
Canad. Math. Bull. Vol. 61 (4), 2018 pp. 812–821
http://dx.doi.org/10.4153/CMB-2017-055-x
©Canadian Mathematical Society 2017

Infinite Powers and Cohen Reals

Andrea Medini, Jan van Mill, and Lyubomyr Zdomskyy

Abstract. We give a consistent example of a zero-dimensional separable metrizable space Z such
that every homeomorphism of Zω acts like a permutation of the coordinates almost everywhere.
Furthermore, this permutation varies continuously. _is shows that a result of Dow and Pearl is
sharp, and gives some insight into an open problem of Terada. Our example Z is simply the set of
ω1 Cohen reals, viewed as a subspace of 2ω .

1 Introduction

A space X is homogeneous if for every pair (x , y) of points of X there exists a home-
omorphism f ∶X → X such that f (x) = y. _is is a classical notion, which has been
studied in depth (see, for example, [AvM]).

It is an interesting theme in general topology that taking inûnite powers tends to
improve the homogeneity-type properties of a space. _e ûrst result of this kind is due
to Keller, who showed that the Hilbert cube [0, 1]ω is homogeneous (see [Kel]). But
this phenomenon is particularly striking in the zero-dimensional case, as Lawrence
showed that Xω is homogeneous for every separable metrizable zero-dimensional
space X (see [La]), answering a question of Fitzpatrick and Zhou from [FZ]. In fact,
the following result (which answers a question of Gruenhage from [Gr]) shows that
this holds for a much wider class of spaces (see [DP, _eorem 3]).

_eorem 1.1 (Dow, Pearl) Let X be a zero-dimensional ûrst-countable space. _en
Xω is homogeneous.

In order to better motivate our result, we need to dig a little deeper into the proof
of _eorem 1.1. _e ûrst step of this proof is given by the following result (see [DP,
_eorem 1] and the subsequent remarks). _e second step consists of reducing the
general case to the ûrst step by using the technique of elementary submodels, but this
will not be relevant for us. Here, a partial permutation of ω is a function of the form
h ↾ I, where h is a permutation of ω and I ⊆ ω.
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_eorem 1.2 (Dow, Pearl) If D ⊆ 2ω , x , y ∈ Dω , and D ⊆ X ⊆ cl(D), then there exist
a homeomorphism f ∶Xω → Xω and partial permutations hz of ω for z ∈ Xω satisfying
the following conditions:
(i) f (x) = y,
(ii) ∀z ∈ Xω ∀i ∈ dom(hz)∃U ∋ z open in Xω ∀w ∈ U (hw(i) = hz(i)),

(iii) ∀z ∈ Xω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f (z)(i) = z(hz(i)) if i ∈ dom(hz),
f (z)(i) ∈ D if i ∉ dom(hz),
z(i) ∈ D if i ∉ ran(hz).

Notice that if z belongs to the set

C(D) = ⋂
d∈D
i∈ω

{w ∈ Xω ∶ w(i) /= d} ∩ ⋂
d∈D
i∈ω

{w ∈ Xω ∶ f (w)(i) /= d} ,

then dom(hz) = ran(hz) = ω so that hz will be a (full) permutation of the coordinates.
Furthermore, a closer inspection of the construction of f shows that there will always
be a countable1 D′ ⊆ D such that f satisûes the above conditions for D′. Since C(D′)
will be comeager, we conclude that for every homeomorphism f produced by (the
proof of) _eorem 1.2, there exists a comeager subset of Xω at every point of which f
acts as a (full) permutation of the coordinates. Furthermore, this permutation varies
continuously.

_e following example, which is our main result, shows that homeomorphisms of
this kind are the only ones that can be constructed in ZFC. So, in a sense,_eorem 1.2
is sharp. In Section 5, we will see that _eorem 1.3 is also relevant to an open problem
of Terada.

_eorem 1.3 It is consistent that there exists a zero-dimensional separable metrizable
space Z satisfying the following conditions:
(i) Z is Baire (hence Zω is Baire);
(ii) for every homeomorphism f ∶ Zω → Zω there exists a comeager subset C of Zω

such that for every z ∈ C there exists a bijection hz ∶ω → ω such that f (z)(i) =
z(hz(i)) for all i ∈ ω;

(iii) the function h∶C → ωω deûned by h(z) = hz is continuous.

Proof Let M be a countable transitive model of ZFC. Deûne P = Fin(ω1 × ω, 2).
Let G be a P-generic ûlter over M. In the forcing extension M[G], we will denote by
cα ∶ω → ω for α ∈ ω1 the α-th Cohen real, that is cα( j) = (⋃G)(α, j) for each α ∈ ω1
and j ∈ ω. We claim that Z = {cα ∶ α ∈ ω1} has the desired properties.

_e fact that Z is Baire follows fromCorollary 2.8 and Proposition 2.2. By_eorem
2.3, this implies that Zω is Baire as well. Condition (ii) follows immediately from
Lemmas 3.1 and 3.2, while Condition (iii) is proved in Section 4.

We remark that our initial approach to_eorem 1.3was to construct a space satisfy-
ing Conditions (i) and (ii) by a transûnite recursion of length c, using the assumption

1 In fact, D′ ⊆ {inf(D ∩ [s]) ∶ s ∈ Fin(ω×ω, 2)}, where the inf is taken with respect to an arbitrary
well-order of D ûxed at the beginning of the proof.

https://doi.org/10.4153/CMB-2017-055-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-055-x


814 A. Medini, J. van Mill, and L. Zdomskyy

cov(M) = c to make sure that an analogue of Lemma 3.1 would hold.2 Subsequently,
we realized that the set of Cohen reals has the same properties, and that it satisûes
Condition (iii) as well. However, we do not know the answer to the following ques-
tion.

Question 1.4 Is it possible to construct in ZFC a space Z as in _eorem 1.3?

2 Preliminaries and Notation

We will assume familiarity with the basic theory of forcing and Borel codes (see, for
example, [Ku,Je]). We will also assume familiarity with Baire category. Our reference
for general topology will be [En]. Our reference for descriptive set theory will be
[Kec].

We will o�en be dealing with ω-th powers of subspaces of 2ω . _erefore, for sim-
plicity, we will identify an element x ∈ (2ω)ω with an element of 2ω×ω by setting
x(i , j) = x(i)( j) for i , j ∈ ω. Given sets I and J, we will denote by Fin(I, J) the set of
functions s such that dom(s) is a ûnite subset of I and ran(s) is a (ûnite) subset of J.
Given s ∈ Fin(ω, 2), we will use the notation [s] = {x ∈ 2ω ∶ s ⊆ x}. Similarly, given
s ∈ Fin(ω × ω, 2), we will use the notation [s] = {x ∈ 2ω×ω ∶ s ⊆ x}.

We will be freely using the following three results. We leave the proofs of the ûrst
two to the reader. For a proof of the third, see [Ox, _eorem 3]. Recall the following
deûnitions. A subset S of a space X is nowhere meager if S ∩ U is non-meager in X
for every non-empty open subset U of X. A pseudobase for a space X is a collection
B consisting of non-empty open subsets of X such that for every non-empty open
subset U of X there exists B ∈ B such that B ⊆ U .

Proposition 2.1 Let Y be a dense subspace of the space X. If S is meager in X, then
S ∩ Y is meager in Y.

Proposition 2.2 Let X be a space and S ⊆ X. _en S is nowhere meager in X if and
only if S is dense in X and Baire as a subspace of X.

_eorem 2.3 (Oxtoby) _e product of any family of Baire spaces, each of which has
a countable pseudobase, is a Baire space.

_e following lemma is essentially [Ox, (2.1)], and we will use it in the proof of
Lemma 3.1. Given spaces X, Y , a point x ∈ X and S ⊆ X × Y , we will use the notation
S[x] = {y ∈ Y ∶ (x , y) ∈ S}.

Lemma 2.4 (Oxtoby) Let X and Y be spaces such that Y has a countable pseudobase.
Assume that W is a dense Gδ subset of X × Y. _en there exists a comeager subset C of
X such that W[x] is a dense Gδ in Y whenever x ∈ C.

Proof Let Un for n ∈ ω be open dense subsets of X ×Y such that W = ⋂n∈ω Un . We
will construct a comeager subset C of X such that Un[x] is open dense in Y for every

2Recall that cov(M) is the minimum size of a collection of meager subsets of 2ω whose union is 2ω .
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x ∈ C and n ∈ ω. Since W[x] = ⋂n∈ω(Un[x]) for all x ∈ X, this will conclude the
proof.

Let {Bm ∶ m ∈ ω} be a pseudobase for Y . Let π∶X × Y → X be the projection on
the ûrst coordinate. Deûne Vm ,n = π[(X×Bm)∩Un] for m, n ∈ ω. Observe that each
Vm ,n is an open dense subset of X. It is straightforward to check thatC = ⋂m ,n∈ω Vm ,n
is the desired comeager set.

For the proofs of the following two classical results, see [En, _eorems 4.3.20 and
4.3.21].

Lemma 2.5 (Lavrentieò) Let X and Y be spaces, with Y completely metrizable. As-
sume that f ∶A → Y is continuous, where A ⊆ X. _en there exists a Gδ subset S of X
and a continuous function g∶ S → Y such that f ⊆ g.

Lemma 2.6 (Lavrentieò) Let X and Y be completely metrizable spaces. Assume that
f ∶A→ B is a homeomorphism, where A ⊆ X and B ⊆ Y. _en there exist Gδ subsets S
of X and T of Y, and a homeomorphism g∶ S → T such that f ⊆ g.

We will always denote by M a countable transitive model of (a suõciently large
fragment) of ZFC. Given a Fin(I × ω, 2)-generic ûlter G over M, in the forcing ex-
tension M[G], we will denote by cα ∶ω → 2 for α ∈ I the α-th Cohen real, that is
cα( j) = (⋃G)(α, j) for each α ∈ I and j ∈ ω. _e most important case will be when
I = ω1. In fact, throughout this paper, we will use the following notation:
● P = Fin(ω1 × ω, 2),
● Z = {cα ∶ α ∈ ω1},
● Zγ = {cα ∶ α ∈ γ} for γ ∈ ω1,
● Mγ = M[G ∩ Fin(γ × ω, 2)] for γ ∈ ω1,
● M[cα ∶ α ∈ J] = M[G ∩ Fin(J × ω, 2)] for J ⊆ ω1.

_e following two results are well known. We will not give the proof of the ûrst, as
it is just a simpler version of the proof of Lemma 2.9.

Proposition 2.7 Let W be a dense Gδ subset of 2ω coded in M. Let I ∈ M be a
non-empty set, and force with Fin(I × ω, 2). Let α ∈ I. _en 1 ⊩ “cα ∈W”.

Corollary 2.8 _e set Z is nowhere meager in 2ω .

Proof Assume, in order to get a contradiction, that Z ∩[s] is meager in 2ω for some
s ∈ Fin(ω, 2). Let W be a dense Gδ subset of 2ω such that W ⊆ (2ω ∖ [s]) ∪ ([s] ∖ Z).
Fix γ ∈ ω1 such thatW is coded in Mγ . By applying Proposition 2.7 with M = Mγ and
I = ω1 ∖ γ, one sees that Z ∩ [s] ⊆ Zγ . So let p ∈ P be such that

p ⊩ “cα ∉ [s] whenever γ ≤ α < ω1”.

Now ûx δ ≥ γ such that ({δ} × ω) ∩ dom(p) = ∅; then deûne q ∈ P as follows:
● dom(q) = dom(p) ∪ ({δ} × dom(s)),
● q(δ, j) = s( j) for every j ∈ dom(s),
● q(α, j) = p(α, j) for every (α, j) ∈ dom(p).
It is clear that q ≤ p. On the other hand, q ⊩ “cδ ∈ [s]”, which is contradiction.
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_e following lemma is the “ω-th power” of Proposition 2.7, and it will be needed
in the proof of Lemma 3.1.

Lemma 2.9 Let W be a denseGδ subset of 2ω×ω coded in M. Let I ∈ M be an inûnite
set, and force with Fin(I × ω, 2). Let ⟨α i ∶ i ∈ ω⟩ ∈ M be an injective sequence of
elements of I. _en 1 ⊩ “⟨cα i ∶ i ∈ ω⟩ ∈W”.

Proof Let Un for n ∈ ω be dense open subsets of 2ω×ω such that the sequence of
their codes belongs to M andW = ⋂n∈ω Un . Assume, in order to get a contradiction,
that there exists p ∈ Fin(I×ω, 2) and n ∈ ω such that p ⊩ “⟨cα i ∶ i ∈ ω⟩ ∉ Un”. Deûne
s ∈ Fin(ω × ω, 2) as follows:
● dom(s) = {(i , j) ∈ ω × ω ∶ (α i , j) ∈ dom(p)},
● s(i , j) = p(α i , j) for every (i , j) ∈ dom(s).
Since Un is open dense, it is possible to ûnd t ∈ Fin(ω × ω, 2) such that s ⊆ t and
[t] ⊆ Un . Finally, deûne q ∈ Fin(I × ω, 2) as follows:
● dom(q) = dom(p) ∪ {(α i , j) ∶ (i , j) ∈ dom(t) ∖ dom(s)},
● q(α i , j) = t(i , j) for every (i , j) ∈ dom(t) ∖ dom(s),
● q(α, j) = p(α, j) for every (α, j) ∈ dom(p).
It is clear that q ≤ p. On the other hand, q ⊩ “⟨cα i ∶ i ∈ ω⟩ ∈ [t]”, which is a
contradiction.

Recall that a space X is rigid if the only homeomorphism f ∶X → X is the identity
(see [MvMZ] for several references on this topic). _e following proposition will not
be needed in the rest of the paper, but we decided to keep it, as its proof is particularly
simple and it provides a good warm-up for the case of Zω . In fact, as our discussion
in Section 1 shows, _eorem 1.3 can be seen as a “rigidity-type” result.

Proposition 2.10 _e space Z is rigid.

Proof Let f ∶ Z → Z be a homeomorphism. We will show that there exists γ ∈ ω1
such that f (cα) = cα for every α ≥ γ. In particular, by Corollary 2.8, the function f
will be the identity on a dense subset of Z. Since f is continuous, this will conclude
the proof.
By Lemma 2.6, there exist Gδ subsets S and T of 2ω , and a homeomorphism

g∶ S → T such that f ⊆ g. Notice that g is a closed subset of S × T , hence a Borel
(in fact, Gδ) subset of 2ω × 2ω . So we can ûx γ ∈ ω1 such that g is coded in Mγ . We
will show that γ is as desired.
First, we claim that g ↾ Zγ ∶ Zγ → Zγ is a bijection. If α < γ, then cα ∈ Mγ , hence

g(cα) ∈ Mγ , while on the other hand g(cα) = f (cα) ∈ Z. Since Mγ ∩ Z = Zγ , this
shows that g[Zγ] ⊆ Zγ . But g−1 is also coded in Mγ , and a similar argument shows
that g−1[Zγ] ⊆ Zγ . _is concludes the proof of the claim.

Now pick α ≥ γ. Since cα ∈ Mγ[cα], it is clear that g(cα) ∈ Mγ[cα]. On the other
hand g(cα) = f (cα) ∈ Z, hence g(cα) = cβ for some β ∈ γ ∪ {α}. If we had β ∈ γ,
then, by our claim, the injectivity of g would be contradicted. _erefore, we must
have β = α.
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3 Every Homeomorphism is a Permutation of the Coordinates on a
Comeager Set

Given a function f ∶ Zω → Zω and γ ∈ ω1, deûne

A( f , γ) = {x ∈ Zω ∶ f (x) ∈ (Zγ ∪ {x(i) ∶ i ∈ ω})ω} .

Lemma 3.1 Let f ∶ Zω → Zω be a continuous function. _en A( f , γ) is comeager in
Zω for all but countably many γ ∈ ω1.

Proof By Lemma 2.5, there exists a Gδ subset S of 2ω×ω and a continuous function
g∶ S → 2ω×ω such that f ⊆ g. We will show that any γ ∈ ω1 such that g is coded in Mγ
is as desired. So ûx such a γ.

In fact, we will show that the set

A = {x ∈ S ∶ g(x) ∈ (Zγ ∪ {x(i) ∶ i ∈ ω})ω}

is comeager in 2ω×ω . Assume, in order to get a contradiction, that A is non-comeager.
As Zγ is countable and g is continuous, it is easy to check that A is Borel. In par-
ticular, it has the Baire property (see [Kec, Proposition 8.22]). Hence, by applying
[Kec, Proposition 8.26] to 2ω×ω ∖A, we can ûx ℓ ∈ ω and s∶ ℓ× ℓ → 2 such that A∩[s]
is meager.
Deûne X = 2ℓ×ω and Y = 2(ω∖ℓ)×ω . Identify X×Y with 2ω×ω , and letW be a dense

Gδ subset of X×Y such thatW ⊆ (2ω×ω∖[s])∪([s]∖A). Since S is comeager in 2ω×ω ,
we can also assume thatW ⊆ S. An application of Lemma 2.4 yields a comeager subset
C of X such thatW[x] is a denseGδ subset of Y whenever x ∈ C. Since Zℓ is nowhere
meager in 2ℓ×ω by Corollary 2.8, we can ûx a sequence ⟨α i ∶ i ∈ ℓ⟩ with α i < ω1 for
each i ∈ ℓ, such that s ⊆ x and x ∈ C, where x = ⟨cα i ∶ i ∈ ℓ⟩. Let δ ≥ γ be such that
W is coded in Mδ , and notice that W[x] is coded in M[cα ∶ α ∈ δ ∪ {α i ∶ i ∈ ℓ}].
_erefore, if we ûx ζ > sup(δ ∪ {α i ∶ i ∈ ℓ}) and deûne α i = ζ + i for i ∈ ω ∖ ℓ, an
application of Lemma 2.9 will show that y ∈ W[x], where y = ⟨cα i ∶ i ∈ ω ∖ ℓ⟩. It
follows that z ∈ W , where z = ⟨cα i ∶ i ∈ ω⟩. Furthermore, the fact that s ⊆ x shows
that z ∈ [s], hence z ∉ A.

_e only thing to observe about the sequence ⟨α i ∶ i ∈ ω⟩ is that it belongs to M
(thanks to its simple deûnition), hence z ∈ M[cα i ∶ i ∈ ω] ⊆ Mγ[cα i ∶ i ∈ ω]. It follows
that g(z) ∈ Mγ[cα i ∶ i ∈ ω]. On the other hand,

Mγ[cα i ∶ i ∈ ω] ∩ (Zω) ⊆ (Zγ ∪ {cα i ∶ i ∈ ω})ω ,

which contradicts the fact that z ∉ A.

Lemma 3.2 Let f ∶ Zω → Zω be a homeomorphism. Assume that γ ∈ ω1 is such
that A( f , γ) and A( f −1 , γ) are both comeager in Zω . _en there exists a comeager
subset C of Zω such that for every z ∈ C there exists a bijection hz ∶ω → ω such that
f (z)(i) = z(hz(i)) for every i ∈ ω.

Proof Deûne

B = A( f , γ) ∩ A( f −1 , γ) ∩ ⋂
i∈ω

{ z ∈ Zω ∶ z(i) ∉ Zγ} ∩ ⋂
i∈ω

{ z ∈ Zω ∶ f (z)(i) ∉ Zγ} ,
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and notice that B is comeager in Zω , because Zγ is countable and f is a homeomor-
phism. Furthermore, the deûnition of A( f , γ) easily implies that

{ f (z), f −1(z)} ⊆ {z(i) ∶ i ∈ ω} ω

for every z ∈ B.
Let ∆ = {z ∈ Zω ∶ z(i) = z( j) for some i /= j}. _en, for every z ∈ B ∖ ∆, there

will be a unique function hz ∶ω → ω such that f (z)(i) = z(hz(i)) for every i ∈ ω.
Similarly, for every z ∈ B ∖ ∆, there will be a unique function kz ∶ω → ω such that
f −1(z)(i) = z(kz(i)) for every i ∈ ω.
Finally, deûne

C = (B ∖ ∆) ∩ f −1[B ∖ ∆],
and observe that C is comeager in Zω . For any ûxed z ∈ C, it is clear that {z, f (z)} ⊆
B ∖ ∆, and it is straightforward to check that k f (z) is the inverse function of hz . In
particular, hz is a bijection, which concludes the proof.

4 The Permutation Varies Continuously

In this section, wewill prove that_eorem 1.3(iii) holds. Wewill use the samenotation
as in the previous section. More precisely, we assume that a homeomorphism f ∶ Zω →
Zω is given, and let g∶ S → T be a homeomorphism between Gδ subsets of 2ω×ω such
that f ⊆ g, whose existence is guaranteed by Lemma 2.6. _en we let γ ∈ ω1 be such
that g (hence g−1 as well) are coded in Mγ . As in the proof of Lemma 3.1, this will
guarantee that A( f , γ) and A( f −1 , γ) are comeager in Zω . So, deûning C as in the
proof of Lemma 3.2 will guarantee that _eorem 1.3(ii) holds.

We will show that for all n ∈ ω and x ∈ C there exists s ∈ Fin(ω × ω, 2) such
that s ⊆ x and hy(n) = hx(n) whenever y ∈ C ∩ [s]. So ûx n ∈ ω and x ∈ C, say
x(i) = cα i for i ∈ ω, where γ ≤ α i < ω1 for each i. From now on we will treat Mγ as
our ground model. So M[G] = Mγ[H] for some Q-generic ûlter H over Mγ , where
Q = Fin((ω1 ∖ γ) × ω, 2).

Let p ∈ Q and m ∈ ω be such that

p ⊩ “g(x)(n) = x(m)”.
Now deûne s ∈ Fin(ω × ω, 2) as follows:
● dom(s) = {(i , j) ∈ ω × ω ∶ (α i , j) ∈ dom(p)},
● s(i , j) = p(α i , j) for every (i , j) ∈ dom(s).
We will show that hy(n) = m whenever y ∈ C ∩ [s]. In order to get a contradiction,
assume that there exist y ∈ C ∩ [s] and k ∈ ω such that g(y)(n, k) = f (y)(n, k) /=
y(m, k). Let ε = y(m, k). _en, by the continuity of g, there exists ℓ ∈ ω such that
g(z)(n, k) /= ε whenever z ∈ [y ↾ (ℓ× ℓ)]∩ S. Without loss of generality, assume that
{m, k} ⊆ ℓ and dom(s) ⊆ ℓ × ℓ. Let t = y ↾ (ℓ × ℓ), and observe that s ⊆ t.

Next, we claim that

(⊛) 1Q ⊩ “g(z)(n, k) /= ε whenever z ∈ [t] ∩ S”.
Let φ be the formula in quotes, and let N be an arbitrary generic extension ofMγ ob-
tained by forcing with Q. In order to conclude the proof of the claim, it will be enough
to show that φ holds inN . Obviously,Mγ[H] ⊧ φ, and, in particular, g(z)(n, k) = 1−ε
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for every z ∈ [t] ∩ S ∩Mγ . So the set [t] ∩ S ∩Mγ witnesses that N ⊧ “g(z)(n, k) =
1 − ε for a dense set of z ∈ [t] ∩ S”. Since g is continuous, it follows that N ⊧ φ.
Finally, deûne q ∈ Q as follows:

● dom(q) = dom(p) ∪ {(α i , j) ∶ (i , j) ∈ ℓ × ℓ},
● q(α i , j) = t(i , j) for every (i , j) ∈ (ℓ × ℓ) such that (α i , j) ∉ dom(p),
● q(α, j) = p(α, j) for every (α, j) ∈ dom(p).
It is clear that q ≤ p. Furthermore, using the fact that s ⊆ t, it is easy to check that
q ⊩ “x ↾ (ℓ × ℓ) = t”. On the other hand, since q ≤ p, we see that q ⊩ “g(x)(n, k) =
x(m, k)”. _is contradicts ⊛.

5 A Problem of Terada

A space X is h-homogeneous if every non-empty clopen subspace of X is homeomor-
phic to X. _is notion has been studied by several authors, both “instrumentally”
and for its own sake (see, for example, the references in [Me1]). _e following propo-
sition is well-known (see, for example, [Me2, Proposition 3.32 and Figure 3.33]), and
it explains why h-homogeneous spaces are sometimes called strongly homogeneous.

Proposition 5.1 Let X be a ûrst-countable zero-dimensional space. If X is h-homoge-
neous, then X is homogeneous.

_e following question from [Te] remains open (even in the separable metrizable
case), and it was the original motivation for our research. In fact, _eorem 1.3 was
born out of an attempt to construct a counterexample to it. Notice that, by Proposition
5.1, an aõrmative answer to Question 5.2 would yield a strengthening of_eorem 1.1.

Question 5.2 (Terada) Is Xω h-homogeneous for every zero-dimensional ûrst-
countable space X?

Next, we list a few partial results on Question 5.2. _e following theorem is due
independently to van Engelen andMedvedev (see [vE,_eorems 4.2 and 4.4] or [Mv,
proof of _eorem 25]).3 Recall that the assumption dim(X) = 0 on a metrizable
space X is in general stronger than the assumption that X is zero-dimensional (see
[Ro]). However, these two assumptions are equivalent if X is also separable (see [En,
_eorem 7.3.3]).

_eorem 5.3 (van Engelen, Medvedev) Let X be a metrizable space such that
dim(X) = 0. Assume that either X is meager or X has a dense completely metrizable
subspace. _en Xω is h-homogeneous.

Corollary 5.4 Assume that X belongs to the σ-algebra generated by the analytic sub-
sets of 2ω . _en Xω is h-homogeneous.

3 Medvedev assumes Ind(X) = 0, but it is well-known that dim(X) = Ind(X) for every metrizable
space X (see [En, _eorem 7.3.2]).
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Proof By [Me3, Propositions 3.4 and 3.3], it follows that either X has a dense com-
pletely metrizable subspace or X is not Baire. In the ûrst case, Xω will have a com-
pletely metrizable dense subspace as well. In the second case, it is easy to see that
Xω will be meager (see for example [Me3, proof of Proposition 4.4]). _e proof is
concluded by observing that (Xω)ω is homeomorphic to Xω .

_e following result, which ûrst appeared as [Me1, Corollary 29], shows that the
additional requirements in _eorem 5.3 are not necessary, provided that X is “big”
enough.

_eorem 5.5 (Medini) Let X be a metrizable space such that dim(X) = 0. Assume
that X is non-separable. _en Xω is h-homogeneous.

_e following result is a particular case of [Me1, _eorem 18], which generalizes
results of Motorov and Terada.

_eorem 5.6 (Medini) Let X be a Tychonoò space such that the isolated points are
dense. _en Xω is h-homogeneous.

_e next result follows immediately from [Me1, Proposition 24 and Lemma 22].
Recall that a space X is divisible by 2 if there exists a space Y such that X = Y × 2,
where 2 is the discrete space with two elements.

_eorem 5.7 (Medini) Let X be a zero-dimensional ûrst-countable space containing
at least two points. _en Xω is h-homogeneous if and only if Xω is divisible by 2.

An interesting consequence of _eorem 5.7 is that, in order to answer Question
5.2 in the aõrmative, it would be enough to exhibit a clopen subset C of Xω and a
homeomorphism f ∶Xω → Xω such that f [C] = Xω ∖C (and f [Xω ∖C] = C). While
_eorem 1.3 does not resolve Question 5.2, it does show that (if one wants to give a
general construction) the homeomorphism f would have to be of the same kind as
those constructed in [DP,La].
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