
ON THE PRODUCT OF TWO POWER SERIES 

H. DAVENPORT AND G. PÔLYA 

W E consider the product of two power series with positive coefficients: 

(2tt„Xn)(2l>„tfn) = 2wnX
n. 

What conditions will ensure that the coefficients wn shall be either (i) mono-
tonic, or (ii) logarithmically convex? By the latter, we mean that wn

2< 
Wn-iWn+i for n — 1, 2, . . . . In investigating this question, which was sug­
gested by a special example, we have found it convenient to express the con­
ditions in terms of the ratios of un, vn to certain binomial coefficients, rather 
than in terms of un, vn themselves. 

We introduce a and fi such that 
(1) a > 0, fi > 0, a + fi = 1 
and let 

a (a + 1) . . . (a + n - 1) n fi(fi + 1) . . . (fi + n - 1) 
( 2 ) an 1 . 2 . . . * ' &n~ 1 . 2 . . . * 

for * > 1; ao= fio= 1. Let 
#n= Un/any bn= Vn/fin 

so that an and bn are positive, and 

(3) Wn= aoaQfinbn+ aiaijSn_1&n_i + . . . + ananfiobo. 
We have been led to the following very elementary results, which appear, 
however, to be new. 

THEOREM 1. If an and bn are both monotonie increasing, so is wn, and if an 

and bn are both monotonie decreasing, so is wn-
THEOREM 2. If an and bn are both logarithmically convex, so is wn. 
We prove these theorems in 1 and 2, and add some general remarks con­

cerning them in 3. In 4 we apply them to the special example from which our 
investigation started. In 5 we mention the integral analogues. 

1. The proof of Theorem 1 may be decomposed into two steps, the first 
of which is concerned only with properties of the binomial coefficients. 

Put 
( 4 ) (p0= CLofiny Pl= Cllfin-1, • • • , pn = 0>nfio 

\([0= dofin+U Ql— a.ifinj . . . , Çw+1 = Ctw+i^o. 

Then we assert that 

(5) p0+ pl + . • •+ £n= 30+ 2l + . • • + Çn+1= 1, 
and 
(6) qQ< po< q0+ qi< po+ pi< . . . < qo+ qi+. . . + qn< po+ pi+. . . pn. 
Thus we assert that the successive partial sums of the two sequences p0, pi, . . . 
and qo, qi, . . . separate each other. If we imagine each sequence represented 
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by a row of blocks, the two rows will have a form similar to that of two neigh­
bouring rows of tiles in a wall, and we can express the property in question by 
saying that the two sequences are "tilewise ordered.'' 

Of the two results (5) and (6), the former is immediate, since, by (2), 
CO 00 

2 awxn = (l - x)~a, 2 pnx
n = (1 - x)~fi 

0 0 

and so, by (1), 
CO CO 

2 (a0£n + . . . + an0o)xn = (l - x ) _ 1 = 2 Xn. 
0 0 

To prove (6), we observe that, by (1) and (2), the an and 0n are monotonie 
decreasing, whence 

<Zo+ <Zi+. . .+ Qk= a0j#n+i+ aiPn + . . . + afc|Sn+i_fc 

< ao/3n+ ai/2n-i+- • •+ ajcPn-k 
= po+ pi+. • . + pk-

Similarly 
3n+i+ <Zn + - • •+ <ZH-I= aw+i/3o+ an/3i+. . . + a^+i^n-fc 

< an^o+ a n _i^ i+ . • •+ a*kPn—k 
= £n + pn-l + - • •+ £À> 

In view of (5), this implies that 

go+ ffi+. • . + f̂c > £o+ £ i + . • •+ £fc-i, 
and the proof of (6) is complete. 

For the second step in the proof of Theorem 1, we introduce symbols for the 
successive differences of the terms in (6). We put 

r 0 = go, r'o = po— go, f i=(go+ g x ) - po, r\=(po+ pi) — (qo+ gi), . . . 
^ = ( g o + . . • + g n ) ~ ( ^ 0 + . • • + pn~l), r'n= g n + L 

All these numbers are positive, and we have 
po= rQ+ r'0> pi= f i + r'i, . . . , pn= rn+ r'n, 
go= r0, g i= r ' 0 + ri, . . . , gn = r ' n - i + rn, gn+i= f'«. 

Hence, by (3) and (4), 

wn= rQaobn+ r,
Qa0bn+ rïa1bn-i+^ . . + rnanbo+ r'nanbo, 

wn+i= rQa0bn+i+ rf
QaJ)n+ riaibn+. . . + rnanbi+ r'nan+i&o. 

These expressions render Theorem 1 immediate, on comparison of corres­
ponding terms. 

2. To prove Theorem 2, we use the following lemma: 
LEMMA. Let Wn be defined by 

(7) W, n= a0bn+ ( -. j dibn-l + ( O ) a 2 ^ - 2 + . • • + an&0. 

Thenf if an and bn are positive and logarithmically convex, so is Wn-

Proof. The desired result Wn
2^ Wn-iWn+i holds for n = 1 since 

W0W2— Wi2= aobo(a0b2+ 2aibi+ a2&o) —(&o&i+ #i&o)2 

= a0
2(6o&2- &i2)+ 6o2(a0a2- ax

2) > 0. 
We prove it for general n by induction. 
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By the well-known property 

(:) = (* ; 0+ (:•:;) 
of the binomial coefficients, we have, for n > 1, 

Wn= W'n-1+ W"n-u 
where W'n-i is formed with the sequences a,\, a2i . . . and b0, bu . . . and W"n~\ 
is formed with the sequences a0, #i, . . . and bit b2, . . . . By the hypothesis of 
the induction, applied to the two former sequences, we have 

{W'n^Y < W'n-*W'n, 
and similarly 

{Wff
n^Y< W"n-%W"n. 

By the inequality of the arithmetic and geometric means, it follows that 

2 W'n-lW"*-! < 2 {W'n-2W'nW"n-2W"n}h < Wn-tW"n + W"n-*Wn. 
Hence, using again the hypothesis of the induction, we obtain 

Wr? = (W'n-1 + W"n-l)2 < W'n-*W'n + W n-*W" n 

+ W"n-2W'n + W"n-2W"n = Wn-iWn+L 
This proves the Lemma. 

An immediate corollary to the Lemma is that the same conclusion holds for 
Wn(h, M) defined by 

(8) Wn(\, /*) = 0o&»/*n + ( i ) ax\bn^ixn~l + . . . + an\
nbQ, 

where X, ju are any two positive numbers. 
We can now prove Theorem 2 as follows. By (1) and (2), we have 

R _ (n\ T{a + rn)T{$ + n 

\m/ n\T(a)TŒ) 

m) 

= ( * ) — ~ 
V » / T(a)I 

r + m - l ( 1 __ ^ft+n-m-lfc 
\a)T(P) Jo 

Substituting in (3), and using the notation of (8), we obtain 

1 
wn = n r(a) ros) J r _ i ( 1 __ t)^Wn(t91 - t) dt. 

Since Wn(t, 1 — /) is logarithmically convex for each t, it follows from the 
inequality of Schwarz that wn is, since 

V - ^ l - tf"1 {TFn-l(/, 1 - t)Wn+l(t, 1 - 0 } * * T(a)T(t3)wn < 

< IP'-
(Jo 

•{ 

-\l - (f-tWn-lit, 1 -t)dt\ 

= (r(o)ro)w„_ir(a)r(^)wn+i)} 

This proves Theorem 2. 
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3. The two theorems proved above have a certain resemblance to the fol­
lowing simple but useful theorem of Kaluza.1 

If the an are positive and logarithmically convex, and 

(a0 + aix + a%x2 + . . . ) _ 1 = b0 — b\x — b2x
2 — . . . , 

then all the bn are positive. 
All three theorems give conditions which ensure that a power series, derived 

from given power series by multiplication or division, shall have some 
simple property. 

There is one class of power series to which our theorems can readily be 
applied. Suppose <j>(t) is positive and integrable in the interval (0, h), and let 

Ch 
(9) 0(0(1 - xt)~adt = 2ananx

n. 
Jo 

Then 

an= <j>{t)tndt, 
J o 

and the ani being the successive moments of a positive function, are logarith­
mically convex. 

4. The particular problem from which our investigation started was that 
of showing that 

(10) P( l + u* - 2xu*)~*du | + J ] (1 + w4+ 2xu2)~*du 1 * 

decreases steadily as x increases from 0 to 1. 
(It can be shown that the expression (10) represents (2r0A/x)2, where r0 de­

notes the inner conformai radius of a rectangle with respect to its centre, and 
A denotes the principal frequency of vibration of a membrane with the rect­
angle as its boundary. The product r0A depends on the shape but not on the 
size of the rectangle, and the parameter x specifies this shape. As x increases 
from 0 to 1, the ratio of the two sides of the rectangle increases steadily from 
1 to infinity. Our assertion concerning (10) means that the product r0A de­
creases steadily in this process.) 

By the change of variable 
2u2/(l +U4) =t 

the first integral in (10) is transformed into an integral l(x) of the type (9), 
with h = 1 and a = 1/2. Theorem 2, applied to this integral, tells us that 
the coefficients of the power series for P(x) are logarithmically convex. From 
Kaluza's theorem, it follows that the expression (10) has the form 

2&o- 2b2x
2- 2hx*- . . . 

with positive bn> This obviously decreases as x increases. 
We should perhaps observe that instead of using Theorem 2 in the above 

argument, we can use the following ad hoc argument. We have 

1 0(*)tf(O(l ~ xt)~\l - xt'Yh àtdt'. l\x) = 
0 J 0 

lMath. ZeiL, vol. 28 (1928), 161-170. 
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Let 
(1 - xtYh{\ - x/')~* = 2 An(t, t')xn\ 

then 
I \X) = = 2J CfiX , 

where 

Cn = ll 4>(t)4>(t')An(t, t')dtdt'. 

If we prove that An(t, t') is logarithmically convex, for fixed t, t'', it will follow 
that cn is logarithmically convex, as desired. In fact, it is easily seen that 

2 
A»(t, /') = (t cos20 + t' sin2d)ndd, 

o IT , 

and this is obviously logarithmically convex. 
5. For the sake of completeness, we mention the integral analogues of 

Theorems 1 and 2, although they are less interesting. 
Suppose that f(x) and g(x) are positive and integrable for x > 0, and 

bounded in any finite interval. We retain (1) and put 

h(x) = t—lf(t)(x - tf~xg{x - t)dt. 
Jo 

THEOREM 3. If fix) and g(x) are both monotonie increasing, so is h(x), and 
if f(x) and g(x) are both monotonie decreasing, so is h(x). 

THEOREM 4. If f(x) and g(x) are both logarithmically convex, so is h(x). 
We say that f(x) is logarithmically convex, if for x > d > 0, 

f(x)<f(x-d)f(x + d). 
By changing the variable of integration and using (1), we obtain 

h(x) = I ua~\l - uf-1f{ux)g{{\ - u)x) du, 
J o 

and this representation of h(x) renders Theorem 3 obvious. By the hypothesis 
of Theorem 4 and Schwarz's inequality, 

Hx)< P ^ - ' C l " uf-^fiulx - d})f(u[x + d])Y 

• {g([l - u)[x - d]) g([l - u][x + d\)}*du 

< | | «—^l - uf-ifiulx - d])g([l - u][x - d])du\2 

• j [ V ^ l - uf-xf(u[x + d])g{[\ - u][x + d])duY 

= \h(x -d)h(x + d)}K 

This proves Theorem 4. 

University College, London 
Stanford University 
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