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C-VALUATIONS AND NORMAL C-ORDERINGS 

M. CHACRON 

1. Introduction; basic facts about C-valuations. Let D stand for a 
division ring (or skewfield), let G stand for an ordered abelian group with 
positive infinity adjoined, and let co: D —> G. We call to a valuation of D 
with value group G, if <o is an onto mapping from D to G such that 

(i) o)(x) = oo if and only if x = 0, 

(ii) u{xx + x2) = min^O^), co(x2) ), and 

(iii) {o(x1x2) = <o(xj) + co(x2). 

Associated to the valuation co are its valuation ring 

R = {x e Z>|w(x) ^ 0}, 

its maximal ideal 

J = {x G |CO(JC) > 0}, 

and its residue division ring D = R/J. The invertible elements of the ring 
R are called valuation units. Clearly R and, hence, / are preserved under 
conjugation so that 1 + J is also preserved under conjugation. The latter 
is thus a normal subgroup of the multiplicative group Dm of D and hence, 
the quotient group Dm/\ + / makes sense (the residue group of co). It 
enlarges in a natural way the residue division ring D (0 excluded, and 
addition "forgotten"). Of crucial importance for this work will be the 
group congruence 

a = b (mod 1 + / ) 

(i.e., a, b e D* and ab~l e 1 + / ) . For convenience this equivalence 
relation will be extended to D in a standard way: 

Definition 1.1. Write a = b (mod 1 + / ) if, and only if, 

a(\ + J) = b{\ + / ) . 

Unless otherwise specified "a = b" will always stand for 

a = b (mod 1 + / ) . 
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C-VALUATIONS 15 

There follow some straightforward facts about these equivalences rela­
tions, all consequences of the strict triangle inequality which is listed first. 

Fact 1.2. For {at} c D, / / / i= j implies co(at) ¥= co(a) then 

o)(2 at) = min(co(^) ). 

Fact 1.3. If a is a valuation unit {i.e., u(a) = 0) then a = b if and only if 
a - b e / . 

Fact 1.4. To say that a = b is to say that a = 0 or co(a — b) > co(a). 

Fact 1.5. ( [4, Lemma 5.11, (2) ] ). a = b, c = d and a =/È —C together 
imply a 4- c = b + d. 

I come to the specifics of this work. From now on the division ring D 
comes equipped with the antiautomorphism x —> JC* of period 2 (except 
when D is a field and JC* = x for all JC e D). We say that x e D 
is symmetric, skew-symmetric, or unitary if x = JC*, JC = — x*, or 
x = (x*)~ respectively. A norm in D is a symmetric of the form xx* 
where x e Dm. The subset of all sums of norms in D is written P. The 
closure of P under product and sum is written C(*-core). It is the subset of 
all sums of monomials (xjjcf). . . (xrx*)(Xj e D'). 

Definition 1.6 The valuation co: D —» G is a *-formally real valuation, if 

(Cl) œ(x*) = CO(JC) (^valuation) 

(C2) co(a + 6) = min(<o(a), w(6) ), for all a,b ^ P. 

As observed first in [4], Axiom (CI) alone means something of im­
portance for the objects R, J, D, D'/\ 4- J, and = . We have that R is 
a ^valuation ring; that is, for all JC e D* JC*X_1 is a valuation unit. Thus 
R is *-closed, J is *-closed, D carries the induced involution JC + J —> 
x* + / , D*/\ -f J carries the residue involution JC(1 + J) —> JC*(1 + / ) , 
and = is *-closed (i.e., a = b if and only if a* = b*). There follow facts 
about *-formally real valuations. 

Fact 1.7. If o) is any * -valuation then to say that co is * -formally real 
is to say that the involutorial residue division ring D has the property that 
2 XjX* = 0 implies all xt = 0. Equivalently, in the valuation ring R, 
1 + 2 xtxf is invertible (is a valuation unit). 

Fact 1.8. For to a * -formally real valuation we have 0 £ P so that charac­
teristic (D) = 0. In fact, 0 £ P(D) so also characteristic (D) = 0. 

Fact 1.9. (Holland) For <o tf«y *-formally real valuation: 

(i) cy = 0^*, j = 1, . . . , r, implies S cy = 2 apf. 

(ii) a = at, i = 1, . . . , r, implies a = -(ax + . . . + ar). 
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16 M. CHACRON 

Proof. Use 1.4 and 1.5. 

The subject matter of *-formally real valuation co is not to be under­
taken here in its entirety. I shall narrow it down to the special case of a 
c-valuation, according to the main 

Definition 1.10. By c-valuation, I mean a *-formally real valuation such 
that: 

(C3) (aa*)b = b(aa*), for all a, b e D. 

Before I address the consequences of Axiom (C3) let me introduce a 
few more notations. The centre of the division ring D is denoted by Z 
(or Z(D), if there is danger of confusion), the center of D is denoted by 
Z(D), the centre of D*/\ + / is written Z(D*/\ + / ) , and the inverse 
image of Z(D'/\ + J) in D* is denoted by Z (normal subgroup of resid-
ually central elements). The following theorem shows how (CI) does signi­
ficantly enrich *-formal reality. (See, in particular, parts (2) and (4).) 

THEOREM 1.11. For co any c-valuation of D follows: 
(1)0 £ C; 
(2) co(a + b) = mm(oô(a)A, u(b) ), for all a, b e C; 
(3) C (and, hence, P) c Z; 
(4) For each c e C, there is p G P with c = p; 

A — 

(5) u e Z jor all symmetric valuation units u and, hence, either D is a 
field, or D is a normal quaternionic division ring. 

Proof. (4) A typical element c of C is of the form c = 2 yt where 

y\ = ( * I Ï * ? I ) • • • (*IV*I>) w i t h a 1 1 xij G D'-

By Axiom (CI) follows that for xt = xt . . . xt, we have yt == xtx*. By Fact 
1.9 follows 

c = 2 x^f G P, 

as desired. 
(1) This is a direct consequence of the conjunction of (4) and Fact 1.8. 
(2) Again, by (4) and Fact 1.8. 
(3) By (4) it suffices to show that P c Z. Let 

c = 2 XjX*, xt G D*. 

For arbitrary « e D*, 

a~ ca = S U " (XjXf)a, 

and by (C3), 

Û~ (XjXf)a = xtxf 

so that by Fact 1.9 we get 
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a ca = 2 xtxf = c, 

placing c in Z 
(4) Let u = u* be a valuation unit. If 1 — u ^ J then w = 1 and, hence, 

u e Z. If, on the other hand, 1 — u <£ J, then 1 — u is also a symmetric 
valuation unit. For arbitrary a e D \ we have 

« u a = u and « (1 — M) 0 = (1 — w)̂  

so that using Fact 1.3, 
1 9 9 1 9 9 

p = a u a — u and q = a (\ — u) a — (\ — u) 

both belong to / . Thus 

p — q = 2(a~ ua — w) e J. 

Since 2 is a valuation unit it follows that a~xua — u e J hence, a~]ua = u, 
placing u in Z. 

In particular, w maps into the centre Z(Z>) of Z), for all u = u* e R. By 
a well-known theorem of J. Dieudonné follows that either D is a field or D 
is 4-dimensional with the unique involution with fixed set and subfield 
precisely Z(D) (normal quaternionic division ring). 

As an interesting consequence of the preceding theorem, P and C can 
be identified in D*/\ + / so that, modulo (1 + / ) , P, shares the richer 
property of C (normal subgroup of /)*). 

As for the motivation for Axiom (C3) here is my reasoning. When the 
-core C of the division ring D excludes 0 (regardless of the valuation) I 

called such a division ring D a c-orderable division ring. It turns out that 
D possesses a partial order relation named c-ordering such that: 

(01) a > b implies a* > b*; 
(02) a > b and c > d together imply a + c > b + d; 
(03) 1 > 0 and for each s = s* G Dm either s > 0 or s < 0; 
(04) a > 0 implies oxx* > 0, for all x G D\ 
A basic question asks whether every c-ordering induces an order valua­

tion o) and if, further, <o is a c-valuation of D. 
Here, co (if it exists) is the canonical valuation with valuation ring R 

the subset of all elements a e R such that aa* can be bounded above by 
some positive integer. In [2], I claimed that the answer to the first question 
is yes and that the answer to the second question is partially yes ( [5], 
Theorem 1.11). Unfortunately there is an error in the proof of the basic 
[2, Lemma 5]. I shall have to produce a counter-example here. 

Definition 1.12. By normal c-ordering of the involutorial division ring D, 
I mean a c-ordering of D with the following extra axiom: 

Axiom (05). For all non-zero symmetries s and U in D, ifu can be bounded 
below and above by some positive rationals then sus > 0. 
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18 M. CHACRON 

For such a oordering, I will show here that there is an order valuation, 
which is a ovaluation (Theorem 3.1.9). Actually, the converse will also be 
demonstrated under the assumption the residue division ring D carries 
some archimedean oordering (Theorem 3.1.10). 

As Axiom (C3) is purely valuation-theoretic it leads to the question ask­
ing what is the full nature of a ovalued division ring Dl This question 
is to be addressed in Section 2 of this article. There will be fairly com­
plete results. And the promised link between ovaluations and normal 
oorderings will open the way to new results about oorderings. Among 
other things a criterion for extending a valuation of the centre Z of D to a 
ovaluation co of D is applied to extend a field ordering of Z to a normal 
oordering of D. This result provides a varied class of finite dimensional 
normally oordered division rings. 

Finally, I should emphasize that in this work involutions need not be of 
the first kind and that unless otherwise assumed the carrier D will be 
algebraic over its centre Z (if not finite dimensional over Z). 

Acknowledgements. I thank S. S. Holland (Jr.) for a number of key ideas 
and constructive criticisms over the period of this research. Many thanks 
also to J. Dauns, H. Gross, and A. Wadsworth for stimulating conversa­
tions. Partial support of NRC of Canada is acknowledged. 

2. Structure of a ovalued division ring. This section begins with a quick 
investigation of the commutator subgroup of D* (Section 2.0). In 2.1, 
residue degree, ramification index are examined. In 2.2, certain types of 
bases (MVP-bases) are investigated with a view to solving the extension 
problem for ovaluation. In 2.3, examples of c-valuations are given. All no­
tations, facts, and definitions in Section 1 shall be freely used. The involu-
torial division ring D is everywhere equipped with a fixed ovaluation. 

2.0. Commutator subgroup of D*. For this subsection only D need not be 
algebraic over Z. Let me write [a, b] for the left commutator a~xb~xab\ 
a,b <E D\ 

THEOREM 2.0.1. For D any c-valued division ring, [Dm, Dm] maps into the 
unitary group of the involutorial residue division ring D. 

Proof. Given a, b e Z)*, let c = [a, b]. We have to show that 

cc* = 1 (mod 1 + / ) . 

Now: 

cc* = a~lb~la(bb*)a*(b~l)*(a~x)* 

= (bb*)a~lb~\aa*)(b~l)*(a~1)* 

= (bb*)(aa*)a~\b~l)(b~l)*(a~1)* 

= (bb*)(aa*)(a*a)~\b*byl. 
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By Axiom (C3), 

aa* = a~ (aa*)a = a*a, 

giving 

cc* = (bb*)(b*b)~] = 1, 

as desired. 

THEOREM 2.0.2. If all valuation units in D are in Z, then [Dm, D*] maps, in 
fact, into the subgroup {1, —1} of D 

Proof For let a, b <E D\ We have 

1 = [aa*, b] 

= ((a*yl[a,b]a*)[a*,b] 

= [a, b][a*9 b] 

= [a,b][(a*a~l)a,b] 

= [a, b](a~l[a*a~\b]a)[a,b] 

= [a, b][a, b]. 

Therefore [a, b] = I or [a, b] = —I. 

THEOREM 2.0.3. If not all valuation units are in Z, then [D*, D*] maps onto 
the unitary group of D. 

Proof There are two cases. 

Case I. Some valuation units do not commute modulo 1 + J. By 
Theorem 1.11 (5) either D = Z(D), or D is quaternionic and the involu­
tion of D is the unique involution with fixed set and subfield Z(D). By 
hypothesis the latter case must occur. In this case, given û G D , â ^ 0 , w e 
can find b with â* = b~lâ~b (Noether-Skolem). For w any unitary in D, 
û =£ =b 1, we can write û = â*â~l for some â (via Cayley parametrisation). 
Then 

u~ = b~ âbâ~ = [b,â~~ ]. 

It suffices then to lift b and â to valuation units b and a in R, which gives 

[b,a~l] + / = [b,â~l] = Û. 

Case II. Valuation units always commute modulo 1 + / . If for each 
k = —k* e R, o)(k) > 0 then the induced involution is trivial and, hence, 
all valuation units are in Z, which we agreed to rule out. This shows that 
there is k0 = —k$ with u(k) = 0. Now if k0 G Z it is easy to show that all 
valuation units are in Z, which we ruled out. Thus there must be x0 e D* 
with 
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XQ k0x0 ^ k0 (mod 1 + J). 

Now, the mapping 

U + / —> XQ UXQ -f J 

is an automorphism of the field D. By construction, this automorphism 
fixes the subfield F of symmetries of D, which has index 2 in D. Thus the 
Galois group of D over F is {/, (*) }. Hence, the preceding mapping co­
incides with the identity automorphism or with the induced involution of 
D. Because 

x0 k0x0 E£ k0 (mod J) 

we get XQlk0x0 = k$ = ~k0. Let then U be a unitary in D. If û = — 1 
then lift w to [x0, k] = — 1. If w ^ zbl, then w = â~*â~~ for some valuation 
unit a ^ R, where â = a + / . Then JC^^XQ = a* giving 

a*a~ = XQ ax0a~ . 

Hence, û can be lifted to [JC0, a
- 1 ] . 

To close this subsection, it seems desirable to say something decisive 
about a commutator c in Z, which is a root of unity. For this situation 
occurs for a symbol division algebra. 

THEOREM 2.0.4. Every commutator (or a product of commutators) c which 
is a central root of unity must be, in fact, 1 or — 1. 

Proof Write c = cx + c2 with cx = c* and c2 = — c | both in Z. If 
c2 <£ J then <o(c2) = 0 for clearly c ^ R. Since c e Z it follows that c2 is a 
central skew symmetric valuation unit. This readily gives that every skew 
symmetric valuation v unit must be in Z (just multiply v by c2 to get a 
symmetric valuation unit). By a routine argument all valuation units must 
be in Z, in which case, [Z>#, D%] maps into {1, — 1} so that c = ± 1 and, 
hence, c = c* whence c2 = 0. This shows that c2 = 0. Because c is a root 
of unity in Z it is clear that c2 is algebraic over the rational subfield Q of 
D. Now the restriction of co to Q is the trivial valuation. Since c2 = 0 we 
get c2 = 0 and, hence, c = q is symmetric. The subfield F of symmetries 
of Z is clearly formally real and, hence, orderable. In F sits the root of 
unity c. Thus c = 1 or — 1, as desired. 

2.1. Residue degree and ramification index. Throughout, D stands for an 
involutorial division ring with a ovaluation co (unless otherwise specified). 
Clearly, w/Z, the restriction of co to the field Z, is a valuation of Z with 
value group written G0( = {co(z)|z e Z} ) and valuation ring R n Z. The 
quotient group G7G0 (oo's excluded) is called the relative group and 
its order, if finite, is the ramification index of co (over Z) which is denoted 
by e (or ew if there is danger of confusion). Let Z = Z Pi #/. / . Then 
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Z c Z{D), the centre of the residue division ring D( = R/J). As a vector 
space over Z, the division algebra D has a dimension, which is called 
the residue degree of <o over Z, and is denoted by / (or f^ if necessary). 
Clearly, 

Fact (1) / = [D:Z] = [5 :Z(5 ) ] [Z(5 ) :Z ] . 

The inertial inequality asserts that 

Fact (2) ef£[D:Z(D)]. 

By a very useful result of late Draxl as considerably generated by P. Morandi 
( [16] ) follows 

Fact (3) efd = [D:Z], 

where 

1, for characteristic (D) = 0 

d = { for characteristic (D) = p 
(a, some non negative integer). 

When d = 1, we say that the valuation to is defectless. Another result of 
considerable use for this work is Wedderburn's: 

Fact (4). If a e D* is algebraic over Z with degree r, then there are r 
conjugates ax, a2,. . . , ar to a in D such that the minimal polynomial pa of 
a over Z can be factorized as follows: 

pa(t) = (t - ax). . . (/ - ar\ 

{the factorization is in D[t]9 the polynomial ring over D with central in­
determinate t.) 

THEOREM 2.1.1. If a G Z then, in fact, a = z for some z G Z*. Hence, 
Z = Z*(l 4- J) and so, Z* maps onto Z(D*/\ 4- / ) . 

Proof Under the notations in Fact (4) we have 2 at = z, where — z 
is the coefficient of tr~l in pa. Since a G Z, it follows that a = ai and 
since <o(r) = 0, 

- 2 a, 
giving 

ra = 2- ci: = z 

1 
« = - z . 

r 

The rest of the statement of the theorem is straightforward. 

COROLLARY 2.1.2. Every symmetric valuation unit s is of the form s = z, 
where z = z* G Z is a valuation unit. 
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Proof. We know from Theorem 1.11, part (4) that s e Z. NOW, the mini­
mal polynomial of s has all its coefficients central symmetries. It suffices 
then to repeat the reasoning in Theorem 2.1.1. 

THEOREM 2.1.3. For D algebraic over Z and co any * -formally real valua­
tion all of whose symmetric valuation units are in Z (in particular if co is a 
c-valuation) we have: 

1 . ^ = 1 , if and only if the induced involution is trivial or, to the contrary, 
there is a central skew symmetric valuation unit in D. 

2.f„=l orfa_= IforD = Z(D). 
3 . / t t = AforD * Z(D). 

Proof 1. If the involution of D is trivial then each valuation unit u is a 
symmetric modulo J so that u e Z and, hence, f^ = 1. If on the other 
hand, there is k0 = —kfi e Z with co(k0) = 0, this readily gives w e Z for 
all valuation units u so that, again, fu = I. Conversely, if fœ = 1 but the 
induced involution is not trivial then we can find k0 = — k$ a valuation 
unit and z ^ Z, such that z = k0 (mod / ) . Then 

X-(z - z*) s k0 

and so, 

co(-(z - z*) ) = 0 with - (z - z*) e Z \ 

2. The subfield Z n R/J is a *-closed subfield of the involutorial field 
D, and Z n i ? / / contains the subfield of symmetries of D (Corollary 
2.1.2). From this 

fa = [D:Z n R/J] = 1 or 2. 

3. Here, D is a division ring with centre precisely its subfield of sym­
metries and 

[D:Z(D)] = 4. 

Now, Z n R/J is a ̂ -closed subfield of D containing Z(D). If Z D_R/J 
strictly contains Z(D) then there must be â G Z n # / / , â £ Z(D). If 
Z? = Zz — â* then 

F G z n #//, 6 ^ 0 , 

and b lifts to a central skew symmetric valuation unit, which is ruled out 
by 1. 

THEOREM 2.1.4. For co a c-valuation of D and D algebraic over Z, 
the reative group G/G0 is an elementary 2-group (G = value group of co, 
G0 = W(Z) ). 
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Proof. For let oo =£ g G G. There i s i e / ) * such that co(x) = g. Then 

2g = 2œ(x) = o)(xx*). 

Since xx* G Z it follows by Theorem 2.1.1 that xx* = z, same z ^ Z. 
Thus 

2g = o)(xx*) = (A)(Z) G G0, 

as desired. 

THEOREM 2.1.5. Let D be any finite dimensional c-valued division ring. 
Then: 

1. [D:Z] is a power of 4. 
2. The ramification index e = [D\Z]/f with f a divisor of A. 

Proof. By Theorems 2.1.3 and 2.1.4 combined ef is a power of 2. Since 
characteristic (D) = 0 it follows by Fact (3) that ef = [D:z] so that [D:Z] 
is a power of 2. Because [£>:Z] is a perfect square [Z):Z] is, hence, a power 
of 4. 

Some remarks about the dimensionality of D are in order. 

Remark 2.1.6. (Albert) Indeed, [D:Z] is a power of 4 as soon as the 
involution of D is of the first kind. 

Remark 2.1.7. Every algebraic symmetric element a of D, a £ Z, has even 
degree over Z, where D is any c-valued division ring {possibly not algebraic 
over Z). 

Proof. With the same notations used in Fact (4), without loss of general­
ity, ax + . . . + ar = 0. Now, TLat = z = z* G Z. Thus 

rco(a) = co(al . . . ar) = co(z). 

If r were odd then r = 2m + 1 for some integer m i^ 0. Thus by the pre­
ceding equality 

co(a) = o)(z) — 2mco(a) 

= o)(z) — m(o)(aa*) ) 

= u(z(aa*rmy9 

or 

a = uz(aa*)~m, 

for some valuation unit u. Since a = a*, z = z* G Z, and (tftf*)-m = 
A 

((##*) )* e Z it follows that u = u* (mod / ) . Then since co(w) = 0, 
A A 

u G Z and, hence, a G Z, contrary to the equation #j + . . . + ar = 0. 
Remark 2.1.8. For Z) algebraic over Z andf^ ¥^ 4, every element a in D, 

a £ Z, /las evew degree over Z 
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Proof. For f03= 1, a e D, a <£ Z, we may assume that ^ + . . . + 
ar = 0. Since fu = 1 it follows by Theorem 2.0.5, that all commutators 
[a, b] = ± 1 . Thus at = ±a, for all i = 1, . . . , r. We count the number rx 

of occurrences a, = a and the number r2 of occurrences az = — a. Then 
from the preceding equality would follow rxa = r2a giving rx = r2 and, 
hence, r, = r2 so that r = rx + r2 = 2rx is even. For fu = 2, reduce to the 
case a is a valuation unit with a = — a*. Again (Theorem 2.0.3) a = ±at 

for each / so that r must be even. 

As a corollary to Remark 2.1.8 one can show directly (that is, indepen­
dently from the powerful Fact (3) ) that if fu ¥= 4 then, again, [D:Z] is a 
power of 4. Is there a direct proof for the case fœ = 4 as well? In this 
connection, one might ask the following questions. 

Question 2.1.9. If D is algebraic over Z must every element a e D, 
a <£ Z, be of even degree over Z? (True for f^ ¥= 4.) 

Question 2.1.10. If, regardless of the valuation, we assume that every 
symmetric a G Z), a & Z, has even degree over Z does it follow that 
every element a G Z), a £ Z, has even degree over Z? (In the affirmative 
[D:Z] is then a power of 4 for [Z):Z] < oo.) 

2.2. MVP-Bases and extending * -formally real valuations. By MVP-basis 
{ea} of any valued division ring D over its centre Z, I mean one which 
verifies the Minimum Value Principle; that is 

(MVP) <o(2 zaea) = mm(o>(zaea))(za G Z). 

The basis {ea} need not be finite for the preceding requirement to make 
sense; all that is needed is that, as usual, all za = 0 but for finitely many 
indices. Some properties of such a basis shall be investigated here in the 
context of a c-valuation co. On one or two occasions an interpretation of 
Axiom (C3) in terms of the given basis {ea} shall be given. This will help 
for the main goal of this subsection; namely, to find a criterion for a 
valuation of the centre Z of D to extend to a c-valuation of D, where we 
will be given an appropriate basis of D over Z. 

THEOREM 2.2.1. For co any * -formally real valuation (in particular ifco is a 
c-valuation) and arbitrary a, b G D, if o(a) ¥= u(b), then 

(E) u(aa* + bb*) < to(ab* + ba*). 

Proof. We have 

o)(ab* + ba*) ^ mm(œ(ab*), œ(ba*) ) 

= co(a) + o)(b) 

> 2 min(co(a), co(b) ) 
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= min(oo(aa*), co(bb*) ) 

- oo(aa* + bb*). 

THEOREM 2.2.2. Let D be a finite dimensional division ring with involution 
of the first kind. Let to be any *-formally real valuation such that every sym­
metric valuation unit is in Z (in particular if co is a c-valuation or if co has 
residue degree 1). Then: 

1. There is a basis {ea} of D over Z such that ifa^fi then for za, Zp e Z 
not both zeros follows 

< «( ( Z a O ( % ) * + (Zpe(l)(Zaea)*y 

2. Conversely, any * -formally valuation co with basis {ea} verifying (E') is 
such that {ea} is a MVP-basis. Here, every norm xx* is of the form 

xx* = 2 (Vf l ) (V«)* . za G z * 

It follows that co is a c-valuation if and only if all eae* e Z. 

Proof 1. By Theorem 2.1.3 for given / we can find / valuation units 
y0, yx, . . . , J V - I with the following properties: (i) when f ¥= 1, then 
all yt with i ^ 0 are skew symmetries modulo / ; (ii) for / = 4, we have 
y\ ' yi + J ^ i = 0 (mod / ) , and y3 = yxy2. Choose xx, .. . , xe in D* such 
that the oo(xt) form a complete set of representatives for the congruence 
- ( m o d G0) of G. Put 

{*«} = {*,} x {yj}. 

By construction, {ea} is linearly independent over Z. Since co is *-formally 
real it follows that characteristic (D) = 0 so that co is defectless and, 
hence, {ea} is a basis of D over Z. I proceed to check (E'). In effect, for 
a ¥= /?, and za, Zp e Z put a = zaea and Z> = z ^ . Now (E') is just 
(E) in Theorem 2.2.1. Thus if (E') fails necessarily za, Zp e Z*, and 
co(tf) = co(b) ¥= oo. Then for ea = xty-, ep = xeyk we have 

oo(a) = oo(zaea) = oo(za) + co(xf-), oo(b) = oo(zp) + w(x7). 

It follows that 

co(xz) = oo(xj) (mod G0). 

By construction i = / follows so that j ¥= k and co has residue degree > 1. 
Now, 

oo(a) = oo(za) + co(x,) = w(6) = co(z )̂ + «(.*,.) 

so that w(za) = co(z^). A simple computation shows that 

0 = co(aa* + bb*) — co(tf&* + ba*) = ^(jyj* + ^AJ/*)-
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When yj; = y0 = 1, then since yk = —y% it follows that 

y/yî + ykyf = - ^ + ^ = °> 

which contradicts the preceding equality. This shows that both y- and yk 

are skew symmetries modulo / ; but then, 

yjyt + ykyf = - ( J ^ + ^ ) = °> 

which contradicts again the preceding equality. With this (E') is 
established. 

2. For x G D*, we write 

x = 2 zaea, za e Z. 

Only finitely many indices a are such that za ¥- 0. Without loss of 
generality 

with all zr G Z \ We can write xx* in the form 

xx* = y^x) + y2(x)9 

where 

For each pair /, y with / < j the corresponding term in y2(x) has value 
strictly larger than 

<*(y\(x)) = min((o(z,^)(z,^)*). 

It follows that co(y2(x) ) > ^(y^x) ) so that xx* = y{(x). Then 

2co(x) = <o(xx*) = o)(y}(x) ) 

= min(<o(zaea)(zaé?a)*) 

= 2 min(co(zaea) ) 

or 

<o(*) = min(<o(zaé?a) ), 
A 

as desired. Finally, when co is a ovaluation then evidently eae* e Z for 
all « (after all, ea ¥= 0). Conversely, if eae* e Z for all a then by the 
preceding 

https://doi.org/10.4153/CJM-1989-002-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-002-6


C-VALUATIONS 27 

S 

xx* = 2 (zrer)(zrer)*> 

where (zrer)(zrer)* e Z For arbitrary a e D*, we have 

a~ (xx*)a = 2 A " (zr^)(arer)*al 

A 

so that xx* e Z, as desired. 

As a corollary of the preceding theorem if co totally ramified, co is *-
formally and if the involution is of the first kind then co is a c-valuation, a 
result which will be explored in [3]. What about the case of an involution 
of the second kind? There is a serious obstacle for ensuring (E'), and the 
argument as given in the proof of Theorem 2.2.2 Part 1, could badly break 
in the mixed case where za = z* and zp = —zp. An interesting situation 
where (E') is still valid even for an involution of the second kind is for a 
basis {ea} of D over Z, which is a #-basis (in the sense given by Amitsur, 
Rowen, and Tignol in [1] ). 

THEOREM 2.2.3. Every q-basis {ea} of D over Z is a MVP basis, where D 
is any c-valued division ring {the basis may be infinite). In fact, {ea} verifies 
(E') as in Theorem 2.2.2. 

Proof I shall break the argument in three steps. 

Step 1. Let co be any * -formally real valuation all of whose symmetric 
valuations units are in Z If u is a valuation unit such that c~ uc = —u 
for some c e D then u = — w* (mod / ) provided [c*c, u] = 1. 

Subproof Deny the conclusion. Then u = ux + u2 with ux = w* and 
u2 = —u* are in R, and w, ^ 0 (mod / ) . By hypothesis, w, G Z. Thus 
modulo J 

— Wj — u2 = c~ (t/j -f u2)c = w, + c~ u2c. 

Now, 

(c~ u2c)* = —c*u2c~ )* 

= — (c*c)(c~ u2c)(c*c)~ 

= -(c~xu2c). 
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In other words, c~ u2c is a skew symmetric modulo J so that u2 + c~ u2c 
is a skew symmetric modulo J and, hence, — 2ux is a skew symmetric 
modulo / , which is nonsense. This shows that ux = 0 and so, w = w2 is a 
skew symmetric modulo / . 

Step 2. If a, b G £)* are such that for some c e £)*, 

[ce*, Z>0_1] = 1, and[c9ba~l] = - 1 , 

//ze« u(ab* + for*) > o)(aa* + 6Z>*) where co is as in Step 1. 

Subproof Deny the inequality. Then co(fl) = co(£). Thus if we put 
w = for- then w is a valuation unit. By Step 1, u = — u* (mod / ) . 
Now u = ba~ gives b = ua so that 

tfè* + èa* = aa*u* + wfl#* 

= aa*(u* + (tftf*)- uaa*), 

and, hence, 

co(tf£* 4- èa*) = <o(fltf*) -f CÔ(U* + (00*) ~ uaa*). 

The relations, w* == — u and (fltf*)_1w(atf*) = w together imply 

w* + ( a a * ) " 1 ^ * ) = 0 ( m o d / ) , 

so that 

u(ab* + for*) > co(û?a*) = <o{bb*) = u(aa* + &>*). 

S/e/? 3. Every q-basis {ea} of D over Z verifies (Er) and, consequently, {ea} 
is a MYF-basis, where I assume that the valuation œ is a c-valuation. 

Subproof Let a ¥= fi and let za, Zp e Z. Put a = zaea, b = zpep. If 
za = 0 or if zp = 0 then (E') readily follows. For za, zp <E Z*, we have 

ab~X = V ^ V r 

Clearly #£ _ £ Z (for, otherwise, ea = z'ep, where z' <E Z, contrary to 
linear independence). Thus there must be y such that 

[ab~\ey] = [eaep\ey] ¥= 1. 

Since [ea, ey] = d=l, [ep, ey] = ± 1 , it follows that [eaep\ ey] = zbl so 
that [eaep ey] = —1 and, hence, [ab~\ ey] = —1 . By construction, 

[ab~\eye*] = [ab~\ e*ey] = 1. 

By Step 2 follows the inequality (E'). It suffices then to repeat the proof of 
Theorem 2.2.2 Part 2. 

As a side observation, the given of any g-basis {ea} for a c-valued 
division ring D is rich enough so as to yield directly the fact that such 
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a valuation is defectless (without making use of Fact 3) ). Another 
interesting aspect of such a basis is underscored in the 

THEOREM 2.2.4. (Structure of a ovalued division ring.) Let D be any 
finite dimensional c-valuated division ring, which is a tensor product of 
quaternionic division rings. Then 

D~D0® iy09 

where D0 is a central division subalgebra of D over its centre Z of D, at most, 
4-dimensional such that co/D0 has a residue degree precisely f^, and D'0, the 
centralizer of D0 in D, is totally ramified as a valued division ring. 

Proof When / = 1 we simply take D0 to be Z. In the opposite case, we 
may choose a g-basis {ea} of D over Z, which is an "armature", that is, 
eaep G zey, for some index y and z ^ Z. Because {ea} is a MVP-basis, if 
we set 

F = {aMeJ = 0 (mod G0) } 

then \F\ = f Without loss of generality the index set for the basis has 
a first member written 0, and e0 = 1. Moreover, when a e F then 
o)(ea) = 0. For such an a ¥^ 0, we can readily show that 

ea = ~ea ( m o d / ) . 

(See Theorem 2.2.3 Step 1). It follows that either \F\ = 2 or else |F| = 4 
and then D is 4-dimensional with all its symmetries central so that the 
three nonconstant base vectors e]9 e2, e3 anticommute pairwise. Since 
[et, ef\ = ± 1 in D we get that, in fact, [eh ef\ = — 1 if / ^ j ^ 3. We now 
choose D0 as follows. W h e n / = 2, pick any ea with [e,, ea] = — 1 and set 
D0 = Z[eu ea]. W h e n / = 4, set 

D0 = Z[e}, e2, e3]. 

Since exe2 is a valuation unit it follows that D0 = Z[eh e2]. Thus in both 
cases D0 is 4-dimensional with centre precisely Z. By construction, for 
/ = 2, {1, ex, ea, exea) is a MVP-basis of D0 over Z, which gives that 

Jo)/D0
 = 2 = Jco-

When / = 4 then, again, 

Jco/D0
 = ^ = J-

Hence in both cases fu/D = f Now, if D'0 is the centralizer of D0 in D, 
then D'0 carries the #-basis formed by all ea, that commute with all of D0. 
By construction, for all such ea, we have 

<o(0 m 0 (mod G0). 
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The latter sub-basis of D'0 is a MVP-basis so that the residue degree 
fu/D, = 1. Because CO/DQ is defectless it follows that (D'0\ <O/Z>Q) is 
totally ramified, as desired. 

It should be pointed out that the preceding theorem is not really of 
involutorial nature as nothing guarantees that D0 and, hence, D'0 are 
*-closed. Of course, if we insist that D0 is a tensor product of involutorial 
quaternionic division rings we can exploit a #-basis all of whose members 
are symmetries or skew symmetries, in which case, D0 and, hence, D'0 are 
*-closed so that co/D0 and G)/D'0 become c-valuations and Theorem 2.2.4 
takes on a full involutorial meaning. 

For the last objective for this subsection let me make the carrier D 
merely an involutorial ring with centre Z, a field. (This will prove practical 
for the constructions of c-valuations to follow.) I shall make a definitely 
strong choice of the basis {ea} of D over Z; namely, {ea} is a "*-armature 
basis" of D over Z, according to the 

Definition 2.2.5. By *-armature basis {ea} I mean a basis {ea} of D over 
Z such that 

(Al) The index set {a} is totally ordered with first member written 0, 
e0 = 1, and e\ ^ 0, for all a. 

(A2) Given indices a, /? there are z = z* ^ Z and y such that eaep = 
zer 

(A3) Each ea is symmetric or skew symmetric so that one can assign to 
each ea integer ca = z t l depending on whether ea = e* or ea = — e*. 

There follow some straightforward observations and notations needed 
for the extension problem; namely, to extend a "^valuation co0 of the field 
Z to a ovaluation of D. 

Remark 2.2.6. Every * -armature basis {ea} of D consists solely of in-
vertible elements ea with [ea, e^\ = ± 1 , for all pairs a and /?, so that all 
eae* = ±ea are nonzero central elements. 

Remark 2.2.7. Every tensor product of quaternionic involutorial division 
rings with involutions of the first kind equipped with the tensor product in­
volution has a *-armature basis. 

Notation 2.2.8. For G0 the value group of the ^valuation <o0 of Z let 

G^+1) = {<o(z)|z = z* ^ Z) 

and let 

G ^ 1 } = {co(z)|z = - z * G Z } . 

Notation 2.2.9. If for a given ea we have 

^{eae*a) = <o0(<b « 2<?<f«\ 
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I shall denote this relation by NCR[eJ (read: non congruence rela­
tion œ0(e

2
a) =£ 0 (mod 2G($

€«)). When NCRfeJ holds true for all a ¥= 0, I 
shall write ENCR[eJ (read: enough non congruence relations co0(^) ¥= 0 
(mod 2G^«)) ). 

Notation 2.2.10. For G0 the value group of <o0 and {ea} a *-armature 
basis of Z), let 

G = Gol 

[1 2 

stand for the extended order abelian group obtained by adjoining formal 
halves of all the co0(e

2
a) e G0 with cô0(e

2
a) £ 2G0. 

Notation 2.2.11. Let P0 = P(Z) be the set of sums of norms zz*, z e Z*. 
Let Po[eae*] stand for the overset of sums of products of norms of the form 
zz* or eae*. When 

œ0(a + b) = min((o0(û), w0(6) ) for all a, b e P 0 [ ^ * ] , 

I shall write EFR[eJ (read: extended *-formal reality of <o0 to P0[eae*] ). 

1 can now establish an important result. This is the 

THEOREM 2.2.12. (Main Theorem) Let D be an involutorial ring with 
centre Z afield, let co0 be a *-valuation of the involutorial field Z, and let 
{ea} be a * -armature basis of D over Z. The following requirements are 
equivalent: 

1. <o0 extends to a c-valuation of D so that D is a division algebra. 
2. Both EFR[ea] and ENCR[eJ hold true. 

Proof 1 => 2. That EFR[é>J holds true this is evident. For E N C R ^ J let 
0 ¥= a. Negate the corresponding relation 

co0(e
2
a) m 0 (mod 2(#->). 

Thus 

co0(4) ^ 0 (mod 2G0). 

Equivalently, 

W ( 0 s 0 (mod G0); 

that is, there is z = caz* with co(ea) = co(z) so that for u = z~lea we 
have <o(w) = 0 with u = u*. However, since a ¥= 0, there is /? with 
[ea, ep] = — 1 giving [w, e^] = — 1; but, since u = u* is a valuation unit it 
follows that w e Z s o that [«, ^ ] = 1, which brings a contradiction. 

2 =» 1. The argument is broken in four steps. 

-S/̂ /7 1. For a ¥= /?, arbitrary y, a« J za, Zo ^ Z not both zeros follows 
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(E") u0(aa* + bb*) < o>0(pro}y(ab* + ba*)) + ^<o0(e
2) 

where a = zaea a«J Z? = z^eo. (projy is the linear form, which assigns to 
x G D the coefficient of e after expansion of x in terms of the basis). 

Subproof If za = 0 or if z^ = 0 then ab* + 6a* = 0, while by EFRfo] 
follows 

g2 = 2<o0(eigz(z^ 4- €yzpz*)) + co0(4) 

= co0( (zey)
2) + 2<o0(zftz$ + c ^ z * ) 

^ <o0( (zey)
2) + 2<o0(zazp 

= »o(<&jù + 2co0(zafy) 

= <°0( ( V a ) 2 ) + <°o( ( z ^ ) 2 ) 

= <°o( ( V a K V a ) * ) + <°o( (zpefi)(zpefi)*) 

^ 2 min(<o0(tf<2*), o)0(bb*) ) 

= £i-

If then g2 > gj fails then by the preceding inequalities follow: 

(i) ^o(z«z |) = *>o0vj5 + ifplY and 

(ii) o>0(aa*) = a0(bb*). 

By (ii) follows 

2co(za) + w0(4) = 2w(zig) + w0(efy. 

Combining this with the equality eae^ = zey, which readily gives 

u0(e
2
a) + co0(^ = <o()(z

2) + co0(^), 

we can eliminate co0(e^) to get 

2w(za) + 2co0(4) = 2(o(z^) + co0(^) + w0(z
2). 

Then 

2(co(za) + œ0(e
2
a) - œ(zp)) = œ0((zey)

2)-

2(wo(z«z /A«) = «o( (**Y)2); 

2o>0(z~](zazp]e2
a) = a>0(e

2); 

2io0(z~\zaZpl)eaeZ) = u0(eye*). 

Put 

c = z " 1 ^ * ^ ^ ! . 
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We have c e Z. Working in the valued field Z with respect to the congru­
ence = (mod(l + J0), where J0 is the maximal ideal of <o0, if c ^ — eyc* 
then for d = c + eyc* we have J = eyd* and o>(d) = co(c) so that 

co0Oye*) = 2w(d)9 with J = cyd*, 

which violates ENCR[eJ. This shows that c = —eyc*. Now 

c = (Z~~leaeS)(ZaZ{îl) W i t h (z~leaei)* = (^"^a^) i n Z 

It follows that 

Vfi1 = -ty(ZaZp1)* °*>ZaZp = ~Vfiz*a 

so that 

contrary to (i). This shows that g2 > g\. 

Step 2. For r e D, x = 2 £«£a w/7/z za ^ Z put 

1 2 
<o(x) = mm(<o0(za) 4- -u0(ea)). 

Then: 
(i) w(x) exists in G so that co: x —> co(x) maps D onto G; 

(ii) w extends <o0; 
(iii) a)(x*) = o)(x), for all x e Z>; 
(iv) w(x + j>) ^ min((o(jc), « ( j ) )(x, j e D); 
(v) <o(x) = oo //, awd ow/y //*, x = 0. 

Subproof. This step is straightforward. 

Step 3. co is a * -valuation of D. 

Subproof First, I will establish that for JC G Z), x ^ 0, follows xx* is 
of the form 

xx* = c + ZJ caea, 
a¥=0 

where c e Z, and co(c) = <o0(c) < <o(caeft) for each a ¥= 0. For put: 

x = 2 ^aea , £a
 e Z, and 

-*« = Z«^«' y\ = 2 V a 5 ^2 = ^ £ < y *£•** + */*/?• 

For a fixed pair /? and y with /? < y and not both kp and kj are zeros we 
have for every S (Step 1): 

1 2 

^0(Pr°JsC*/?** + XjX$)) + -wo(^s) 
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> u0(xpx$ 4- XjXf) ^ min(co0(xax*) ) 

= w0(.Vi). 

Thus 

<*(xpx* 4 xy.x$) > w0( j j ) . 

Now, 

where ^ G Z. Here, each term in y2 is of the form 

XpX* + X y x | G Ze g , , 

where ^ y G Zey,. By construction, e5, T M . Thus xx* can be represented 
as desired with c = yx. Let now 0 ^ y e D. We have 

>>(xx*Xy* = c(yy*) + 2 cajeaj>*. 

I contend that 

«(>*„>>*) ^ a(y) 4- w(ea) 4- co(^*). 

For write 

J = 2 yp, where ^ - ^e a , ty e Z. 

Then 

Here, 

Since e^eae^ is a base vector it is clear that 

<*&**&) = - w o ( ( V a ^ ' ) ( ^ a ^ ) * ) 

Thus 

W(J^«J$') = <°('/?$' + w(^) 4- (o(ea) 4 (o(^) 

= <*(tpep) 4 co(ea) 4- a(tpep) 
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so that 

<*(yeay*) = <°0«) + <*(y) + °>(y*l 

as desired. It follows that 

w 2 ^é>aj>* = w(ca) + co(j>) + co(j>*). 
W o / 

Now, co( j ) = o>(y*). Because of the form of the norm yy* we have 

u(yy*) = 2<O(J0 

so that 

o)(ca) + co(ĵ ) + <o(>>*) = w(ca) + <o(.xy*) 

> <o(c) + <o(.xy*) 

= <*(cyy*)-

Therefore, 

co(^(xx*)j*) = co(cyy*) 

= œ(c) + w(jKy*) 

= o)(xx*) + <o(j>y*) 

= 2(<o(x) + coOO). 

It follows that >>xx*y* ^ Oso that j>x ^ 0. Then 

co(y(xx*)y*) = <o( ( y.x)(ja;)*) 

= 2<o(j>x). 

From the preceding equality follows 

co(yx) = o)(x) + <o(j) = co(y) + <O(JC). 

It is now clear that the algebra D has no divisors of zero. That D is a 
division algebra, in fact, D is a locally finite division algebra over its centre 
Z, this readily follows from the commutation rules [ea, e^\ = ± 1 . 

Step 4. oo is a c-valuation. 

Subproof. From the form of a norm xx* follows 

xx* = 2 zaz*eae*(x = 2 z a e j . 

By EFR[eJ readily follows that co is *-formally real. Actually 

so that certainly xx* e Z. 
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COROLLARY 2.2.13. Let D be as in Theorem 2.2.12 and suppose that the 
*-armature basis {ea} is such that a ^ 0 implies 

co0(4) m 0 (mod 2G0). 

Then D is a locally finite division algebra and co0 extends to a c-valuation to, 
which is totally ramified. 

Proof By construction ENCR[eJ holds true. Because of the submulti­
plicative property of {ea} we have <o0(^) ^ u0(e

2p) for all a, /? with a ¥* /?, 
which gives EFR[eJ. 

COROLLARY 2.2.14. If D has an involution of the first kind then the 
extensibility of <o0 simply means that if ea = e* ^ 1 then 

<°o0«) ^ 0 mod 2(G0) 

(EFR[eJ unchanged). 

COROLLARY 2.2.15. If to the contrary, there is z = — z* G Z W///Z 

<o0(z) = 0 //ze« //*e extensibility of co0 forces co0(ea) £ 2G0for all a =£ 0, z>z 
w/zzcA c&se, //ze extension co w totally ramified. 

For Corollary 2.2.14 just observe that G^+1) = G0, while G^_1) = {oo} 
so that in the requirement ENCR[eJ the skew symmetries base vectors 
automatically verify their corresponding non congruence relations, while 
the non constant symmetric base vectors ea must now be subjected to the 
full requirement o)a(e%) & 2G0. For Corollary 2.2.15, just observe that by 
hypothesis G5 ' = GQ~ ' = G0 so that the relation NCR[eJ assumes its 
full version 

œ0(e
2

a) m 0 (mod 2G0), 

where a ¥= 0. From this we get 

u(e2
a) m u0(e

2p) (mod 2G0) 

for all pairs a ¥= /?, which ensures EFR[eJ. 
Recall that the Structure Theorem (Theorem 2.2.4) asserts that every 

c-valued division ring D with #-basis is of the form 

D « D0 0 D'0, 
z 

where D0 absorbs the residue degree while D'0 is totally ramified. For a 
converse, let me then replace the rôle of Z in Theorem 2.2.12 by a *-closed 
division subring D0 with same centre Z and with a fixed c-valuation 
co0. We define a *-armature basis {ea} of D over Z>0, to be a *-armature 
basis of D'0, the centralizer of D0 in D. We write G0 for the value group 
of co0, G$ + 1 \ G^-1^ as in the preceding case, and use similar notations 
ENCR[eJ and EFR[eJ relative to D0. By similar arguments (although 
fairly longer) one can show the 
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THEOREM 2.2.16. Let D be any involutorial ring with centre Z afield, let 
D0 be a *-closed division subring with evaluation œ0, which has same centre 
Z, and suppose that D'0, centralizer ofD0 in D, has a *-armature basis {ea}. 
Then the following requirements are equivalent. 

1. o)0 extends to a c-valuation of D. 
2. Both ENCR[eJ and EFRfeJ hold true relative to D0. 

2.3. Construction of c-valuations. As a first special construction of c-
valued division ring take D = F[a, b], where F is a formally real field and 
a, b are two anti-commuting square roots of — 1. Let 

{ea} = {l,a,b,ab). 

For the unique involution of D with fixed set F at which thus a = —a*, 
b = — b* it is clear that {ea} is a *-armature basis. Let co0 be any formally 
real valuation of the field F. Since ea = — e* if a ¥* 0, NCR[eJ is 
vacuously satisfied. Since eae* = 1, EFR[eJ holds trivially true. Thus o)0 

extends to the c-valuation to with value group 

re, 

2Wo(V«) = G0. 

o)(x) = -<o(xx*). 

effect, xx* G 2 :(£>), for al [ x G D. This is the 

THEOREM 2.3.1. The classical normal quaternionic division ring D = 
F[a, b], where a and b are anti-commuting roots of' — 1, and F is a formally 
real field with formally real valuation co0, carries an extended c-valuation co 
with full residue degree 4, and, hence, same value group G0. Here, the residue 
division ring is F[a, b], where F is the residue field of F. 

For the next constructions of ovalued divisions rings I will assume 
familiarity of the reader with the notion of Hilbert division ring D(t; <p), 
where D is any division ring, t is an indeterminate, and the period of <p 
modulo the normal subgroup of inner automorphisms of D is r, with 
y induced by an element u0 e D fixed by <p and with u0 = vr

0 for v0 fixed 
by <p. Then 

Z(D(t; <p) ) = Z^( (v00 > 

where Z ^ is the fixed subfield of Z(D) relative to <p. 
We begin with Dx = D(xx) (i.e., xx is a central indeterminate) and 

choose the automorphism <pj of Dx at which q>^(x{) -•= —x}, and <cx(a) = a, 
for all a G D. We pass to 
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£>(1) = Dx(yx; „> , 

which we write D((xl; y{)). 
Here, 

Z(D<')) = Z(D){x\)(y\) 

and D^ has the armature basis {1, x1? >>l5 Xj^} over Z>(^, / [ ) . We define 
inductively 

D^ = Dn^(yf, %) 

= D<"-]\(xi;yl)). 

We also define by a limiting process D°°. 

THEOREM 2.3.2. Let D be any finite dimensional c-valued division ring, let 
D^n' be the iterated Hilbert division ring with In indeterminates 

(*,•; yi)ytx = -xtyi9 xjj = JJX,- and xtXj = XjXt for i * j , 

all xi9 yt commute with all of D), and let D{co) = UD(n\ Then 
1. D^n' carries an extended involution at which xt = ±xf , yt = ±y* 

(at will). 
2. D^ has the * -armature basis 

{ea} = I I { 1 , xi9 yi9 xft] over D(x\, y\,. . . , x\ y\) 

3. Both EFR[eJ and ENCR[eJ hold true relative to the standard exten­
sion o)(nx of o) to D(xh . . . ,_yw) so that <o,wx extends to the c-valuation or 7' 
ofD™ 

4 . Z ( # ) = Z ( D ) ( i | > ^ » 
5. For [D:Z] < oo, we /zave 

*«<«> = 4 " ^ />> = /*• 

fl/iJ, Ae/i^, [Z)(/l):Z(n)] = 4n[D:Z]. 

Proof The standard extension is the valuation with value group the lexi­
cographic product Gw X 2Z X 2Z at which 

*>(i)(*i) = (0, 2, 0), and ox(y]) = (0, 0, 2). 

Here 

co(1)(fl) = (<o(a), 0, 0), for all Û G D. 

Generally, co^ has value group Gw X 2Z X . . . X 2Z, while a/w) has value 
group Gu X Z X . . . X Z (<o^ is also the standard extension of co to all of 
D^). It is now fairly easy to verify 1 to 5 making use of Theorem 2.2. 

If instead of D^ we take D^ then all properties 1 to 4 in the preceding 
theorem remain valid. Of course, Z>(°°) is locally finite, 7[>(oo) = 7L» anc^ 
^ ( o o ) = OO. 
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As a special case of the preceding theorem we can take D to be a field F 
with trivial involution and trivial valuation, where we assume F to be 
formally real. In that case F^ is then totally ramified of dimension 4n. On 
the other hand, if we apply the construction to the classical division ring 
D = F[a, b] described in Theorem 2.3.1, then D^ has dimension An+X 

with full residue degree 4 and ramification index 4n. 
I am left with one more type of example; namely, a c-valued division 

ring with residue degree 2, which is not normal quaternionic. A prospec­
tive example was given by Holland. Here is essentially his example. 

Start with any formally real field F with formally real valuation <oF. Pass 
to the complexification F[\/—1] of F and extend o)F to F[ y/—l] in the 
usual way: 

o>F(a + b^/z^ï) = -o>F(a2 + b\ 

Let <jp be the Galois automorphism of F[yj— 1] over F and let 

D = F[V^\](t; <P). 

Here, Z = Z(D) = F(t2) and {1, y ^ , /, V^t} = {ea} is a 
*-armature basis of D over Z, where the involution (of the first kind) ex­
tends that of F[\/—l], and is such that t = t*. Then coF extends in a 
standard way to Z = F(t > with value group GF X 2Z. We obviously 
have ENCR[eJ as well as EFR[eJ relative to the extension of coF 

to Z. Thus coF extends to a c-valuation with value group GF X Z. Here, 
eu = foi ~ 2, and D = F[\ /—1], the complexification of the residue field 
of i \ Hence the 

THEOREM 2.3.3. Let D = F[^/—\](t; <p) be the Hilbert division ring 
over the complexification of a formally real field F, relative to the Galois 
automorphism of' F[yf--\] over F. Let LÙF be any formally real valuation of 
F, and let D^n> be the iterated Hilbert division ring as in the preceding 
theorem (or, even, D^00'). Then coF extends to a c-valuation of D^ of residue 

degree 2 (and D^n' = D°° = F[ y/— 1], the complexification of the resi­
due field ofF. 

Finally, other types of construction of ovalued division rings shall be 
offered in the referred joint work with Professor A. Wadsworth. And 
lastly, there is a cheap way to make the forgoing constructions with 
involutions of the second kinds without disturbing their nature. Thus if D 
is any c-valued division ring, so is the Hilbert division ring D(t), where we 
declare the indeterminate t a central skew symmetric. Then <o extends in a 
standard way to a c-valuation with same residue degree and same 
ramification index, and, hence, 
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3. C-ordered division rings: new results. In this concluding section, I 
assume that the reader is fairly familiar with part of my work [2] and, 
mostly, with the results of Sections 1 and 2. In 3.1, relationship between 
normal oordering and ovaluation is established. In 3.2, I will investigate 
the centre of a oordering and in 3.3, solutions to the problem of extending 
a field ordering to a normal oordering are given with examples. 

3.1. The order valuation of a normal c-ordering. First, let me review some 
of the correct results in [2] about a general c-ordering. 

Fact 3.1.1. The subset R of all elements a e D such that aa* < n for 
some natural number n is a * -closed valuation ring in D. 

Fact 3.1.2. (i) The unique maximal ring ideal and 2-sided ideal J of R is 
the subset of infinitesimals j ; that is, jj* < \/nfor every natural number n. 

(ii) The group of invertible elements U of the ring R is the subset of 
elements u such that \ln < uu* < n for some natural number n. 

(iii) D = R/J has all its symmetries central in D. 

Fact 3.1.3. Let M = {a <E_D\a = a* > 0} andjet M = (M n U)/J. For 
a~, b G D = R/J write â > b if and only if â — b £ M. This is an ar chime -
dean field ordering of the subfield of symmetries of D at which ~aa* > 0 for 
all a e D,a * 0. 

Next, let me answer the general question to know whether R induces a 
ovaluation of D. The valuation in question co is the canonical valuation 
with valuation ring R. Its existence is then ensured by R is preserved under 
conjugation in D. As for its desired type; namely, co is a c-valuation, we 
have something in this direction: 

Fact 3.1.3'. (i) If R is preserved under conjugation in D then, in fact, for 
every a e D*,aT a* is in U. Equivalently, u(a*) = œ(a). 

(ii) The residue division ring D is evidently * -formally real and, conse­
quently, co is a * -formally real valuation. 

Proof (i) We pass from the element a~ a* to its inverse a*~ a by con­
jugation by a followed by taking the involution. From this a~]a* must be 
in U. 

(ii) This is evident. 

Fact 3.1.3' tells us that we can say that our oordered division ring D has 
a *-formally real order valuation. I proceed to an example of oordered 
division ring D with order valuation definitely not a ovaluation. 

THEOREM 3.1.4. There is a ^-dimensional c-ordered division ring D with 
order valuation to not a c-valuation. 

Proof Let F = Q[\/2] and let D = F(t) be the Hilbert division ring 
over F where the indeterminate / is subjected to the commutation rule 
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t(a + by/2) = (a - by/2)t{a, b e Q). 

Clearly D is a 4-dimensional division ring with centre Z = Q(/2> and 
generators y/2 and / over Z. Here, D has the discrete valuation co which 
assigns to the Laurent power series 

2 ait' 

its "value" n0, where we assume that all at e F and an ¥= 0. 
We turn D to an involutorial division ring by declaring y[2 and t both 

symmetries. Here, 

(2 a/)* = 2 a/0/'', 
where 

« + V2£ = a - V2£ O, 6 e Q). 

A general series a = 2 <V* gives rise to the norm 

aa* = 2 a/tJQj = a2
nt

2n + . . . (^ G i?). 

Any monomial in norms is of the form 

c = b\mt2m + ... (b2m e F). 

If C is the *-core of D and if Cx is the set of sums of the form 2 ztct, 
where ct G C and zt ^ Z = Q(t2) has a positive lowest rational 
coefficient then 0 £ Cj. By a version of [2, Theorem 2] there is a 
c-ordering of D such that if JC > 0 in D then xc > 0, where c G CJ . In 
particular, t2 is an infinitesimal at the c-ordering and, hence, t is an 
infinitesimal. From this F[ [t] ] c R, the order subring of the c-ordering. 
Because (\ /2)2 = 2 it follows that \ /2 G #. Thus F[[t]][t9 y/2], the 
subring of D generated by / and y/2 over F[ [t] ] is contained in R. 
However, F[ [t] ][/, y/2] is the valuation ring of the discrete valuation <o. 
By maximality follows 

R = F[ [t] It, V2]. 

Hence, the c-ordering has order valuation co. However, we have y/l is a 
symmetric valuation unit with ty/2 = — y/2t. Therefore co is not a c-
valuation. 

Theorem 3.1.4 shows that, [2, Theorem 7] is wrong even when the 
residue division ring D is a field. In effect, there is an error of sign that 
occurs in the course of the proof of Lemma 5 of the cited paper in page 
509, line 8 from the bottom. Actually, even the asserted fact that the order 
subring R is preserved under conjugation cannot be salvaged from the 
proof as given. There follows a necessary and sufficient condition for this 
preservation requirement to hold true. This is the 
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THEOREM 3.1.5. For any *-closed valuation ring R in D with 2 invertible in 
R to be preserved under conjugation it is necessary and sufficient that for all 
pairs s = s* and k = — k* follows sk £ 1 + J or, equivalently, ks £ 1 + / . 

Proof For if R is preserved under conjugation but sk — 1 G J then 

-ks - I = (sk - 1)* G / . 

Also 

ks - 1 = s~\sk - l)s G / . 

Thus 

- 2 = ( - f a - 1) + (ks - 1) G / , 

which is ruled out. 
Conversely, let s = ±s* and J = —d* be in 2)*. Let g = d~]s~lds. If 

g ^ J then g ^ ± 1 , and, hence, sd — ds =£ 0 and sd + ds ¥= 0. Now 

(5J — <is)- (sd 4- <&) 

= (sd(\ - d~ls~lds))~l(sd(\ + d~ls~~lds)) 

= (sd(\ - g)y\sd(\ + g)> = (1 - g r v r v x i + g) 
= (i - g)-\i + g ) . 

Because g e / w e have (1 — g)~l(l 4- g) — 1 G / and, hence, 

Od - ds)~\sd + ds) - \ <= J, 

which obviously contradicts the hypothesis. This shows that g £ J. Simi­
larly g~x £ J and, hence, g ^ U, the group of invertible elements of R. 

From this for every s = ±s* G D*, we have s~]us G [/, for all w G £/. 
Thus s_1ifa c i£. For general x G /)*, if x*x~] G / then 

(JC + x*)~\x*x~l)(x 4- JC*) 

= ( ( 1 4 - x*x~l)x)~l(x*x~l)(\ 4- X*JC_ 1)X 

= X~~\x*X~l)x = X~lX* G / . 

Thus 

(X~1X*)* = XX*~l = (x*X~lyl G / ; 

but we have x*x~l G / . This shows that x*x~l £ J. Similarly, we can 
show that ( J C * * - 1 ) - 1 £ / giving x*x~l

 G U, for all x G D*. By an 
observation of Holland [4], since every commutator aba~xb~1 is a product 
of elements of the form x*x~l it follows that aba~xb~x G R, and R is 
preserved under conjugation. 

THEOREM 3.1.6. Let D be any c-ordered division ring. The following re­
quirements are equivalent: 
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1. The order is compatible] that is, we have the Axiom (06) (Compatibility 
Axiom). If s = s* > 0 and ifj G / , then 

s(\ + j) + (1 + j*)s > 0. 

2. The order valuation co exists and co is order compatible; that is, for all 
symmetries s and d in D: 

s > d > 0 => o>(s) ^ o)(d). 

Proof 1 implies 2. For if s = s* and k = —k* were such that ks — 
1 G / then there is j e / with A: = (1 + y > _ 1 . If, say, s _ 1 > 0 then 

0 = k + k* = (1 + y > _ 1 + j _ 1 ( l + 7*); 

but, 

s~\\ + y*) + (1 + y > - ! > 0 . 

Similarly, if s~x < 0 then 

-k = (l + vX-s"1) 
gives 

o = (-s'\\ + y*) + (i+ yx-j"1) > o. 
This shows that ks — \ <£ J. Since 2 is evidently invertible in R we get 
that R is preserved under conjugation in D. If co is the canonical valuation 
with valuation ring R we know from Fact 3.1 that co is a *-formally 
real valuation. Finally, if s = s* > d = d* > 0 but CÛ(S) > o)(d) then there 
is j G / with dj = s > d giving 

d(j - 1) + (y* - \)d = 2(5 - d) > 0. 

However, by hypothesis d > 0 implies 

rf(l - y) + (1 - y*M > 0, 
which contradicts the preceding inequality. 

2 implies 1. This is straightforward. 

Conversely, if we are granted that the order valuation wof a c-ordered 
division ring exists and co is order compatible then evidently Axiom (06) 
holds true. One might ask whether this axiom will render the valuation co a 
c-valuation? In effect, the example found in Theorem 3.1.4 yields an order 
compatible order valuation so, the answer to the question is definitely in 
the negative. As a matter of fact, later on in Theorem 3.2.7,1 will establish 
that the order valuation if it is to be real (i.e., archimedean value group) it 
must be order compatible, in particular for a discrete order valuation (as 
in Theorem 3.1.4). 

On the positive side there are partial results true for general c-ordering 
(no need for normality) to be established in the next theorems. They flow 
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from the following fairly precise result, which is definitely not purely 
algebraic. 

THEOREM 3.1.7. Let u G Rbe such that uu* — l e / (unitary modulo J). 

if 

u2 + w*2 â 0 for all integers n = 0, 1, 2, . . . 

then u — 1 G J. 

Proof. Put 

W* = ^ = an + K 

where ana* and fe„ = — b*. Clearly 

un+\ = Ul = (al + bl) + (anbn + V J 

= fl«+l + h+V 

From w0 + w$ §̂  0 follows a0 = a$ > 0. Since 

wowo = (ao + ^oX^o ~ bo) = (ao - bo) + ( V o - ^ o ) 

= 1 (mod / ) 

it follows that 
9 9 

Û0 — b0 = 1 (mod / ) . 
If bl e / then b0 e / giving I/Q = w0w$ = 1 and, hence, w0 = ± 1. Because 
a0 > 0 we must have w0 = a0 = 1. Assume to the contrary that b0 & J. 
From 

a\ — bl = 1 (mod / ) 

and — bl e (7 is positive follows ÛQ < # = 1 for some positive rational q. 
Then 

"i = Oo + *o) + ( f l A + V o ) = fli+*i 

has symmetric part ax = axal + bl < q. Thus w2 = #2 + ^2 n a s symmetric 
part «2 < <?• By induction «, we get that un has symmetric part an < #". 
Hence, for n large enough <?w < 1/2. 

However, since «w* = 1 we get unu* = 1. Thus a\ — b\ ~ 1. From 
un + x + w*+1 ^ 0 follows 

a2
n + b2

n^Q or ^ - £ 

By the previous congruence relation follows thus a^ = 1/2, which contra­
dicts the inequality an < 1/2. 

THEOREM 3.1.8. Let D be any c-ordered division ring with order subring R. 
Then 
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1. For every c e C we have c*c — l e / . 
2. For every c ^ C we have cRc~ c R. In fact, cue — w e J for all 

u e U. 

Proof 1. Let u = c~ *cc*c~ . Then u = w* G C and, hence, w > 0. If 
g > 1 is a rational such that u > q we get cc* > #c*c. Then 

c > #c*c(c*) -1. 

Then c* > qcc*c~ and so, 

c*c > qcc* > # c*c 

giving 

(1 - q2)cc* > 0; 

but, cc* > 0 and 1 — q2 < 0. This shows that w < q for all rationals 
q > 1. By symmetry w - 1 < q for all such rationals. Therefore u — 1 e / . 
If v = c_1*c then 

vv* = « = 1 (mod / ) . 

Because v e C we have 

v2 + v*2 > 0. 

By the preceding theorem v = 1 (mod J) and, hence, c*c_1 = 1 (mod / ) 
or c*c~l - l e / . 

2. Let u = w* e 1/ and let c G P. Then cu2 e C. By 1, 

(cu2y\cu2)* = w~2c_1w2c = 1 (mod / ) . 

Since w e U we get 

c_1w2c = w2 (mod / ) . 

Replacing w by 1 4- w and eliminating gives 

c~ uc = u (mod / ) . 

For general s = s* e R if s e / then 1 + .s = (1 + s)* e 17. By the 
preceding 

1 4- s = 1 + c~ sc or c~ se e / . 

For fc = —A:* G î  if /: G £7 then — k2 e t/ is symmetric. Thus 
c-1&2c = &2. Hence, ckc~l e 17. If, on the other hand, A: e / then A:2 e / 
giving c k c e / and, hence, c &c e / . 

Because c~]sc e i? and c~xkc e i? for all s = s*, k = —k* G i ? w e 
get c~ Re c i?. It remains to show that 

c~xuc = u (mod / ) for all w e JJ. 
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As c su = s (mod J) for ail s = s* e R it suffices to show that 

c~xkc = k (mod J) for all A: = -k* G t/. 

Let v = cA:c" 1fc~]. Then v e £/. Because the residue division ring D has 
all its symmetries central it follows that 

w* == v*v (mod / ) . 

From this v*v - 1 is a unitary modulo J. Hence, v*v~ — 1 e / or v* = v. 
Thus 

k~ c~ kc = v* = v. 

Since v = v* and since k e U we have 

v = k~xvk = k"xckc~\ 

Thus 

k~xc~xkc = k~xckc~x 

and so, 

c~ kc = ckc~ . 

From this 

(ckc~x)k~x = k~x(ckc~x) = k~x(c'xkc). 

Accordingly 

(cikc"1^"1)2 = ((ckc~x)k~x)2 

= (ck2c~x)k~2 

= 1. 

Thus c/cc~ 1 A : - x = zb 1. From cA:c_ * A:- * G C, we derive that ckc~ xkk~~x = 1. 

THEOREM 3.1.9. For any c-ordered division ring D the following require­
ments are equivalent: 

1. The normality Axiom (05) holds true: {i.e., if s = s* G £>* ««J u = u* 
is such that q\ > u > q2 for some positive rationales qx and q2 then 
sus > 0). 

2. The order valuation co ex/s/s and <o w a c-valuation. 

Proof Assume the assertion in 2. For s and w as in the statement if 
sus < 0 then 

sus = (sus)s < 0. 

Also, s~xus < 0. Thus 

sus~ 4- s~ us < 0. 
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Now, since w is a ^-valuation we have 

sus~x = u{\ 4- 7) for some j e. / . 

Thus 

M(1 4 j) + (14- j*)u < 0 or -(uj + 7*t/7) > 2w > 2?2. 

However, from u ^ U and 7 e / follows — (w/ 4 7*w) e / , a contra­
diction. 

Assume the assertion in 1. Let u = u* e U and let 

1 
v = y. 

1 4- u2 

Then v G U and 
2 w2 1 

vu 4 v = ~ + ^ = 1. 

1 4- u2 \ + u2 

For s = s* E D ' w e have 

s~ vs 4- s~ (vw )£ = 1. 

Since vw2 e C it follows that s~\vu2)s > 0 giving 

s~lvs = 1 - s~\vu2)s < 1. 

From this 

(^"^^X^v^ -1) < 1 f o r s - 1 ^ e C. 

Hence .y_1v.y G i£. Thus J _ 1 V J 4- svs - 1 e jR. Let 
/ = 2v — (s~ V5* 4 svs~ ). 

If / G [/ and / > 0 then / > q for some positive rational g. Thus 
sts~l > ^! for every positive rational qx < q for then t — qx remains a 
positive symmetric in U so that s(t — qx)s > 0 or s(t — qx)s~x > 0; 
sts~x > qx. Thus 

sts~x = 2svs~] - (b 4 s2vs~2) > ^ . 

Now by the preceding theorem s vs~ - v G / . It follows that 

2svs~x — 2v > q2 

for every positive rational q2 less than qx. Hence 
2(svs~l 4 s~lvs) - 4v > 2q2) 

resulting in — / > q2, which is impossible as / > 0. This shows that / > 0 
implies 

t <= J or 2v - (s~lvs 4 svs~l) e / . 
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By symmetry, if t < 0 then / G / as well or 

2v = s~ vs 4- svs~ . 

Now s~]vs — svs~] G J for s~2vs2 — v G / . Thus 

2v = 2s - 1vs orv = s~lvs (mod / ) . 

Because v = 1/(1 4- u2) is invertible in R we get 

s~\\ + w2> = 1 + w2 

and, hence, 
1 9 9 

s u s = u (mod / ) . 

Replacing w by 1 -f w and eliminating gives 

s~xus = u (mod J) 

for all s = s* and w = u* G [/. 
I proceed to show that for all x G D*, X~ lx* is a unitary modulo / . To 

begin with if s and k are such that ks — u G / with u = u* G £/ then we 
would get ks — sk — lu = j for some y G / . Thus 

2u -\- j ~ s~ (2w + j)s = s~l(ks)s — s~ (sk)s 

= s~ (ks)s — ks. 

Because ks — u G / we have ks G U. Since s~ xs = sxs~ for all x G U 
we have 

s~ (ks)s = s(ks)s~ = sk. 

Thus 

sk — ks = 2u + j = ks — sk, 

a contradiction. This shows that ks — u <£ J for all k = —k* and 5 = 5*. 
From this the valuation ring R is certainly preserved under conjugation. 
Thus x~lx* is an invertible R. Put x = s -\- k, where s = s* and k = —k*. 
If k~ s = u with u G U but u ^ —u* then 

AT^ - sAT1 = w + u* G I/. 

As in the preceding we can dismiss this situation. Thus u = —u*. Now 

JC~1JC* = Jt(s + k)~\s - k) 

= (k(k~ls + l))~lk(k~ls - 1) 

= (k~ls + l ) " 1 ^ " 1 * - 1). 

Because u = k~xs == — w* it follows that x - 1 x * maps onto a unitary 
in D. 

If, on the other hand, k~ls & U then for k~~ s G 7 we get 
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x = s + k = k(k ls 4- 1) = k 

so that certainly x*x~] = —1 is a unitary modulo / . For s~]k e J we 
get 

X = s(\ ~\r S~ k) = S 

and, again, x*x~l ~ 1 is a unitary modulo J. 
Having shown that x*x~l is always a unitary modulo / , we derive that 

all commutators are unitaries modulo / . For c e C and JC e Z)*, cxc~ ]x~ 
is thus a unitary modulo / . In view of Theorem 3.1, cxc~ x~ = 1 and <o is 
a c-valuation. 

THEOREM 3.1.11. Conversely, if co is a c-valuation of D then œ can be 
realized as the order valuation of some normal c-ordering if and only if the 
residue division ring D carries some archimedean c-ordering. 

Proof For the "only if" part observe that in D we have an archimedean 
field ordering of the subfield S of symmetries of D at which xx* > 0 for 
all x G D, x ¥= 0. This is evidently an archimedean c-ordering. 

For the "if" part the restricted c-ordering to S is an archimedean q-
ordering (in the sense given by Prestel) and, hence, by Prestel's [9] this is 
a field ordering of S, which is evidently an archimedean c-ordering of D. 
Let 

px = [a = a* G U, a + J > o in D} 

and let P = {a + j \ j e / } . By construction, P is closed under sums, 
products, taking inverse, and taking (*). Also, because every a = a* e U 
is residually central we get that P is preserved under conjugation in D. In 
short P behaves as the *-core C of D and then 

P.C = { 2 Pic,\Pi e P, c, e C) 

inherits all properties of C but possibly 0 £ P.C. A general element pt in C 
is of the form 

Pi = ( 2 xtjXfj){\ + £,), where ez e / . 

Moreover, we can express pt in the form 

Pi = j y ? ( i + *,•), 

where v( = v* e /?. Thus 

m = w*(i + nK, 4 = (i + «,-K- e ^ 
Hence, a general element of P.C is of the form 

x = 2 ^ ( 1 + v,-H-
If, say, co^yf) = «(jy/*) for all /, then 
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(ytf) lx = (1 + v,)J, + 2 zlZf{\ + vt)d, 
i±\ 

By construction, vt > 0 in D so that 1 + vz- > 0 in JD. Thus (y\y*)~]x maps 
onto a positive element in D. Therefore JC ¥* 0. 

Put Cj = C.P. I proceed to show that Cx enlarges to a domain of 
positivity of some c-ordering of D with order valuation precisely co. For let 
M be any subset of D which is maximal for the conjunction of the 
following requirements: (i) 0 £ M, (ii) M = M*, (iii) M -f M c M, 
(iv) Cx c M, and (v) CXM c M. By a trivial version of [1, Theorem 2, 
p. 499] follows that if we declare a > b in Z> if and only if « — b e M then 
we get a c-ordering of D. It remains to show that the order valuation 
associated to this oordering is equivalent with the initial c-valuation <o. 
This reduces to establishing that for each u in D we have co(u) = 0 if and 
only if uu* can be bounded below and above by rationals. Now, <o(w) = 0 
implies co(ww*) = 0 so that uu* maps onto a norm in D. By construction, 
ww* + J > q + J in D for some positive rational. Because M D C Z> 77- it 
follows that MW* — g e M so that ww* > q in Z>. Also, since the residue 
ordering in D is archimedean a similar argument shows that uu* < q' in D 
for some rational q\ as desired. Conversely, if q < uu* < q' for some 
positive rationals we are to show that co(u) = 0. Because uu* > q it 
follows that to(w) > 0. For, otherwise, since q > 0 in D and since # — uu* 
maps onto g in D we would get # — uu* G 77 c M or g > ww*, 
a contradiction. Because #' > uu* it follows that co(w) < 0. Therefore 
co(w) = 0, which concludes the proof. 

3.2. The centre of a normal c-ordering. A central feature for a c-ordered 
division ring D lies in the fact that every norm aa* e Z>* is order multi-
pliable according to the 

Definition 3.2.1. (1) Call a G D order multipliable if b > 0 implies 
te > 0 and ab > 0. 

A 

(2) Let C stand for the subset of all elements a, which are order multi-
. A 

pliable. Refer to C as the centre of the c-ordering. 
A 

THEOREM 3.2.2. The centre C oj any c-ordering {possibly non normal) 
has the following properties'. 

1. C c C c M = {x G £>|x > 0}. 
2. C w a *-closed multiplicative subgroup of D, all of whose elements c are 

such that c*c~ — 1 e / . 
3. C is closed under sums. 
4. For all a, b e C we have œ(a + b) = min{o)(a), co(b) }. 

Proof 1 and 3. It is fairly straightforward to show that Cis closed under 
sums and products. Since x i * G C for all x e D' it follows that C c C. 
Evidently C c M. 
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2. Ifû G C and b e M then since b* e M we get ab* e M and Z?*a e 
M and, hence, ba* and # *& G M giving a* e C Because (a*a) G M we 
obtain a(^*a)~ ] G Cor(a*)~l e C and, hence, # _ 1 e C. Also, as for the 

A 1 

case c e C one can show that ifc G C then c*c maps onto a unitary in 
D. In view of Theorem 3.1.7 one gets that c*c~l — 1 e / . 

4. For a, Z> e C we have a, b ^ M and, hence, a + Z> > 6 > 0. For 
A A 

c = a + b we have c > Z? > 0 with c Œ C Then c* e C, and, hence, 
cc* > Z?c* > 0. Since c* > 6* we have be* > />/>* and, consequently, 
cc* > £&*. If now co(a + b) = co(c) > o)(b) then c = 6/ for some j e / . 
Thus cc* = bjj*b*. Since g — y)'* > 0 for all positive rationals we get 

b(q ~ jj*)b* > 0 or bjj*b* < qbb*; 

that is, cc* < qbb*, contrary to the relation cc* > bb*. This shows that 

œ(a + b) ^ u(fc). 

Similarly 

<o(fl + ft) S C0(fl). 

Because 

<O(A + b) â min{co(a), co(fr) } 

we end up with the quality 

o)(a + 6) = min{co(fl), <o(Z>) }, 

as desired. 
A 

To strengthen the analogy between C and C let me establish the 

THEOREM 3.2.3. Let D be any c-ordered division ring. Then: 
1. For every c e C and x e R we have exc — x e J\ 
2. 7/̂  the c-ordering is a normal c-ordering and if the compatibility Axiom 

(06) as in Theorem 3.1.6 holds true then C c Z. 

Proof. 1. For let JC = JC* G £/. Then x c e C In view of the preceding 
theorem we get 

(x2c)*(x2c)~l - 1 = c*x2c~lx~2 - 1 e / . 

Because c*c~ e ./ we derive that 

CX 2 C _ 1 JC - 2 — l e / . 

As in an earlier situation this gives 

CJCC- x _ — 1 G / for all i G [/. 

2. We have 

cc* = c (mod 1 + j). 
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7 A 1 A 

Since the oordering is normal it follows that c e Z and so, c ^ Z. 
I contend that if JC e Z>* is such that 

[c, Jt] = e x e - 1 * " 1 ^ 1 ( m o d / ) 

then, in fact, 

[c, xc — ex] = —\ (mod 7). 

For clearly xc — ex e Z)\ NOW 
i 2 i 

c(xc — cx)c = ex — c xc 
' j A >•} ' j •"} 

Because c e Z we can write c x in the form c x = (1 + y)xc , where 
j e / . Thus 

c(xc — cx)c~ = (x — (1 4- 7')xc) 

= (ex — xc) — jxc. 

Because 

u(jxc) > co(xc) and 

<o(cx — xc) = o)( (cxc~ x~ — \)xc) = o)(xc) 

we get that 

(ex — xc) — jxc = (ex — xc)(l + / ) , 

where / G J. Hence 

c(xc — cx)x~] = —(xc — ex) (mod 1 + j), 

as desired. 
If now s = —s* G Dm is such that 

[c, s] = esc - s - =̂ 1 (mod / ) 

then [c, cs — sc] = — 1. Because c* = c (mod 1 + J ) , 

[cs — sc*] = — 1. 

Hence for d = d* = cs — sc* we have 

cdc~x = - ( 1 + y2)J 

where y2 e J. It follows that 

ede = - ( 1 + j2)dc2. 

If d > 0 then so must be o/c and, hence, 

- ( 1 + j2)d > 0. 

However, since j 2 e / we have 
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(1 + j2)d + d{\ + ft) > 0, 
a contradiction to the assumption [c, s] ^ 1. 

On the other hand for s = s* e D* if [c, s] ^ 1, then 

[c, cs — sc] = — 1; 

but, since c = c* (mod 1 4- j) we have 

cs — sc = —(cs — sc)* (mod 1 4- j), 

which contradicts the preceding. 
All in all, [c, x] = 1 (mod / ) , whenever x = JC* or x = — x*. Since by 1, 

A 

[c, u] = 1 for all u e. U, we can conclude that c e Z making use of the 
formal identities 

((1 4- x*x~l)~\x + JC*) fo r*** - 1 ^ 1 
x = i 

[(l - JC*JC _ 1 ) _ 1 (^ - x*) forx*Jc_1 ^ - 1 . 

For a general c-ordering a further property of the *-core C lies in the 
fact that xCx* c C and, consequently, one can say that for all c e C we 
have xcx* > 0. Can one say as well that xcx* > 0 for all c e C? Under 
the hypothesis of the preceding theorem in part 2, we can write 

xcx* = xx*vc(l 4- y), 

where y G / . For c = c* G C we have xx*c > 0. Hence, if we assume 
xcx* < 0 we get a contradiction. For general c e C if we strength-

A 

en Axiom (06) by assuming 1 4- / c C a similar argument shows that 
xcx* e C for all x e D*. Better still, the preceding stronger axiom will 

A 

force C to be preserved under conjugation in D and so, 
i A 

xcx* = xcx (xx*) e C. 

Hence, the 
THEOREM 3.2.4. (I) If the c-ordering is a normal c-ordering such that the 

compatibility Axiom (06) holds true then for all c G C and x G D* follows 
xcx* > 0. 

(2) If the c-ordering is a normal c-ordering and if Axiom (06) is strength­
ened to the extent 1 4- / c C then C becomes a normal subgroup such that 
xcx* e C for all c e C and x e Z>\ 

As a last point of investigation for this part let me characterize the 
extreme case C = M; i.e., M is multiplicatively closed. Recall that if, 
further, M happens to be a normal subgroup of D then the c-ordering was 
given the name of strong ordering in [5]. 

THEOREM 3.2.5. Any c-ordering of D which has a multiplicatively closed 
domain of positivity is such that: 
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1. The c-ordering is a normal c-ordering. 
2. Axiom (06) holds true. 
3. D car ries a strong ordering. 
4. D contains no algebraic elements over Z except when D = Z or D is a 

normal quaternionic division ring. 

Proof. 1. Given s = s* and any u = u* > 0 we have 

sus = ( — s)u( — s). 

Thus sus > 0 and Axiom (05) holds evidently true. 
2. If s = s* > d = d* > 0 then s2 > ds > d2. From this u(s) S <o(rf). 
3. Let M = M(l + / ) . It can be readily verified that the order relation 

defined by 
A 

a > b <=> a — b ^ M 

is a strong ordering of D. 
4. By Theorem 3.2.5 follows C = M c Z Thus for all j - s* G D* and 

x G Z>* we have 

[s, x] = sxs~~ x~ = 1. 

I proceed to show a more general result: Let <o be any *-valuation of D 
such that (1) co(n) = 0 for all integers n ¥= 0, (2) [a, 6] = 1 for all a = a*, 
b = b* G Z)#. Then except when D = Z or D is a normal quaternionic 
division ring, Z) contains no algebraic elements over Z (other than the 
elements in Z). 

Step 1. A e Z > r «// a* G ZT. 

Subproof. It suffices to show that [a, x] = 1 for all x = —x* G D° and 
a = a* G Z>". If [a, x] È̂ 1 then since x is symmetric we get [a, x ] = 1. 
From this 

[x, xa — ax] = — 1. 

Because x = — x* and xa — ax = (xa — ax)*, if we put 

£ = x(xa — ax) — (xa — ax)x 

then b — b* so that [a, 6] = 1. Since [x, xa — ax] = — \ we have 

Z? = 2x(xa — ax) (mod 1 + / ) . 

From xa — ax = (xa — ax)* follows [xa — ax, a] = 1 and from 
[b, a] = 1 follows thus [x, a] = 1, which we agreed to rule out. 

Step 2. The conclusion holds true for the involution of D of the second 
kind. 

Subproof By routine argument [a, b] == 1 for all pairs a, b with 
a = ±a*, b = ±b*. Thus all a = zta* G Z From this all valuation units 
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A 

are in Z, which readily gives D c Z. In that case, it is easy to deduce that 
Dm contains no proper algebraic elements over Z using a trace argument. 

Step 3. The conclusion holds true for D algebraic over Z. 

Subproof. It suffices to show that a e Z for all a = a* e Z)*. In effect, if 
a <£ Z then we can find b = a — z = b* with b £ Z and some conjugates 
to Z> adding to 0. However, because è e Zwe reach a contradiction. 

S/£/? 4. The conclusion holds true. 

Subproof. By the preceding steps we may assume that the involution of 
D is of the first kind with [D:Z] = oo. Let then û £ D , f l ^ Z b e algebraic 
over Z. We shall reach a contradiction. After modifying a we may assume 
that there are conjugates to a adding to 0 so that a £ Z. By Noether-
Skolem's, we can find / G D9 such that t~lat = a*. If t + /* ^ 0 then by 
routine calculations 

(/ 4- /*)_ 1«(/ + /*) = a*. 
A 

Since f + /* e Z> we get a = a* (mod 1 + / ) and, hence, a e Z, which 
we agreed to rule out. This shows that t + t* = 0. Let yl be the centralizer 
of a* in Z). For y ^ A follows 

(ty)~la(ty) = y~xCxaty = y~]a*y = a* 

so that ty + (/y)* = 0, this for every y e A. A simple computation shows 
that 4̂ is commutative so that A = Z[a] is a maximal subfield finite-
dimensional over Z and, hence, 

[D:Z] - [Z[a]:Z]2 < oo, 

a contradiction. 

In the theorem we just proved we assumed that the order valuation <o is 
compatible with the given oordering. This requirement follows, of course, 
from the requirement 1 + / c C. It implies the compatibility Axiom (06). 
Here is the announced case of interest where this axiom holds true. 

THEOREM 3.2.7. If the value group G of the order valuation w is archime-
dean (real order valuation) then oo is * -compatible. It follows that C c Z. 

Proof. I will establish a slightly more general property of <o, to know: 

[a > b = b* (mod 1 + / ) 
co(fl) ^ w(6). 

b > 0 
(^) 

Property (&) will be checked by stages beginning with case a e C 

Ste/? 1. If a G C, //*e« (^) Aofcfc Ow. 
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Subproof. Put b = ac. Since b > 0 and a is order multiplicable it 
follows that c > 0. From b = b* and a = a* G Z follows c = c*. Here, 
a > b = ac implies 1 > c so that 1 > (c + c*)/2 placing (c + c*)/2 in R 
and, hence, c = (c + c*)/2 is in R so that 

<o(Z>) = o)(a) + <o(c) ^ co(#). 

Step 2. It is to be shown that whenever u(b) = 0 (mod 2G) then (&) 
holds. 

Subproof. For one can write b in the form some 0 ¥= x in D, and some 
valuation unit u. Put a = bd. Then from 

a = bd = (xx*u)d > xx*u = b > 0 

follows ud > w > 0. Here 

w = (xx*)~]b with 6 = 6* (mod 1 + / ) 

so that u = u* (mod 1 + / ) . If now w(a) > u(b) then 

o)(d) = co(è_1û[) = o)(a) - co(b) > 0. 

Accordingly, d e / follows. Since w is a valuation unit, it follows that 
ud e / . From this, and 

-(ud + d*u*) > -(w + «*) > 0 

follows (w + w*)/2 G / ; but 

-(u + u*) = u (mod / ) , 

and w is a valuation unit. This shows that u(b) ^ co(a). 

Step 3. If the conclusion of (£P) fails then if we put d = b~ a, and 
g = ±co(b), depending on whether w(b) > 0 or o)(b) < 0, then 

g > no)(d) > 0, 

for all n = 1, 2, 3, . . . . 

Subproof First, co(J) = <o(«) — co(Z?) > 0. Next, by the contrapositive to 
the preceding step follows co(b) = 0 (mod 2G), so that co(b) ¥= 0 and, 
hence, either w(b) > 0 or co(b) < 0, so that g = ±o)(b) is uniquely 
determined. 

Case g > 0. Clearly: 

0 ^ (6 - </*)(& - J*)* 

= (b - d*)(b* - d) 

= M>* - (M 4- d*b*) + J*J. 
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Thus 

(bd + d*b*) - bb* ^ d*d. 

Since bd = b(b~]a) = a > b, it follows that bd + d*b* > b + b*, 
so that 

J*d g (M + </*/>*) - bb* ^ b + b* - bb*. 

Since <o(Z>) = g > 0, and Z? > 0, it is clear that b + 6* > #66*, where # is 
any positive rational. For, otherwise, one would get for some rational q0 

bb* è q~\b + b*) > 0. 

Here bb* is in C. By Step 1, follows 

œ(bb*) S <o(4-1(6 + 6*)). 

Thus 

2<o(6) - 2g S w(^_1(^ + **)) 

= <o(6 + 6*) 

= <o(6) 

= g> 

for from 6 = 6* (mod 1 + 7W) follows 

o>(b + 6*) = <o(6). 

Since g > 0, one gets a contradiction. This shows that b + b* > qbb* for 
all positive rationales q. In particular, 

b + b* > 2(66*). 

Thus: 

</*</ ^ (bd + </*</*) - ift* 

^ (6 + 6*) - Z>Z>* 

= - (6 + 6*) + (-(6 + 6*) - 66*1 

^ - (6 + 6*) > 0. 
2 

By Step 1, follows 

2œ(d) = u(d*d) ^ co(6 + 6*) = w(6) = g. 

Since g ^ 0 (mod 2G), the preceding inequality is a strict inequality; 
that is, 
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g > 2œ(d). 

To feedback this inequality proceed as follows: Let 0 ¥= c in D be such 
that 

o)(cc*b) â 0 

and, hence, 

w(cc*b) > 0. 

From a > b > 0 follows cc*a > cc*b > 0. Again, 

cc*b = (cc*b)* (mod 1 + JJ. 

Also, since u(a) > <o(&) it follows that 

cô(cc*a) > a)(cc*b). 

Now, the element J = b~ a in the preceding becomes 

By the preceding argument follows 

g' = œ(cc*b) > 2<o(rf') = 2<o(rf), 

or 

g = w(6) > 2cù(d) - 2(o(c). 

If we set c — J - 1 , then indeed 

<4cc*b) = a(d~\d~x)*b) = <o(Z?) - 2co(rf) = g - 2co(rf) > 0. 

For such a choice of c one gets 

g = u(b) > 2o)(d) - 2œ(d~~]) 

= 4œ(d). 

Step by step, one can show that g > 2mo(d), m = 1, 2, 3, . . . , which 
shows that g > nœ(d), for all integers n. 

Case g < 0. From the basic inequality 

a > b > 0 

follows 

(bb*)~xa > (bb*)~lb > 0 

or 

(bb*)~xa > (b*)~l > 0. 
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Again, 

(&*)-' = ( ( 6 * ) - ' ) * (modi +JJ, 

and 

w(((M>*r ')a) = "(a) - 2u(b) 

= (w(fl) - «(* ) ) + co( (**)- ') 

Here, 

coCCft*)"1) = -"(/>) = - g > 0 . 

The element d in the preceding case is now the element d"\ 

d» = ((b*)~l)~\bb*yla 

= b*b*~]b~]a 

= b~xa = d. 

It follows that 

-u(g) > nœ(d), 

n = 1, 2, . . . , as desired. 

Step 4. (^) Ao/ds true. 

Subproof. For a and b as in the statement of (^) if the conclusion 
o)(a) ^ <o(Z>) fails we showed that the element g0 = co(b~ ]a)is much larger 
than g = \u(b)\(\ù)(b)\ = œ(b) for a(b) ^ 0, |w(6) | = -w(fe) for 
co(Z>) < 0), which contradicts the archimedean assumption. 

Step 5. C c Z. 

This was established in Theorem 3.2.1. 

3.3. Extending a field ordering. In this closing section we are given an 
involutorial division ring D with ordered centre Z (or a more general 
ordering). We wish to examine when does the field ordering of Z extend to 
some normal oordering of D. Obviously, if the problem has an affirmative 
solution then the order valuation of the field Z will extend to a c-valuation 
of D\ namely, the order valuation of the extended oordering. Hence, this 
problem is at first glance harder than its purely valuation theory 
counterpart. In the facts, we shall attack the considered problem by means 
of a valuation argument. We will build our ordering by making pre-use of 
its order valuation. 

Definition 3.3.1. By strong c-ordering of Z, I mean a field ordering of the 
subfield of symmetries of Z such that xx* > 0 for all x e Z, x ¥= 0. 
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THEOREM 3.3.2. Let D be any involutorial ring with centre Z carrying a 
strong c-ordering, and suppose that D has a *-armature basis {ea} over Z. 
Then the ordering ofZ extends to some normal c-ordering of D if and only if 
(i) each norm eae* is positive in Z; and, (ii) for every non constant base 
element ea = e* (ea = — c*) the elements eae* and zaz* are never archime-
dean equivalent in Z, this for every za = z* (za = ~z*) in Z 

Proof Suppose that the ordering of Z extends as desired. 
If <oz is the order valuation of the ordering of Z, and if co is the order 

valuation of the extended c-ordering then co is a c-valuation of the extend­
ed c-ordering, which extends coz, a *-formally real valuation of Z. In view 
of Theorem 2.3, we get ENCR[cJ, which is precisely the requirement (ii). 
As for requirement (i), this is evidently true since eae* e Z for all a, and 
since eae* > 0 in D. 

Conversely, assume both (i) and (ii). To begin with, we have MVP[cJ. 
For since each eae* is positive, and since the ordering of Z is such that 
every positive element is order multipliable, it follows that 

<oz(a + b) = min{coz(tf), coz(b) } 

holds true for all pairs a, b in the cone C(Z)[eae*], where C(Z) is the 
*-core of the involutorial field Z. As observed in the preceding, we also 
have ENCR[cJ. By Theorem 2.2.12, coz extends to a c-valuation co of D. 
Let 

C = { 2 zft(\ + JC^IZ,. e M z , xt e / , ct e C}, 

where Mz is the domain of positivity of the ordering of Z, / is the maximal 
ideal of the valuation, and C is the *-core of D. I contend that 0 £ C. For 
as established in Theorem 2.2.12, a typical element c in C is of the form 

c = ( 2 zaz*eae*)(\ + x), 

where i e / . Hence, we can represent a typical d element in C in the 
form 

d = 2 V a / z « ^ * 0 + *i\ 

where zt G M Z , and xt e / . Because all ZjZ^z^e^* are nonnegative 
elements of Z we get 

< 0 Z ( 2 ZiZaiZaieaea) = m i n { û ) z ( z i - Z a | - ^ ) } . 

Since x,- G / , and co is a valuation extending wz, it follows that 

cj(d) = min{co(ziza/z*/cac*(l + xt) }. 

From this J ^ 0, for all rf e C. 
Observe that C has the same properties for C: C is additive, C is multi­

plicative, C is preserved under conjugation, and C is *-closed. A maxi-
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mizing process yields a c-ordering of D with domain of positivity M such 
that CM c M. Since Mz c C, it follows that this oordering of D ex­
tends that of Z. 

In the construction of the normal c-ordering of D we used a maximizing 
process, which is somewhat non-canonical. All the more, one is interested 
to know what are the properties of this ordering which do not depend on 
that process. In particular, what will be the residue ordering of D, and 
what is the centre C? These questions are answered in the 

THEOREM 3.3.3. The normal c-ordering found in Theorem 3.3.2 is such 
that: 

1. The residue ordering of D coincides with the residue ordering of Z. 
2. The centre C of the c-ordering of D is precisely Mz(\ + J ) , where Mz is 

the domain of positivity of the ordering of Z. 

Proof. By construction, the residue ordering of D has domain of 
positivity 

M = {a + J\a = a* e R, a £ / , a > 0}. 

If a = a* G R, a £ J, then a — z <E J for some z = z* <E Z. Because 
1 + / c C we get a > 0 if, and only if, z > 0 on Z. Therefore 

M = {z 4- J\z - z* G Z, z £ J, z > 0 in Z} . 

Equivalently, M coincides with the domain of positivity of the ordering 
of Z. 

A A 

2. By construction, Mz c C. Since 1 + J c C we get 

M z ( l + / ) c C 

Conversely, if a e C then by Theorem 2.2 we have « — Zj e Z for some 
Zj ^ Z, zx > 0. Thus 

a G Mz(\ + / ) , and C = Mz(\ + 7). 

More can be said about the invariance of the extended c-ordering of D 
in the case the extended valuation co is totally ramified. Using the fact that 
C contains 1 -f- J and that Mz c C one can break down the positivity of 
x = 2 zaea as follows: If /?0 is the unique index such that 

co(x) = co(zft^o) 

then ( 1 ) ^ = ej!j, and z^e^ > 0; that is, zp and e^ have the same signs. 
Conversely, if we start off with a totally ramified valuation co of D and if 
we require that the involution of D is of the first kind then we know that co 
is a ovaluation of D. The preceding positivity of x = 2 £aea can then be 
shown to induce a normal c-ordering. Hence, the 
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THEOREM 3.3.4. Let D be any involutorial division ring with an ordered 
centre Z and with involution of the first kind. Assume that {ea} is a basis of 
D over Z such that 

(i) Each eae* is positive in Z. 
(ii) eae* and z are never archimedean equivalent in Z for ea ¥= e0, the 

constant base element, and z G Z. 
Then the ordering ofZ extends to a normal c-ordering of D with domain of 

positivity all linear combinations x = 2 zaea where for ft such that 

<Zff$ ' Zf% = miH^(ZaeaZaea) }> 

we have z^ > 0 in Z, and e^ = e$. 

In the foregoing theorems can one replace the centre of Z of D by a 
suitable tensor factor of Dl Of course, the basic assumption Z carries 
a strong c-ordering will have to be relaxed if we want a nontrivial tensor 
factor. What is quite legitimate to requiring (in view of Theorem 3.3.2) is 
that the centre C0 of the c-ordering of D0 be of the form 

C0 = M z ( l + / 0 ) , 

where J0 is the maximal ideal of the order subring of D0. Using a reasoning 
similar to the proof of Theorem 3.3.2 one can show the 

THEOREM 3.3.5. Let D be any ring with involution with centre Z afield, 
and let D0 be a * -closed division subring of D with same centre Z and with 
a c-ordering with centre C0 = M z ( l + J0)9 where Mz is the domain of 
positivity of the restricted c-ordering to Z, and J0 is the maximal ideal of the 
order valuation co0 ofD0. Let {ea} be a * -armature basis of D over D0. For D 
to carry a c-ordering with centre C0(l + / ) it is necessary and sufficient that 
(i) cac* e C0, and (ii) for each nonconstant base elements ea, eae* and aa* 
are never archimedean equivalent, where a = a* G D0 for ea = e* and 
a = -a* G D0forea = -e*. 

To close, let me look at examples of normal c-ordered division rings D 
where the centre Z is an ordered field, and the involution is of the first 
kind. The method of construction of these examples will rest on quatern-
ionic examples. 

Consider the quaternionic division ring D = Z[a, b], where Z is an 
ordered field and, a, b are anti-commuting generators each declared 
symmetric or skew symmetric. It is to be found necessary and sufficient 
condition for D to carry an extended normal c-ordering where the in­
volution of D is the linear transformation of D over Z at which a* = c^ , 
b* = €.2b, and (ab)* = b*a* = —exe2ab', where et = ±\ (at will). 

Put e0 = 1, Cj = a, e2 = b, and e3 = exe2 = ab. Clearly {et} is a 
*-armature basis of D over Z. Applying Theorem 3.3.2 to this basis we get 
that the field ordering of Z will extend as desired if and only if we have: 
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(El) Each of the elements exa , e2b , and ext2a b must be positive in Z; 
and 

(E2) Ifet = e* ¥= \ then et is archimedean equivalent to no square in Z. 

To say that etef is positive in Z is to say that if ei = ef then ef > 0, 
while if et = —ef then ef < 0 in Z. For ex = a we get that £j = 1 or — 1 
depending on whether a2 > 0 or a2 < 0 in Z. Likewise for e2 = b we have 
€2 = 1 or — 1 depending on whether b > 0 or b < 0. Since our basic 
ordering of Z is a field ordering the conjunction of the requirements 
exa

2 > 0 and e2b
2 > implies 

exe2a
2b2 > 0. 

Thus requirement (El) reduces to ensuring that exa
2 and e2b

2 are both 
positive in Z, which I will assume in what will follow. I am left with re­
quirement (E2). Distinguish three cases: 

Case both a and b are negative in Z. Here, all three base elements ex, 
e2 and e3 must be skew symmetries, and (E2) is then vacuously verified 
(normal quaternionic division ring D). 

9 9 

Case both a and b are positive in Z. Here ex = ef,e? = e*, and 
9 9 

e3 = — e* . Thus requirement (E2) simply means that both a and b 
are archimedean equivalent to no square in Z. 

Case a and b have opposite signs in Z. We have either a = a*, b = —b* 
or a = —a* and b = b*. In both cases the element ab is symmetric. 

9 9 9 

When a = aa* or, equivalently, a > 0 requirement (E2) means that a 
and a ( — b ) are both archimedean equivalent to no square in Z. In the 
case — b2 is archimedean equivalent to a square in Z this requirement 
reduces to a archimedean equivalent to no square in Z. In the opposite 
case where —b is archimedean equivalent to no square in Z the require­
ment assumes its full strength (totally ramified order valuation). In both 
cases the requirement translates into the following: The positive square 

9 9 

from the pair {a , b } is archimedean equivalent to no square in Z, and it 
is archimedean non equivalent to the other member affected with the sign 
minus. To sum up the discussion: 

THEOREM 3.3.6. Consider the quaternionic division ring D — Z[a, b], 
where Z is an ordered field and a, b are anti-commuting generators. Assign to 
a and b the elements ex = ± 1, e2 = ± 1 (at will), and take the involution of 
D which fixes all elements of Z at which a* = exa, b* = e2b and, hence, 
(ab)* = —exc2ab. For the field ordering of Z to extend to some c-ordering of 
D it is necessary and sufficient that: 

(El) exa > 0 and e2b > 0 in Z; i.e., if a > 0 in Z then and only then 
a = a*, and similarly if b > 0 in Z then and only then b = b*. 

(E2) If a2 and b2 are both positive in Z then both a2 and b2 are archi­
medean equivalent to no square in Z. 
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(E3) If a and b are of opposite signs in Z then up to sign a and b are 
archimedean not equivalent in Z and the positive member a or b is archi-
medean equivalent to no square in Z. 

COROLLARY 3.3.7. Let F be any ordered field and let D = F[a, b] be the 
quaternionic division ring extension of F where a and b are anti-commuting 
square roots of negative elements in F. Then the field ordering of F extends to 
a c-ordering of D with domain of positivity precisely the domain of positivity 
of F (normal quaternionic division ring extension). 

COROLLARY 3.3.8. Let F be any ordered field and let D = F[a, b] be the 
quaternionic division ring extension of F where a and b are anti-commuting 
square roots of positive elements in F. Under the involution of D at which both 
a and b are symmetries the field ordering extends to a normal c-ordering of D 
if and only if a and b are both archimedean equivalent to no square in Z. 

As an example as in Corollary 3.3.8 take D = <&(*!, t2), the iterated 
Hilbert division ring with anti-commuting indeterminate tx and t2 over 
the ordered field O. For F = 0(/f, t2) and a = /,, b = f2>

 w e n a v e D = 

F[a, b]. If we turn F to an ordered field in the usual manner with both /, 
and t2 positive then we meet the situation described in the preceding 
corollary. Hence D carries an extended c-ordering. I record this in the 

COROLLARY 3.3.9. The iterated Hilbert division ring D = <f>(t]9 t2) over 
an ordered field 4> carries a normal c-ordering relative to the involution which 
fixes all elements in <I>, and at which tx = t*9 t2 = t2. Here, the residue 
ordering is the residue ordering of the residue field $, and the residue degree 
ofD is 1. 

Two more cases of quaternionic division ring extension are in order: 

COROLLARY 3.3.10. Let F be an ordered field and let D = F[a, b] be the 
quaternionic division ring extension of F where a and b are anti-commuting 
square roots of positive and negative elements in F respectively. Under the 
involution of D at which a = a* and b = —b* the field ordering extends to a 
normal c-ordering if and only if a and —b are not archimedean equivalent 
in Z and a is archimedean equivalent to no square in Z. 

COROLLARY 3.3.11. The Hilbert division ring D = 0 [ \ /— 1](/), where 
0 is an ordered field carries a normal c-ordering relative to the involution 
which reverses \/— 1 and fixes t. 

Turning to examples of higher dimension let us start off with any nor­
mally oordered division ring D with centre Cof the form C = M7(\ + 7), 
where M7 is the domain of positivity of the restricted ordering of Z. We 
pass to 

A = / > < / , „ f12, /21> ' 2 2 - - •>'*!> '„2>> 
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the iterated Hilbert division ring over D which was described in earlier 
stages in Section 2.3. Here A has a *-armature basis generated by the /•• 
over D(tfj). The latter carries a standard normal oordering at which all 
t\ > 0. 

None of the products of the tt- is archimedean equivalent to a norm in 
D(tfj). By Theorem 3.3.5 the oordering of D extends to a normal 
oordering of A. Hence, the 

THEOREM 3.3.12. Start off with any quaternionic division ring D = 
F[a, b]9 where F is an ordered field. Assume that the field ordering of F 
extends to a normal c-ordering of D. Then the iterated Hilbert division 
ring 

A = D(tu,tn;...;tnh tn2) 

carries an extended normal c-ordering at which all tt- = tfj are declared 
positive. 

The construction which follows was suggested to me (in conversation) 
by H. Gross. It concerns the Clifford algebra of an orthogonal space over 
an ordered field F equipped with its main involution (see [12, p. 239, last 
paragraph] ). Let at e F, at ^ 0 and let A = A(at) stand for the Clifford 
algebra of the «-dimensional orthogonal space over F with orthogonal 
basis {ut} such that (ui9 ut) = at. Identifying the ut with elements in A and 
(u, v) with uv + vu in A, we get a *-armature basis of A over its centre F 
with typical member 

e(r) = iff . . . ur
n» (/j = 0 or 1). 

Generally A is a central simple, if and only if, the dimension n of V is even, 
which I will assume. 

THEOREM 3.3.13. Let A = A(ax,...,an) be the Clifford algebra of 
the non isotropic orthogonal space V of dimension n over the ordered 
field F, where {u } is an orthogonal basis of V over F with (w, w ) = a, 
j = 1, 2, . . . , n. Equip A with its main involution and suppose that n is even. 
For A to be a division ring with extended normal c-ordering it is necessary 
and sufficient that: 

\. All a- > 0 in F\ i.e., the form is positive definite. 
2. For every subset E = {r1? . . . , rk} of {1, 2, . . . , n} with k = Am or 

k = Am + 1 (m i? 0) for some m, I I ar is archimedean equivalent to no 
square in F. 

Proof. We apply Theorem 3.3.2 to the *-armature basis {e^} generated 
by the u.. The positivity requirement e(r\e?r\ > 0 in F simply means 
all uj > 0 as Uj = uj. For the requirements e^ = efo ¥= 1 implies efr) 

is archimedean equivalent to no square in F we find those (r) such that 
e,r) = efry Counting the number k of l's in (r) we can show that k is of the 
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prescribed form k = Am or k = Am + 1 (m ^ 0), which proves the 
theorem. 

Holland asked me (in private) whether c-orderability "scales"; that is, if 
a division ring D is c-orderable and if the involution is replaced with a 
co-gradient involution must D remain oorderable? 

THEOREM 3.3.14. Consider the Hilbert division ring D = F[^/ — \](t) 
where F is an ordered field. Then: 

1. If the involution of D is the one fixing t and reversing -\J — 1 then D is 
c-orderable. 

2. If the involution of D is the one fixing t and \/— 1 then D is not c-
orderable and this involution is co-gradient to the one in 1. 

Proof 1. This follows from Corollary 3.3.11, where the prescribed a = 1. 
2. Consider the involution ( ): x —> t~lx*t, where (*) is the involution 

in 1. Here 

T = t, and y ^ = f '^-V^) ' = V^î-

We have 

V^T • T^T = - 1 . 

Thus D is certainly not c-orderable. 

Finally of the various questions about oorderings left untouched here 
let me record three of utmost importance (to me). 

Question 3.3.15. Must the order subring of any c-ordered division ring 
be preserved under conjugation? 

Question 3.3.16. Must a c-ordered division ring D decompose as a tensor 
product of quaternionic division rings for, at least, a normal c-ordering? 

Question 3.3.17. What is the structure of the order valuation of any 
c-ordering? 

We hope to come back on some of these questions in the referred joint 
work [3]. 
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