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SEMI-COMPACTNESS WITH RESPECT TO A
EUCLIDEAN CONE

DANIEL H. WAGNER

1. Introduction. Our motivation for this note originates with consideration
of a subset 4 of Euclidean n-space, R*, which contains only part of its boundary.
The part contained is that part of the closure of A which cannot be ‘‘bettered”
within 4 with respect to the preference associated with a fixed closed convex
cone T'. Here b is preferred to « if and only if ¢ — b € T, if, for instance, T is
the non-negative orthant of R", this preference is ordinary vector inequality.
We will see in § 4 that obtaining these partially closed sets can often be a matter
of relaxing continuity conditions to semi-continuity, and therefore we call them
T’ semi-closed sets. We are further concerned with partial boundedness in the
following sense: When the convex hull of 4 C R” is unbounded at most in
directions which are contained in the fixed cone T', we say 4 is T semi-bounded.
These concepts are formalized in § 2.

The usefulness of these notions in asserting existence of constrained extrema
is evident. For example, suppose we wish to choose ¢ such that (Fi(q), ...,
F,—1(q)) € N C R, and such that subject to this F,(¢g) is maximized. To
assert existence of such a q it is relevant for the range of (Fy, ..., F,) to con-
tain the ‘“‘upper’’ part of its boundary, not necessarily all of its boundary, and
that this range be partially bounded, i.e., that this range be T' semi-closed and
I semi-bounded, where I' = R* M {(0, ...,0,y) : y = 0}.

Applications of T semi-closedness and T' semi-boundedness to existence of
constrained extrema of F of the form F(q) = fT f@t, q@))dut € R, with fixed
T, p and f, and related literature, are discussed for this half-line T in [5], and
for more general T in [4].

To relate T semi-closedness to semi-continuity, we recall the criterion that
a real-valued function g on a topological space is upper semi-continuous if and
only if {{: g(t) = a} is closed for each real a. Permitting g to be R*valued,
in § 4 we replace the inequality with the T preference cited above and require
that {¢t:a — g(¢) € T}, i.e., g7l (a — T), be closed for each a € R". This con-
dition generalizes ordinary semi-continuity, but does not reduce to continuity
when T = {0}; we call it weak T semi-continuity of g. The condition may be
strengthened to define T semi-continuity of g by requiring g='(C — T') to be
closed whenever C C R* and C — T is closed; then {0} semi-continuity coin-
cides with continuity.

In Theorem 2.16 of [4], it is shown that the range of a T' semi-continuous
function on a compact space is I' semi-closed. The proof suggests the usefulness
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of weakening the Heine-Borel property to pertain only to open coverings by
sets of the form R™\(C — T'). This condition we call T semi-compactness. The
Heine-Borel theorem states that a closed bounded subset of R* is compact.
Theorem 2.10 below, our main result, generalizes this statement in terms of
the ‘“‘semi”’ concepts, however semi-boundedness must be strengthened, as
shown by Example 2.11. Theorem 2.1 generalizes the converse of the Heine-
Borel theorem.

Our definition of semi-closedness originated with Olech [1; 2], who called it
lower-closedness, and who has discussed its applications to control theory. Un-
fortunately [1] is not easily accessible; [2] reviews results without proof.

We are indebted to others for personally communicated proofs of some of our
conjectures in this development. Mr. David H. Wagner proved Theorem 2.16
of [4] and did so in a way which suggested the concept of T' semi-compactness
and which is the essence of the proof of semi-closedness in Theorems 2.1 and
2.2 below. He also contributed the first example in 2.3. Professor Victor Klee
proved Lemma 2.7 below, which is of independent interest. Our realization that
J 1 (§2) is a topology arose from questions by Professor Harry W. McLaughlin.

We now proceed with our formal development. The successive sections treat
semi-compactness, semi-boundaries, and semi-continuity.

Throughout this paper, T is a closed convex subcone of R". That T is a cone
means 7y € T whenever y € Tand 0 =7 € R.

We denote the usual inner product in R* by «x -y, and the Euclidean norm
by || ||. Suppose 4, B C R" and a € R*. Then 4 + B, A — B, a + 4, etc.,
refer to the obvious vector set sums. We denote the convex hull of 4 by co 4,
the closure of 4 by cl 4, and the interior of 4 (R”* topclogy) by int 4. By 4 we
mean R™\A4.

2. I semi-compactness. In this section we develop a generalization of the
Heine-Borel theorem and its converse, Theorems 2.10 (our main result) and
2.1 respectively. We begin with the underlying definitions.

Suppose A C R* is convex. The asymptotic cone of A (often called the
characteristic cone of A), in symbols.Z (4), is defined by

A (A) = RN {y: 4+~ CA}, when A # 0.

We agree that.Z (@) = {0}. Always.%/ (4) is a convex cone and if 4 is closed,
so is &/ (A). If &/ (cl A) = {0}, 4 is bounded. If 4 C B C R*, &/ (4) C
&/ (cl co B). These and other properties of asymptotic cones are given in
Chapter 8 of [3] (where they are called recession cones) and in Lemma 2.2 of [4].

Suppose 4 C R*. We say A4 is T semi-closed if c1 A C A + T and T semi-
bounded if o7 (cl co A) C T. Wesay A is T semi-compact if every open covering
of 4 by sets of the form C — T has a finite subcovering, i.e., whenever I is
aset, C;C R*and C; — T'is closed for 2 € I, and 4 C Uy; C; — T, there
exists a finite set J C I such that A C Uy C, — T. When T = {0}, these
terms reduce to their usual meaning without the prefix “semi.”” We also say 4
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is strongly T semi-bounded if o/ (cl co A) C {0} Uint T' and weakly T semi-
compact if every open covering of 4 by sets of the form a — T, a € R”, has a
finite subcovering. Examples will appear below.

An alternative approach to I' semi-compactness is to define

I r={C—T:CCR'and C — T is closed}.

Then J r is a topology over R*. However, if T # {0}, 7 r is not a very in-
teresting topology, since it does not satisfy the 7'y separation axiom. If T does
not contain a line, 7 r is a T space, i.e., for x, y € R* with x # v, there exists
UcJrsuchthat [x € Uand y ¢ Ulor [x ¢ Uand y € U]. If T contains
a line, 9 r is not even T. In any event, I' semi-compactness coincides with
J 1 compactness. Accordingly, an infinite I' semi-compact set has a J
accumulation point; when T = {0}, this reduces to the Bolzano-Weierstrass
theorem. However, T semi-closedness and T semi-boundedness do not seem to
relate directly to.J r.

THEOREM 2.1. If A C R* is T semi-compact, then A is T semi-closedt and
T’ semi-bounded.

Proof. To show A4 is T semi-closed, suppose a € cl 4 and ¢ ¢ 4 + T. For
r>0,let C, = R"N {z: ]|z — a|| = r}. Since T is closed,
N (€, —T)=a-—T.
>0

Since (¢ — T) M 4 = @, we have
ACN(C—-T)=UC —T.
™>0 >0

Since 4 is T' semi-compact and the covering is nested, there exists 7, > 0 such
that4 C C,, — T C C,,, contrary to a € cl A. Hence 4 is T' semi-closed.

Suppose v € &7 (clco A) andy ¢ T.Letb € A. Since T is convex and closed
we may choose a closed half-space H with 0 in its boundary such that
vy& HDOT. Take w € R" such that H = R" N\ {z:w-2=< 0}. Then w-y > 0.
Define the closed sets

D,=b+ry—H forr>0.

To see that
ACUD,—-T=UD,
>0 >0

let ¢ € A and choose s > max {0, [w-¢ — w-bl/w-v};thenw - [b + sy — ]
> 0,s0c¢ ¢ D,. .
Since A4 is T semi-compact, there exists 7, > 0 such that 4 C D,,. Since

tFor this much I' could be an arbitrary closed set such that 0 € T' C R».
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v €7 (cl co A), we have b + 2ry € cl co 4 Cch_,: = b+ riy + H, con-
trary to v ¢ H. Therefore v € T.

TaEOREM 2.2. If A C R™ is weakly T semi-compact and int T % 0, then A 1s
T semi-closed.

Proof. Let v € int T and a € cl 4 and suppose 4 N (¢ — T) = @. For
b € A, letting s be the distance from b to ¢ — T, we have s > 0 (since T is
closed) and b ¢ a + [% sv/||y|]] = T. Thus {a + ry — T : r > 0} is a nested
open covering of 4. Hence there exists 7o > 0 such that 4 C ¢ + r¢y — T.
Buta € int (@ + roy — T'), so we have contradicted a € cl 4.

Example 2.3. We may not omit “int T' ## " in Theorem 2.2: Let n = 2,
A=1{(x 9):22+92=<1and x>0} and T = {(0, y):y = 0} (due to
David Wagner). Also we may not conclude in Theorem 2.2 that 4 is T semi-
bounded: Letn = 2,4 = {(x,y) :x = —y}and T = {(x,y) :x 2 0,y = 0}.

Lemma 2.4, If A C R* is bounded and T semi-closed, then A is T semi-
compact.

Proof. Suppose C; C R*and C; — T'isopenfori € JTand A C U, C; — T.
Since cl A C A 4+ T, it follows that cl 4 C U C; — T. Since cl 4 is com-
pact it has a finite subcovering, which also covers 4.

Lemma 2.5. If A C R" is T semi-closed, C C R", and C — T 1is closed, then
AN (C— T)1is T semi-closed.

Proof. We have
AN —-T))CcddAN(C—-T)CA+T)N(C—-T)
ciAanNn(C-1)]+T.
LEMMA 2.6. Suppose a € R* and A is a closed subcone of {0} \J int T. Then
(@ + AT s bounded.

Proof. It suffices to show that there exists r = 0 such that
{fa+B8:8€ Aand||g]] =27} CT.
Choose ry such that 0 < ry < 1 and

21) [6€ R,y €l =yl =1 and [[6 — ]| = V2r]
implies 6 € T.

Let 7 = ||a||/ro. Suppose B € A and ||B]|| = 7. We may assume a # 0. Let

ﬁ roa

a=m+”—aﬁ.
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Since 0 < 7y < 1, # 0. We have

2

@ BN _y 28 o L[ g
ol ~ T80 2nmw2+w[ 6l J
2.2) =ﬁmw+M—Mhn

= hr Bl = ) — ol = (= ) + 2l 5 2

It follows from (2.1) and (2.2) that «/||a|| € T. Hence,

[18lro 7o
Since ||8]|| = r, 8 — [7B/]|8]]] € A C T. Since T is a convex cone,

a+ﬁ=[a+ﬁ+ﬂ—r—ﬁ] €r4+r=r.

18l

LeEMMA 2.7 (proved by Klee). Suppose A C R" is strongly T semi-bounded,
and v € int T. Then there exists r = 0 such that A C —ry + T.

a+|—[;—”[3=a+—”ﬂ]- —MaEI‘.

Proof. Suppose the conclusion fails. Then there exist, for 2 =1, 2, ...,
r; = 0 and a; € A4 such that

23) ai+ryédrT

and such that r; — c0. We may assume without loss of generality that either
a;—a € R or ||a| — © and a;/||a|| = » € R™ In the first case a;/r; — 0
and since v € int T we have for all sufficiently large 7,

01/7’1+’Y er,

whence a; + riy € ;T C T, contrary to (2.3). In the second case, u €
& (cl co A)\{0} C int T', whence for all sufficiently large i we have a,/||a,|| € T
and

aq 4]
Sy T e 4T =T,
ladl ™ Tadl
so that a; + 74y € [|la4|T C T, and again (2.3) is contradicted.

Example 2.8. We may not omit “‘strongly’’ in Lemma 2.7, even if we require
int T' ## 0 and we weaken the conclusion to assert that 4 C b + T for some
bER"Letn =2, 4 ={(x,9) :x =9*ory = x2},and T = 2 (co 4)
(= {(x,):220,320}).

LEmMma 2.9. Suppose A, C C R*, A is strongly T semi-bounded, and A M
(C — T) 1s unbounded. Then A C C — T.
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Proof. We may choose a closed convex subcone A of R" such that

H(clco[AN (C—T)]) CH(clcod) C{0}Uinta C A
C {0} Uint T.

Suppose a € 4. Since 4 N (C — T) is unbounded, int A > @ and we may
apply Lemma 2.7 to choose b € R* such that AN (C — T) Cb + A. By
Lemma 2.6, (b — a + A)\T is bounded, hence so is (b + A)\(a¢ + T'), and
hence so is [4 M (C — I')\(@ + T). Since 4 N (C — T') is unbounded,

AN (C—-T)]N (¢ +T) = 0.
Thus, e + T)N(C—=T) # ¢,s0a € C — T.

THEOREM 2.10. Suppose A C R*is T semi-closed and strongly T semi-bounded.
Then A 1s T semi-compact.

Proof. Suppose C; C R*and C; — Tisclosed forz € Tand A C U, C; — T.
For1 € I,by Lemma 29, AN C;, — T =0if A N (C; — T) is unbounded.
Hence for some j € I, A M (C; — T') is bounded. By Lemmas 2.5 and 2.4,
AN (C; — T)is T semi-compact, so for some finite subset J of I'\{j},

AN -T)CUC—T,

1€J
whence 4 C Uyesusy Co — T
Example 2.11. We may not omit ‘“‘strongly’”’ in Theorem 2.10 even when

int T' & @: Let

n=2 A= {(x,y) Cy gx2},

I'={(x,y):x=0andy = 0},
and

C,={(x,v):y€Rx=r}forr€R.

3. I' semi-boundaries. We now formalize the concept of I' semi-boundary
and, as foretold in § 1, relate it to T’ semi-closedness.
For A C R* we define the T semi-boundary of A to be
RN\ {a:(a—T)Ncld = {a}},
unless I' = {0} in which case it is defined as the boundary of 4. In § 2 of [4],
this concept is compared with Yu’s [6] set of ‘‘cone extreme’’ points.

Theorems 3.1 and 3.2 hold without assuming that T is closed (see [4]),
although then the proof of Theorem 3.2 (i) is somewhat harder.

THEOREM 3.1. If A C R" is T semi-closed, A contains its T semi-boundary.

THEOREM 3.2. Suppose A C R", T does not contain a line, and (—T) M
& (cl co A) = {0}. Then
(1) if T 5 {0} and a € cl A, there is a b in the T semi-boundary of A such
thata — b € T;
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(ii) 2f A contains its T semi-boundary, A is T semi-closed;
(iii) of C; C R*fori € Tand \Jc; C; — T contains the T semi-boundary of A,
1t also comntains cl A;

(iv) 7f A 1s T semi-compact, so is the T' semi-boundary of A.

Proof. Conclusions (i) and (ii) are given as Lemmas 2.8, 2.9, and 2.10 in [4]
((it) follows from (i)), (iii) follows from (i), and (iv) follows from (iii).

4. I semi-continuity. We conclude by defining I' semi-continuous func-
tions in such a way that it is obvious that they map compact sets onto I' semi-
compact sets. Theorems 2.1 and 2.2 make Theorem 4.1 meaningful.

If f maps a topological space into R*, we say f is T' semi-continuous
if f~1(4 — T) is closed whenever 4 C R"and A — T is closed, i.e.,if fis Z r
continuous. We say f is weakly T semi-continuous if f~'(a — T') is closed for
each a € R*,

THEOREM 4.1. Suppose T is a compact space and f : T — R* is (weakly) T
semi-continuous. Then f(T) 1s (weakly) T semi-compact.

Proof. The unbracketed statement holds since f is .7 r continuous. Proof of
the bracketed statement is similar to the well-known proof for continuous
maps.

THEOREM 4.2. Suppose T 1is a topological space, f : T — R, and v - f is upper
semi-continuous for each v € T?, where T? 15 {8 : 6 - 8’ < 0 for 8’ € T}, the polar
cone of T. Then f is weakly T' semi-continuous.

Proof. By Theorem 14.1 of [3], I?? = T, so for ¢ € R* we have
ffa=T)={t:y-f¢) 2 y-afory € I"} = Q {t:v-flt) =2 v-a},
% 4
hence f~1(a — T) is closed.

THEOREM 4.3. Suppose S and T are topological spaces, g : S — T is continuous,
f: T —> R s T semi-continuous, h: R* — R* is linear, and h—*(h(T')) = T.
Then f o gis T semi-continuous and h o f is h(T') semi-continuous.
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