstract

Consider the nth-order neutral differential equation

(E) ~[x{t) + J>,x(f - T,.)] + 8 £ qkx(t -ak) = 0
m / x

where n> 1 , 8 = ± 1 , / , 31 are initial segments of natural numbers , p(, T; , ak 6 R and
qk > 0 for i g / and k e 3T . Then a necessary and sufficient condition for the oscillation
of all solutions of (E) is that its characteristic equation

has no real roots. The method of proof has the advantage that it results in easily verifiable
sufficient conditions (in terms of the coefficients and the arguments only) for the oscillation of
all solutions of Equation (E).

1991 Mathematics subject classification (Amer. Math. Soc.) primary 34 K 40; secondary
34 K 15, 34 CIO.

1. Introduction

Consider the nth-order neutral differential equation
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262 S. J. Bilchev, M. K. Grammatikopoulos and I. P. Stavroulakis [2]

where n > 1, 8 = ±\, f , JT are initial segments of natural numbers, pt,
T( , ak e R and qk > 0 for i e / and k e 3?. In the case where f = 0
Equation (E) reduces to the (nonneutral) equation

(E,) x(n\t) +

= 0,

while when JIT = 0 Equation (E) yields

(E2)

which admits a (nonoscillatory) solution of a polynomial form. Thus we
assume that 3? ± 0 . When pt > 0 or p. < 0 for i G f Equation (E)
leads, respectively, to

d^_
df

or

df

while in all other cases Equation (E) can be written in the form

d" [
(E3) ^ ( 0 ^
where pt > 0 and r. > 0 for j G / , j E J. Observe that the former two
equations are special cases of the latter one and therefore it suffices to study
Equation (E3).

It is easy to see (cf. [9, 11]) that in the case where

/, = {i E I: T. < 0} c / , / , = {j G J: pj < 0} c /

are nonempty, by taking

T = max IT. and p = max \p I

Equation (3) leads to an equation of the same form with T, > 0 and Pj > 0
for i € I and j g / . So in the sequel we will assume T( > 0 and p. > 0
for / G / and j e / . Finally, because ak G R, (E3) can be written in the
following form

(1)
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[3] Neutral differential equations 263

where / , / , Ki , K2 are initial segments of natural numbers, pt, xi, r-,

Pj» Qk ' $k e (0 > °°) anc* °fc > **k
 e [0 > °°) f ° r ' G / , j E J, k & KiL)K2.

Note that when 5 = - 1 and A2 = 0 Equation (1) admits a nonoscillatory
solution so we exclude this case.

Our aim in this paper is to obtain a necessary and sufficient condition under
which all solutions of Equation (1) oscillate. Indeed, we prove that every
solution of Equation (1) oscillates if and only if its characteristic equation
(2)

-** - *" E 'j

has no real roots. That is, the oscillatory character of the solutions is deter-
mined by the roots of the characteristic equation. This is in contrast with the
fact that the stability character is not determined by the characteristic roots.
Some of these differences as well as some applications of neutral differential
equations are discussed in [2, 3, 4, 5, 6, 14, 15, 23, 24]. Especially, higher
order neutral differential equations were encountered in the study of vibrat-
ing masses attached to an elastic bar and also as the Euler equations in some
variational problems (see Hale [15, p. 7]).

Necessary and sufficient conditions (in terms of the characteristic equa-
tion) for the oscillation of all solutions of first order neutral differential equa-
tions have been obtained by Sficas and Stavroulakis [22], Grove, Ladas and
Meimaridou [13], Kulenovic, Ladas and Meimaridou [16], Grammatikopou-
los, Sficas and Stavroulakis [10], Farrell [7], and Grammatikopoulos and
Stavroulakis [11, 12]. Necessary and sufficient conditions for the oscilla-
tion of higher order equations have been obtained by Ladas, Sficas and
Stavroulakis [18], Ladas, Partheniadis and Sficas [17], and Wang [25]. See
also Arino and Gyori [1].

It is to be emphasized that in all the above mentioned papers ak e E+

while here ak e R. To the best of the authors' knowledge this is the only pa-
per at the present time dealing with the oscillation of all solutions of Equation
(E) where ak e R for k e 3?.

Let T = max( . fc{T(., Pj, .ak, ak}. By a solution of Equation (1) we
mean a function x e C([t0, -T, 00), K) for some ( o e R , such that

x(t) + Y,Pix(l ~ xi) ~ E rjx(* ~ Pj)

is H-times continuously differentiable on [*0, 00) and such that Equation (1)
is satisfied for t > t0.

As is customary, a solution is called oscillatory if it has arbitrarily large
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zeros. Otherwise it is called nonoscillatory, that is, if it is eventually positive
or eventually negative.

In the sequel all functional inequalities that we write are assumed to hold
eventually, that is for sufficiently large t.

In the case where / , J, K{, K2 are nonempty we can assume, without
loss of generality, that

7 = { 1 , 2 , . . . , / } , y = { 1 , 2 m},
# , = { 1 , 2 , . . . , « , } , K2 = {l,2,...,n2},

0 < T , < • • • < T / , 0 < / > , < - < p m , 0 < f f , < - - - < « T ( I I , 0 < C T , < • • • < a n i

and
T,. ^ pj, iel, j € / ,

since otherwise the terms in Equation (1) can be abbreviated. Also for con-
venience we use the following notations

and

Q = QX+Q2-

Note that, since S = ±1 and n is an odd or an even number, ( - l)"~ld =
± 1 . Thus, we consider Equation (1) in the following cases:

(i) ( - l )"" 1 ^ = +1 (S = + 1 , n odd or S = - 1 , n even);
(ii) {-\)n~xS = - 1 {S = + 1 , n even or 5 = - 1 , « odd).

2. Preliminaries

In this section we establish some useful lemmas which will be used in the
proof of our main theorem (cf. [10, 11, 12]).

LEMMA 1. Consider Equation (1). Then the following inequalities

(3) max{/>m ,an}> xl in case ( i ) ,

(4) max{t / ,an}> pm in case (ii),

and

(5)
A6R
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are necessary conditions for the characteristic equation (2) to have no real
roots.

PROOF. AS SF(0) = Q > 0 and Equation (2) has no real roots it follows
that SF(X) > 0 for A e R. Also observe that dF(+<x>) = +oo. Thus,
SF(-oo) must be positive or +oo. But when max{pm, pn } < ix in case (i)
and m a x ^ , an} < pm in case (ii) SF(-oo) = -oo , that is, Equation (2)
has a real root. This is impossible and thus conditions (3) and (4) must hold.
Finally, since Equation (2) has not real roots and 8F(-oo) - SF(+oo) = +oo
it follows that condition (5) holds. The proof of the lemma is complete.

From (5) it follows that for all A e R
/ \

8 \ X + A > » . e ' - A y r . e ' ] + J a t e " + > a k e k > m ,

which is equivalent to

» + X" Yp/r> -X"Yr/"< - y qke
X"k - V q \ ^ < -r

m case
(6)

in case (ii)

and to

(7)
- A " - A "

A + A -AT

A

when c

e k < - J

when (5

J = + l

m

= - 1 .

LEMMA 2. Let x(t) be a solution of Equation (1) and let a, b and c be
real numbers. Then each one of the functions

/

t-C i-OO

x(s)ds, and / x(s)ds
-b Jt

for x(t) e Ll[t0, oo) and lim x(t) = 0

is a solution of (I).
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PROOF. The conclusion follows easily and it is a consequence of the lin-
earity of Equation (1) and its autonomous nature.

DEFINITION. Consider Equation (1). Then the set of all solutions of Equa-
tion (1) at least jU-times (fi> n) continuously differentiate and such that

and
timw{v\t) = O , u = O, 1 , . . . , / i - 1
t—xx>

is called Class I , while the set of all solutions of Equation (1) at least n-
times continuously differentiate and such that

w ( l / ) ( t ) > 0 , u = 0 , 1 , . . . , ft and l i m w ( v \ t ) = + o o , v = 0 , I , ... , f i - l

is called Class II .

LEMMA 3. Let x(t) be a nonoscillatory solution of Equation (1). Then
Equation (1) also has a nonoscillatory solution w(t) such that either w{t) e
Class l2n or w(t) e Class II2w .

PROOF. Without loss of generality x(t) can be considered eventually pos-
itive. Set

z(t) = S \x{t) + £>,.*(; - t,.) - 2 rjX(t - p;)]

and

w{t) = s z(o + E^/z( f~ri)~^2rj z( t~Pj)\ •
L / / J

Then, by Lemma 2, z(t) and w(t) are both solutions of Equation (1) such
that

(8) A0 = -[$>**('-**) + £***(' + **)] <0,

and
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Thus, z e C[T0, oo), w e C2n[t0, oo) and they are eventually strictly
monotone functions. We have from (8) that z^"~l\t) is strictly decreasing.
So either

(11) lim z(""!)(0 = -
t—»oo

1) lim z(""!)

t—»oo

or

(12) lim z{n~i\t) = L,
t—>oo

First assume that (11) holds. Then

Thus
Mm w(v\t) = +oo, v = 0, 1, . . . , In- 1,

t—>oo

which together with (10) imply that w e Class II2n . Next assume that (12)
holds. Then, integrating (8) over the interval [tx, oo), we obtain

/•OO I-OO

xWds + Yik x{s)ds

which implies that x G Li[tl -an , +oo) and so z e l)\tx-an , +oo). Since
z(t) is strictly monotone it follows that

lim z(t) = 0
t—>oo

and therefore

(13) lim z(u\t) = 0 , v = Q, 1, . . . , « - 1
<—»oo

that is, L = 0. Thus we have established that z(n\t) < 0 and l i m , ^ z{n~l\t)

= 0. This implies that z{n~l)(t) > 0 and hence

In view of (9), we conclude that

( - l ) V ° ( 0 > 0 and t u ( 0 > 0 .

Also, by (13), it follows that

limw{v)(t) = 0, i/ = O, 1 , . . . , 2 n - l
t~*oo

which together with (10) imply

{-l)vwlv\t)>0, v = 0, 1, ... , In.
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Thus w(t) G Class II2n and the proof is complete.

LEMMA 4. Assume that (3) and (4) hold. Then we have the following:
(a) let x(t) e Class I2n, then there exists a solution w(t) of Equation (1)

which belongs to Class I2n, such that the set

A+(w) = {X > 0: (-l)n~lw(n\t)+Xnw(t) < 0} ^ 0 ;

(b) let x(t) e Class II2n, then there exists a solution w(t) of Equation (1)
which belongs to class II2;I, such that the set

A~(w) = {X > 0: - w{n\t) 4- k"w{t) < 0} / 0 .

PROOF, (a) Let x(t) e Class \2n . Set

It is easy to see that w(t) is a solution of Equation (1) which belongs to
Clas

(15)

Class I ln and that

Since (3) and (4) hold, if we set

, „ f T, in case (i) f max{/> , an } in case (i)
(16) a= < ' . and j? = { ' .

I /?m in case (u) [ maxJT/, ffn } in case (ii)
then we see that

o\ > a or B > a> a, .
1 1

Thus we examine the following:

1) an > a. Since x(t) is positive and decreasing, (14) yields

0 < w(t) < Axx{t -a)< Ayx(t -an),

where

(17) A -
1 I R in case (ii).

Thus

o = {-\)n~lw(n\t) + 53 ?**(' - °k)+H «**('+^)

> (-I)"" V ' W + ^x(/ - on) > (-l)"-lww(t) +
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which says that

0 < f -j-qni J e A+(w), that is, A+(w) / 0 .

2) fi > a>an . First assume fi > a> an .As before, (14) yields

(18) 0<w(f) <Alx{t-a)

where yl, is as in (17). Also, from (14), since x, w e Class l2n, we find
that

x(t-a) > A2x(t- fi)
where r

~ in case (i)
A2 ={ -In

h in case (ii).
K.

We have from the last inequality, that

x[t + (fi- a)} > A2x(t)

and by iteration, we obtain

Note that there exists an integer fi > 0 such that

H(fi-a)>a-ani >0.

We have using the above inequalities, for some / I G N , that

qnx[t -a + (a- o^)]

qnx[t -a + /i(fi- a)]

This implies that
l/n

/I \ '

0 < [-fSA2) e A+(w), that is, A+(w)

Next assume fi > a = an .As before, we have
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and, since a = an , the last inequality, in view of (18), yields

0>(-l)n-lw(n\t) + ±-qnw(t),A\ '
which says that

/ j \ i/»
0 > I — q j e A+(w), that is, A+(w) / 0 .

(b) Let x(t) € Class II2n . Set

It is easy to see that w(t) is a solution of Equation (1) which belongs to
Class

(19)

Class II2n and that

Now, since x(t) is positive and increasing, (14') yields

0 < w(t) < A3x(t)

where

-{u3 ' 1 +P when<5 = - l .

when S — +1
A> = \ l + p

Thus

0 = -

which says that

Q2x(t) > -w{"\t) + ^-
A3

1 \l/n

-2-Q2J eA (to), that is, A (w) ̂  0.

The proof of the lemma is complete.

LEMMA 5. (a) Let x(t) e Class l2n for which the set A+(x) / 0 .
given co > 0 */jere existe Af > 0 A

(20) {-\)vx(v\t)>M{-\)vx(v\t-oi), i/ = 0 , l , . . . , / i

f/je positive number Xo = (1/GJ) log( l /M) w a« wpper bound of A+(x).
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(b) Let x{t) e Class II2n for which the set A~(x) ^ 0. If for given co > 0
there exists M > 0 such that

(20') x(v\t)<Mx{v\t-to), v = 0,1, ... ,n

then the positive number Xo = {1/co) log M is an upper bound of A~(x) .

PROOF, (a) Otherwise Ao e A+(x) which means that

Set

It is easy to see that y{t) is a solution of Equation (1) such that

y{t) e Class IB+1 D Class l2n,

y(t) + Aoj'(/) = (—1)""

and, in view of (20),
y(t) > My{t - co).

Now the conclusion follows from [10, Lemma 5(a)].
(b) Otherwise Ao e A~(x) which implies that

Set

It is easy to see that y(t) is a solution of Equation (1) such that

y{t) G Class IIn+1 D Class II2n ,

-y{t) + V ( 0 = -xl"\t) + X"ox(t) < 0

and, in view of (20'),
y(t) < My(t - co).

The conclusion follows from [10, Lemma 5(b)].

LEMMA 6. Assume that (3) and (4) hold. Then we have the following:
(a) let x{t) € Class l2n for which A+(x) ^ 0 , <Ae« </ie 5^ A+(x) has an

upper bound which is independent of x;
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(b) let x(t) e Class II2n for which A~(x) ^ 0 , then the set A~(x) has an
upper bound which is independent of x.

PROOF, (a) Let x(t) e Class I2 n . Set w(t) as in (14), then w(t) e
Class I2n and (15) holds. Setting a and ft as in (16), we examine the
following:

1) an > a. By (14), we find that

(21) 0 < ( - l ) V " ) ( 0 < ^ 1 ( - l ) V I / ) ( r - a ) , v = O,l,...,n

where A{ is given by (17). Also, from (15) we obtain

{ - V r v - x w ( n + v \ t ) + q n y \ ) v x { v \ t - a n x ) < 0 , v = 0 , I , . . . , « .

Integrating the last inequality over the interval [t — a>, t], where (o =
(l/2«)(crn - a) , and using the fact that (-l)"x(l/)(/) > 0 and decreasing,
we find

( - l ) n + " - V ^ W > , ^ « ( - l ) Y « - an{ + co), v = 0, 1, . . . , n.

Repeating this procedure n - 1 more times, we finally obtain

(-l)vw{u)(t) > qnw
n{-\)vx(v\t -an+nco), v = 0 , 1 , . . . , « .

Combining the last inequality with (21), we find

i/ = 0, 1, . . . , n,

and, by Lemma 5(a), the positive number

A, =

is an upper bound of A+(x).
2) /? > a>an. From (14), we obtain

where A2 as in the proof of Lemma 4(a), and

T; - pm in case (ii).

Now, by Lemma 5(a), the positive number
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A, = — log —2 co A2

is an upper bound of A+(x).
(b) Let x{t) G Class II2/I. Set w(t) as in (14'), then w(t) e Class II2n

and (19) holds. First assume S = + 1 . Then from (14'), we have

wl"\t)>0,

which implies that

x{l/\t)<Rx{v\t-Pl), v = O,\,...,n.

So, by Lemma 5(b), the positive number

A3 = — log*
Pi

is an upper bound of A~(x).
Next assume that S — - 1 . Then from (14') we have

(22) w{l/)(t)<(l+P)x{>/\t), i/ = 0 , 1 . . . . . / I

and, from (19), we find

Integrating the last inequality over the interval [t - co, t], where co =
(l/2n)ol, we obtain

w(n+v~l\t) > Q2cox(u)(t + * , - « ) , i/ = 0 , l , . . . , / ! .

Repeat ing this procedure n - 1 m o r e t imes , we finally obta in

w(v\t) > Q2conx(v\t + ox-nco), v = 0, 1 , . . . , n,

and combining with (22), we find

Thus, by Lemma 5(b), the positive number

2 , 1+
A4 = — lOg —pr

4 CT, (22

is an upper bound of A~(JC) .
The proof of the Lemma is complete.
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3. Main result

Our main result is the following

THEOREM. Consider the nth-order neutral differential equation

(1) J [*(0 + £/>,*(' - T,) - £ rjx(t - />,)]

+<5 fx;^( ' - f f * ) + E w + * * ) j = o

where n > 1, <J = ± 1 , / , / , Kx, K2 are initial segments of natural
numbers, pt, T, , rj, pi, qk, qk e (0, oo) and ak, ak e [0, oo) for i e I,
j e J, k e Kx U K2. Then a necessary and sufficient condition for the
oscillation of all solutions of Equation (1) is that its characteristic equation

(2) X"+X"^pf-X
i J

has not real roots.

PROOF. The theorem will be proved in the contrapositive form: there is
a nonoscillatory solution of (1) if and only if the characteristic equation (2)
has a real root. Assume first that (2) has a real root X. Then (1) has the
nonoscillatory solution x(t) = eXt.

Assume, conversely, that there is a nonoscillatory solution of (1) and, for
the sake of contradiction, that Equation (2) has not real roots. Then by
Lemma 3, Equation (1) has also a nonoscillatory solution x(t) which belongs
either to Class I2n or to Class II2n . Consider the following cases:

(a) x(t) e Class \2n. For this solution x(t), by Lemma 4(a), we can
assume, without loss of generality, that A+(x) ^ 0 . Let X5 e A+(JC) . Also,
by Lemma 6(a), there exists a positive number, say Xo, such that A+(x) is
bounded above by Xo .

For X e A+(x) consider the functions

z(t) = Fyx = (-I)""1* \x(t) + 5>,x(f - T,) - £rjX(t - Pj)\ ,

n

w{t) = F2z = YX"~v[{-\)vz(v\t)], (cf. [19])
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and

(23) u{t) = F3w =

Neutral differential equations 275

in case (i)

HJt) + Xn f w(s)ds + XnJ2Pi f Tiw(s)ds
Jt-T j Jt-T

where

(24) HJt) = 8 \w(t)

/

l — C

in case (ii),

i ( n - l )

t-ak

w(s)ds
-T

and
= max{Tl,pm,an,d } .

It is easy to see that z(t), w(t) and u{t) are solutions of Equation (1) and
they belong to Class l2n .

Since Equation (2) has no real roots, by Lemma 1, the inequalities (5) and
(6) hold. We will show that {X" + wo)1/n e A+(M) where m0 = m/N{ > 0
with

-( i U r
Ni-{l + p + R + x*5

Q)e° •
To this end, it suffices to show that

Define

Then tp(t) > 0 and for X e A+(JC) with X > A5, we have

i - i
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that is, <p(t) is decreasing. Since w(t) e Class I2n and

[16]

(25)

we see that

(-1) —Jit

w( = r r •• r (-
J< Jh J<n-2

and therefore for any co <T

(26)
/

•/ —O)

-r

Now, from (23), in view of (24), we obtain

-l\t - T)]

in case (i)

X"[w(n-l\t) - - T)]

in case(ii)

and, in view of (25),

- Qe X{t ^fit - T)

kn[e~xt(i>{t)

T)<p(t - T)]

in case (i)

"rV(^ - T)]
),p(t - T)\

in case (ii).
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Also, from (23), in view of (24), (25) and (26), we find that

X"

277

-Xt , . ™,\ „ XT v - ^ ^Pi\ • / - \

+ e <p(t - T) \Re - 2 ^ rf y> in case (I)
L J

e-^vit - r,.) + £ r

T-\ \ XT , „ Ar v-^ AT, . , . . ,
- T) \e - 1 + Pe -2_^,Pie \ m case (n)

L J
Finally, in view of (6), we obtain

I J K

,e'K°k in case (i)

-X - X
AT,

in case (ii)

mo)u(t) = [(-I)"" V

and consequently

as required. Now set

x0 = x, Xl=Fx = F3(F2(FjX)) = u,

and in general
xv = Fxv_lt v = \,2,.

= 0

x2 = Fxx
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and observe that xr e Class I2n with A+(xv) / 0 , and for

X G A+(x) = A+(JC0) =• (A" + mo)
1/n e A+(«) = A+(*i)

and after v steps (A" + um0)
1^" e A+(xJ/), J/ = 1, 2, . . . which is a contra-

diction since Ao is a common upper bound for all A+(xv) .
This completes the proof when x(t) e Class l2n .
(b) x(f) € Class II2n .. By Lemma 4(b) we can assume that A~(x) / 0 .

Let A6 e A~(x). Also, by Lemma 6(b), there exists a positive number, say
Ao, such that A~(JC) is bounded above by Ao. For A e A~(x) consider the
functions

Z(t) =-s \x(t) + Y,Pi*(t-*,-)-ErAl-PM >
L / J \

n
n—v (u),..

z (0.

when ^ = - 1 ,

and

It is easy to see that z(t), w(t) and u(t) are solutions of Equation (1) and
they belong to Class l\2n .

Since Equation (2) has no real roots, by Lemma 1, the inequalities (5) and
(7) hold. We will show that

where m0 — m/N2 > 0 with

I § ] ̂  when S =

\ when S - -1.

https://doi.org/10.1017/S1446788700034406 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034406


[19] Neutral differential equations 279

To this end, it suffices to show that

-u{n\t) + (Xn + mo)u(t) < 0.

Define

<p{t) = e-xtw(n-x\t).

Then <p(t) > 0 and for X e A~(x) with X > X6, we have

m = _ e'Xt[-w{n\t)+Xw(n-l)(t)] = -e-
Xt{-z{2n\t)+Xnz(n\t)]

k[-x(n\t-ok)+Xnx(t-ok)]

that is, (p{t) is increasing. Also

(25') w{"'

Now, as in [25], we extend the definition of w(v\t), v = 0,1, ... ,n
such that w(v\t) are continuous positive and increasing on (-00,00) and

.-oo w{v\t) = 0, 1/ = 0, 1, . . . , n - 1. Then, in view of (25'),

w(t) =
J— oo-/— 00 J— 00

< -

and therefore for any co < T

rt+T
(26') / w(s) ds < ±eXt<p(t + T)[eXT -/

l-(O

Consequently from (23'), in view of (24'), (25'), (26') and the fact that
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<p{i) is increasing, as in case (a), we obtain

-u{n\t) + Xnu(t)

[20]

xt , „
e <p{t -X" -

eXteXt<p(t + T) x +x

K,

when d = +1

-Xa,

when d = - 1

which, by (7), leads to

Finally,

-uin\t) + X"u(t) < eXlq>{t

-u(n\t) + (Xn + mo)u(t) = [-u{n)(t) + Xnu(t)] + mQu(t)
xt< e > ( / + T)(-m + m0N2) = 0

as required. Now, as in case (a), we have a contradiction.
The proof of the theorem is complete.

4. Applications and examples

In this section we apply our main theorem and obtain some useful corol-
laries.

COROLLARY 1. Consider the mixed type differential equation

where n > 1, S = ± 1 , qk, ak, qk, 6k e E+ for k e Kl U K2. Then all
solutions of this equation oscillate if and only if its characteristic equation
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has no real roots.

Observed that in the case of the mixed type equations (cf. [20])

x{n)(t) + £ qkx(t - afc) - £ qkx{t + ak) = 0

and

their characteristic equations are respectively

/(A) = A" + ^ ^ e ^ * - ^ $te"* = 0

and

and it holds

/(+oo)/(-oo) < 0 and g(+oo)g(-oo) < 0 .

Therefore equations of the above forms always admit nonoscillatory solu-
tions.

The method of proof which we used to establish our main result is short
(cf. [7]) and also has the advantage that it results in easily verifiable sufficient
conditions for the oscillation of solutions to Equation (1). Indeed, this is de-
rived by comparing elements of the set A+(x) (respectively A~(x)) in each
case. Observe that we found points Aa and kb such that ka e A+(x) (re-
spectively Xa e A~(x)), while kb is an upper bound of A+(JC) (respectively
A~(x)). Thus, if we assume

we are led to a contradiction. Utilizing this idea, we can obtain several
sufficient conditions (in terms of the coefficients and the arguments only) for
the oscillation of solutions of Equation (1). The advantage of working with
these sufficient conditions rather than the characteristic equation (2) directly
is that the said conditions are explicit, while determining whether or not a
real root to Equation (2) exists may be quite a problem in itself. Thus, using
Lemmas 4 and 6, one can draw a number of corollaries. We confine ourselves
to the following:

COROLLARY 2. Consider Equation (1). Then any one of the following
two conditions imply that Equation (1) has no {nonoscillatory) solutions of
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Class L

when an > T, in case (i)

= an in case (ii).

COROLLARY 3. Consider Equation (1). Then any one of the following
two conditions imply that Equation (1) has no {nonoscillatory) solutions of
Class II2n:

(\ \ 1 / n 1
\R 2) > px °g

or

( 1 \l/n 2 1 + P /2n\"

REMARK 1. Observe that if there exists a bounded nonoscillatory solution
of Equation (1), then Class l2n is not empty.

REMARK 2. It is clear that when Equation (1) has no (nonoscillatory) so-
lutions of Class I2n and Class II2n , then all solutions of (1) oscillate.

EXAMPLE 1. Consider the third order neutral differential equation

Observe that the conditions (28) and (30) are satisfied. Therefore by Corol-
laries 2, 3 and Remark 2, all solutions oscillate. For example, sint and cost
are oscillatory solutions of Equation (31).

EXAMPLE 2. For the second order neutral equation

(32) ^ [ x ( 0 + x{t - 8TI) - 30x(r - n)] + x(t - n) + 33X(t + 2n) = 0

condition (28) is satisfied. Therefore, by Corollary 2, Equation (32) has no
(nonoscillatory) solutions of Class I2n and, by Remark 1, all bounded solu-
tions oscillate. For example, sint and cost are bounded oscillatory solutions
of (32). Note that condition (29) is not satisfied. Thus, in this example, we
can not conclude that all solutions oscillate.

EXAMPLE 3. Consider the mixed differential equation

(33) X
{4\t) + 5e2*X(t - 2n) + e~n

X{t + n) = 0.
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Observe that this equation has no (nonoscillatory) solutions of Class l2n and
Class II2n and therefore all solutions oscillate. For example, e'sint and
e'cost are (non-bounded) oscillatory solutions of Equation (33).
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