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SEMICONTINUITY AND MULTIPLIERS OF 
C*-ALGEBRAS 

LAWRENCE G. BROWN 

1. Introduction. In [5] C. Akemann and G. Pedersen defined four 
concepts of semicontinuity for elements of A**9 the enveloping W*-
algebra of a C*-algebra A. For three of these the associated classes of 
lower semicontinuous elements are A™a, A™a, and (A™a)~ (notation ex­
plained in Section 2), and we will call these the classes of strongly lsc, 
middle lsc, and weakly he elements, respectively. There are three corres­
ponding concepts of continuity: The strongly continuous elements are the 
elements of A itself, the middle continuous elements are the multipliers of 
A, and the weakly continuous elements are the quasi-multipliers of A. It is 
natural to ask the following questions, each of which is three-fold. 

(Ql) Is every lsc element the limit of a monotone increasing net of con­
tinuous elements? 

(Q2) Is every positive lsc element the limit of an increasing net of posi­
tive continuous elements? 

(Q3) If h = k, where h is lsc and k is use, does there exist a continuous x 
such that h ^ x ^ kl 

We give affirmative answers to (Ql) and (Q2) for separable A in the 
strong and weak cases. For the middle case the answer to (Ql) is trivially 
yes and the answer to (Q2) was already known to be no. For (Q3) we give 
affirmative answers for arbitrary A in the strong case and for a-unital (in 
particular, separable) A in the weak case. In the middle case the answer to 
(Q3) is no in general, but in Theorem 3.40 we give a positive result with 
strengthened hypotheses on h, k. Although the hypothesis of Theorem 3.40 
is not as natural as one would like, it has so far been adequate for the 
applications which have occurred to us. We consider any technique for 
constructing multipliers to be potentially valuable, in part because of the 
use of multipliers in .OT-theory, and urge the reader to look for improve­
ments to or new proofs of Theorem 3.40. 

A positive answer to (Ql) in the strong case is the same as the statement 
that A™a, the smallest class of lower semicontinuous elements defined in 
[5], is equal to A™a. Our intuitive feeling is that, regardless of the answer to 
(Ql), A™a should not be regarded as giving a fourth concept of semi-
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continuity, but rather should be regarded as an important sub-class of the 
class of strongly lsc elements. That is why we have chosen to speak of only 
three types of semicontinuity. The results of [5] on strong semicontinuity 
are quite powerful, and so far we know the problem considered in Section 
4 (described below) was the first one that required an answer to (Ql). 
(Actually it is (Q2) that is needed for Section 4, and it is only in the 
separable case that (Q2) is the right question.) In any case the results on 
(Ql) are probably enough to convince the reader that our choice of 
terminology is justified. 

The plan of the paper is as follows. Section 2 establishes the notation 
and proves a number of elementary or specialized results. Some of the 
results of Section 2 are used in later sections, and some are just facts that 
we consider interesting or potentially useful. In Theorem 2.36 we identify 
a sub-class of operator convex functions which is characterized by an 
operator inequality stronger than the usual one for operator convex 
functions, and which is also characterized in other ways (one of them 
related to semicontinuity). The function x I—» 1/JC, X > 0, is in this 
sub-class. Section 3 includes the results on (Ql), (Q2), and (Q3) mentioned 
above, some applications, and also a number of results that can be 
considered noncommutative Tietze extension theorems. An example of the 
latter is Corollary 3.11: If L is a closed left ideal of a a-unital C*-algebra 
A, and 0:A —» AIL is a homomorphism of left ,4-modules, then 0 can be 
lifted to a module homomorphism 0\A —> A such that \\0\\ = \\6\\. An 
application of Theorem 3.40 is: If a a-unital C*-algebra A = B + /, where 
B is a hereditary C*-subalgebra and / a closed two-sided ideal, and if h is a 
multiplier of A, then h = hx + h2 where hx is a multiplier of A that is 
supported by B and h2 a multiplier of A supported by /. Section 4 deals 
with the question: Given 0 = /i G i** , when is h = T*T for T a right 
multiplier or quasi-multiplier? (The case T a left multiplier was dealt with 
in [10], and the case T a multiplier is trivial.) For A separable and stable 
the answer is that h must be strongly or weakly lsc, respectively. A related 
theorem is that if A is separable, then the norm closed complex vector 
space generated by the lsc elements of A** is a C*-algebra. If A is also 
stable, this C*-algebra is the one generated by the quasi-multipliers. 
Section 4 also contains some density results, some of which are 
applications of the main results. For example, if A is separable and stable 
a n d O ^ / i G (A™)~, then 

{T <= QM(A):T*T = h) 

is right strictly dense in {7 G QM(A):T*T ^ h}. Section 5 discusses 
several examples. None of these examples is exotic, though we do deal in 
some sense with arbitrary C*-subalgebras of separable continuous trace 
algebras. We give criteria for the three types of semicontinuity, and for 
some of the examples we also discuss some of the questions raised in 
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Sections 3 and 4. Some of our results for the example A = 3f, the algebra 
of compact operators on separable Hilbert space, may be new. In 
particular, {K G J O ^ K ^ 1} is directed upward. 

In the field of "non-commutative topology" it is common for operator 
algebraists to gain intuition from analogies with the commutative case. 
For the subject of this paper this can lead to pitfalls, and a more compli­
cated example should be used for analogies; namely, A = C0(X) 0 JtfTFor 
this example the elements of A ("strongly continuous" elements) are the 
norm continuous J^valued functions on X vanishing at oo, the elements of 
M {A) ("middle continuous" elements) are the bounded double strongly 
continuous 2?(i/)-valued functions on X, and the elements of QM(A) 
("weakly continuous" elements) are the bounded weakly continuous 
i?(//)-valued functions on X. Pitfalls can also arise if one forgets that the 
elements of A vanish at oo. 

To some extent this paper is a sequel to [10]. However, for the most part 
no knowledge of [10] is assumed. 

We gratefully acknowledge helpful conversations with C. Akemann, 
J. Anderson, E. Effros, J. Mingo, D. Olesen, and G. Pedersen. 

2. Elementary or specialized results. The reader ought to be familiar 
with the basic results of [28] and [5]. Alternatively, Sections 3.11 and 3.12 
of [29] should provide adequate background. It would not be appropriate 
to review all of the background material, and we merely explain the 
notation. For M c A**9 Msa denotes {x G M:X* = X} and 

M+ = {x G M:x g 0}. 

For M c A**, Mm denotes the set of limits in ^4** of monotone increasing 
nets of elements of M9 M° the set of limits of increasing sequences, and 
Mm the set of limits of decreasing nets. A = A + C • 1, the result of 
adjoining a unit to A, and "~ means norm closure, unless some other 
topology is explicitly indicated. 

M(A) = { X G A**:xA,Ax c A], 

LM(A) = {x G A**:xA a A}, 

RM (A) = {x G A**:Ax c A), and 

QM(A) = {x G A**:AxA a A}. 

If M c A, her(M) denotes the smallest hereditary C*-subalgebra of A 
containing M. If q G A** is an open projection, her(#) denotes the 
corresponding hereditary C*-subalgebra of A. If q G M{A), her(#) is 
called a corner of A. Ideals are closed and two-sided unless otherwise 
indicated. 

A(^) = {<p G A*:<p S 0 and |k| | ë 1}, 
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S (A) is the state space of A, and P(A) is the set of pure states. A is called 
a-unital if it has a strictly positive element, or equivalently a countable 
approximate identity. a(x) denotes the spectrum of x, and Es(h) is the 
spectral projection of h corresponding to the Borel set S c R (h e A**). 
Xs is the characteristic function of S, and co denotes convex hull. 

Some of the results of this section may be known to experts, even if they 
have not appeared in print. In particular several were proved in Section 
2.2 of [15] in the case of unital algebras. Also 2.D is based on things told 
to us by C. Akemann or G. Pedersen, and we disclaim originality for most 
of it. 

Since not all of Section 2 is used in the rest of the paper, we offer some 
guidelines for the reader who wants to skip some on a first reading. Of the 
five subsections, only (parts of) A and D are used importantly in the main 
sections. Parts of B are also used. Theorem 2.36 (part of 2.C) is entirely 
independent of 2.B. There are relations between C, D, and E, but these 
have nothing to do with the later parts of the paper. 

There are many examples in the paper, and we now establish notations 
for them which will be used throughout the paper. In dealing with X, we 
will denote by ex, e2,. . . a standard orthonormal basis for the Hilbert 
space H on which JT operates, v X w, v, w e H, denotes the rank one 
operator x \—> (x, w)v. Mn is the C*-algebra of n X n matrices, which we 
will consider embedded inJÇû e Mn is identified with 2 ai-ei X e- Mkl is 
the space oik X I matrices. Ex = c®X, the algebra of (norm) convergent 
sequences in J#T An element h of E** is identified with a bounded 
collection, {hn:\ ^ n ^ oo, hn e B(H) }. 

E2 = c 0 M2, E3 = {* G E2:Xoo = (, 

E4 = \x e E2:Xoo = | J J J, and E5 = c0 0 M2. 

The notation used in dealing with all these algebras is similar to that for 
Ex. E6 = Jf -f Q?, where p e B(H) is a projection with infinite rank and 
co-rank. E6 can also be described in an algebra of 2 X 2 operator 
matrices: 

E6 = j r b\:a e j?9 b, c, d G Jf) . 

In using these algebras for counterexamples, we will need criteria for 
deciding whether h G 4̂ ** is semicontinuous. These criteria are proved in 
Section 5. (5.A and 5.C through 5.F.) The reader may want to glance 
ahead to read these criteria, but we suggest that it is not necessary to read 
the proofs before reading the rest of the paper. There is no circularity; our 
reason for presenting the material in this order is that we want to discuss 
some of the questions raised in Sections 3 and 4 for some of the examples. 

) 
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Since the criteria for semicontinuity in Ef* (5.C) are used in proving 2.36, 
we have arranged it so that the reader who wishes can read the proofs in 
5.C before reading 2.C without undue difficulty. (2.36 is never used in the 
rest of the paper.) 

2. A. Basic facts. 

2.1. PROPOSITION. Assume 0 < c ^ h e A**. Then 
(a) h e [(AJmr ^h~l eA£. _ 
(b) h e (ÂJm ^ 38 > 0 such that h l - 8 e A™. 
(c) It is impossible that h e [ (A ) ]~ unless \ ^ A. 

Proof, (a) is Proposition 3.5 of [5]. (Also (a) follows from (b).) 
(b). If h e (Asa)m, then xa \ h, where 

xa G \ ~^~ Asa c Asa. 

Here (Aa) is decreasing and positive (if 1 e A we can choose Aa as we 
please). Then 

Choose 0 < 8 <X~l. Then 
a 0 

(x^1 - 8) / (A - 1 - 5) and x " 1 - Ô e A"1 - 8 + Asa. 

Since \~ ' — 5 > 0 (for a sufficiently large), 

By [5] this implies 

If 38 > 0 such that h — 8 e 4̂™, we may assume 5 is small enough 
that h~x — 8 is still positive. Then by [5] 

/ T 1 - - <=Am
+. 

2 

\î aa / h~x + 8/2, aa e A + , then 

a„ + - /i h \ *a 2 

Therefore (aa + 8/2) ' \ h. 
(c). If h e [ (AJmT, then by [5] 

This implies 3a ^ A such that 
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2 2 

which implies 1 G ,4. 

2.2. PROPOSITION. Le/ 4̂ Z?e_̂  C*-algebra, and consider the following 
conditions: (i) V0 < e ^ A G 4̂™, 35 > 0 swcA //wf 

A - S G < . 

( i i )O^ iA E 1 : ^ e ^ . 

(iiix = arj~. 
(iv) gM(>4) = M(^) . 

Then (i) «=> (ii) <̂> (iii) and (i), (ii), (iii) =̂> (iv). 
Remark. In Section 3.C it will be shown that if A is a-unital, all the 

conditions are equivalent. 

Proof. Assume 1 £ A, since otherwise (i)-(iv) are trivially true. Then 
VA G 2™, 3 a smallest A G R such that 

h + X G Â£. 

(By 2.1 (c) no negative invertible h G 4̂™, and this implies {À: A + A G 
A™a} is bounded below.) 

(i) => (ii). Let X be as above. If À > 0, (i) would contradict the 
minimality of A. 

X ^ 0 = * A = (A + A) + ( -A) G ^ . 

(ii) =» (iii). Since 2™ is norm dense in 0?™)~ and both are invariant 
under translation by scalars, (A™a)+ is norm dense in [(A™a)~] + . Thus 
by (ii) 

0 =g A G ( I - ) " ^ E ^ ^ E I ; 

Now again using translation by scalars, we see that (iii) is true. 
l £ = * A"1 e [tf,a)m (iii) =* (i). 0 <e^ h e AZ=>h~l e [{AJmV (by 2.1 (a)) 

h ' G (̂ ™)m C'Y ("i) ) => 35 > 0 such that h - 8 (= A™ (by 2.1 (b) ). 
(iii) => (iv) follows easily from [28] and [5]. 

2.3. PROPOSITION. 

M(A)sa = À?a n [(Âsa)mr = (ÂZy n (Àjm. 

Remark. In [28] and [5] it was shown that 

M(A)sa = ÀZ n (ÀJm and 

QM(A)sa = (ÀZr n[(ÀZ)m]~. 

(Of course also Asa = A™a n [04^XJ~-) The present proof is not 
different. 
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Proof. We prove the first. Let 

* ^ n i a j B ] - . 
Then by [5] x e QM(A ). Let xa / x where xa <E ,4, and let a <E A Then 

a*xaa 7 a*xa and a*xa, a*xaa e y4. 

Since a*(.x — xa)a ^ 0 and a*(x — xa)a \ 0, Dini's theorem (for 
continuous functions on A(A ) ) implies 

|| (x - xa)
l/2a\\2 = \\a*(x - * > | | - > 0 . 

Therefore 

|| (x - x > | | ^ 0 . 

Since xaa e A and xaa —> xa, XÛ G ^ . Since x* = x, this implies 
x G M(A). 

The next result also is just a refinement of a result of [5]. 

2.4. PROPOSITION, (a) If h e ( ^ ) ~ , f/œw 

(b) Ifa*ha e (1™)~, Va G ^ , rtoi A G (Â?a)~. If A is o-unital, it is 
sufficient to verify this condition for a single strictly positive element a. 

Proof (a). The map x \—> a*xa is positive, continuous with respect to all 
relevant topologies, and carries A into A. This shows that 

h e (ÂZ)- => a*ha e < 

and also that 

h e 2 - => fl*Afl e < . 

Combining these, we see that 

apfha,a2 e .4™ (A G ( ^ D -

Since 4̂ = A, (a) follows. 
(b). Let <pa -> <p in S(^)- Ve > 0, 3a e ,4 such that 0 ^ a ^ 1 and 

<p(a) > 1 — e. Then <pa(a) > 1 — e for a sufficiently large. Hence 

\Va(a*ha) ~ <pa(h) |, \<p(a*ha) - ^h) \ < 2^\\h\\ 

for a sufficiently large. Since 

<p(a*ha) â lim <pa(a*ha) 

by hypothesis (and [5] ), 

<p(/*) ^ljm<pa(h) + 4^\\h\\. 
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Since e is arbitrary, 

<p(/0 ^ lim Vfl(A) 

and the result follows. In view of (a), 

a*ha e (2™)" =» M ) * M ^ ) c A?a =» ( d ) " * A M ) " c ^ . 

If # is strictly positive, (aA)~ = A, and the last sentence follows. 

Proposition 4.5 of [5] states that if T G QM(A) and |7"|, |T*| ^ f l e ^ , 
then J1 G i . Theorem 1.2 of [3] puts this into better perspective: The 
hypothesis \T\ = a G A is equivalent to 

|T| G h e r ^ ) , 

the hereditary C*-subalgebra of A** generated by A. The result of [5] 
becomes: If T G QM(A), then 

T G her^**^) ^ 7 G À 

Related results follow. 

2.5. PROPOSITION. //"A G (2™)~ aw/A G her^**^), then h G ,4™. 

Proof. Let (<?a) be an approximate identity of A. Then <?aAea G ^4^ hy 
2.4, and eaAea —> A in norm. 

2.6. PROPOSITION, (a) If T G £>M(.4) a«J 7*T G her^**^), /Ae« 
T G i?M(,4). 

(b) 7 / T G LM</1) a/irf r * T G hei>*(,4), then T ^ A. 

Remark, (b) applies in particular if T G QM(A) and P 7 1 e ^1, since 
then Proposition 4.4 of [5] implies T G LM(A). 

Proof. Let (ea) be an approximate identity. 
(a). T G QM(A) => 7>a G RM(A\ and 7*7 G hei>*(,4) => Tea -> Tin 

norm. 
(b). T G LM(A) =ï> Tea G >1, and again 7>a —> T7 in norm. 

2.7. Remark-Examples. The hypothesis of (a) does not imply T1 G A 
r G gM(yl) => T*T weakly lsc (since T * ^ r /» T*T and T*eaT G 
<2M(yl)^). The hypothesis r * T strongly lsc would not imply special 
multiplier properties, but (still for T G QM(A) ) the hypothesis T*T use 
would have significance, in view of 4.1 and 4.4 of [5] and 2.3 above. In 
particular T*T strongly use would imply T G A. (By 2.3 and the above 
T*T G M (A). But every positive multiplier is strongly lsc, so that 

T*TeAZn[(Asa)m]~ =A. 

Then the earlier remark applies.) In (i) below the hypothesis of (a) is 
satisfied, TT* and T* T are strongly lsc and TT* G M (A) but T <£ A (and 
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T £ LM(A)). In (ii) T e LM(A) and T*T = 1 <= M(A) (in particular 
T*T is strongly lsc and middle use, but T £ RM (A). If one takes the 
direct sum of the two examples, one obtains S e QM(A ) such that SS* 
and S*S are strongly lsc but 

S € LM(A) U RM (A). 

(i) A = Ex. T is given by Tn = en X el9 T^ = 0. 
(ii) A = Ex. T^ is the unilateral shift and (Tn) is a sequence of unitaries 

such that Tn —» 7 ^ strongly. 

2.8. PROPOSITION. 

(a) Il = M(A)» 

(b) M ( i f + c i ™ 

(c) a-r = arj_-
Proof, (a). One inclusion is obvious since A c M(^4). For the other if 

xa G M (A )sa and xa / x, choose À G R such that X + xa ^ 0 . Then for a 
sufficiently large, 

A + xa G M(^)+ ^ À + i a G ^ ^ À + x G ^ ^ x G l ; 

(b). This is a triviality, stated only for completeness. It is well known 
(and has already been used above) that M(A)+ c A^. 

(c). It follows from [5] that 

and this gives one inclusion. For the other let 

x e (ÂZ)-. 
For each n we can find xn G Â™a such that \\xn — x\\ < \ln. Let 

y n = xn - - e ^m.-

n 

Then 

ThenjY / x. 

2.9. Remarks, (i) By [5] 4̂ + = (̂ 4™) + . The former notation is much 
more convenient. 

(ii) (a) and (b) explain the remarks made about the middle cases of (Ql) 
and (Q2). 

(iii) If QM(A) ¥= M (A), we see that A™a is neither norm closed nor 
monotone (increasing) closed. It is obviously very unpleasant to work with 
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a class of lsc elements with these failings. In the main parts of this paper 
we manage to avoid working directly with A™a. 

2.10. PROPOSITION, (a) A^ is boundedly quasi-strictly dense in 

[oO~)]+-
(b) A™a is boundedly quasi-strictly dense in (A™a) . 

Remarks, (i) This proof foreshadows some of the proofs of Section 3. It 
is not clear whether the result has any importance. 

(ii) The quasi-strict topology is a sensible one to use, since by 2.4 (A™a)~ 
is quasi-strictly closed. 

Proof, (a). Let x G (2™)~, 0 ^ x ^ 1, and let 

M = {h G A™:h ^ 1}. 

We will show that x is in the quasi-strict closure of M. Thus we assume 
given #], . . . , an, bx, .. . , bn G A and 0 < e < 1 and seek h G M such 
that 

\\aihbi — apcbiW < c, / = 1,. . . , n. 

Let e be a strictly positive element for the (separable) C*-algebrav40 gener­
ated by al9 . . . , an, bx, . . . , bn. Then there are a\, . . . , a'n, b\, . . . , b'n G A0 

such that 

| k - a'e\\ < , \\bf - eb'\\ < . 
1 l 6(116,11 + 1)' ' ,M 6(|K|| + 1) 

This implies that 3e' > 0 such that 

\\ehe — exe\\ < t! =» \\aihbi — açzb^ < c, / = 1, . . . , n. 

Now let 8 > 0 and y = exe + S G A"{_ (by 2.4 and [5] ). Since 
y ^ e2 + Ô,3h <E A**, 0 ë A ^ 1, such that 

y = (e2 + 8)l/2h(e2 + S)1/2. 

h = (e2 + S)_ 1 / 2y(e2 + ô)~ 1 / 2 =>h ^ A"l=ïh ^ M. 

Since A1/2 g ( H 8)1 /2 ^ A1/2 -h S1/2, VA G R + , 

| [ y - *Ae|| â * 1 / 2 [ | k | | + \\e2 + S||1/2]. 

Since also \\y — exe\\ ^ 6, 

\\exe — ehe\\ < e' 

if 8 is sufficiently small. 
(b). Given x G (2™ )~, choose A G R such that JC + A ^ 0. By (a) there 

is a net (ha) in 4̂ + such that 0 ^ h ^ \\x + X\\ and Aa —» x 4- A quasi-
strictly. Let (ep) be an approximate identity for A then Aa — \ep —» x 
quasi-strictly. 
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2.B. Subalgebras, etc. II At is a C*-algebra, V/ e /, then by the c0-direct 
sum of the At

9s, we mean the C*-algebra of functions f on I such that 
/ ( / ) e At and \\f{i) || —> 0 as / —» oo. This is the appropriate concept of 
direct sum for C*-algebras, as opposed to ^-a lgebras , as is well known. 
If A is the c0-direct sum, then A** is the /^-direct sum of the Af*9s. 

2.11. PROPOSITION. Let A be the c0-direct sum of C*-algebras Ai9 i e /, 
and 

h = .§> ht G A*a*. 

Then 
(a) h e A™ «* A,, e (̂ J.)™> Vi G /, a«rf Vc > 0, ht S 

/or a// but finitely many i G /. 

(b) h G a*)- «*/.,. e [ a x r , v» G /. 
(c) A E: A™a <=> 3X independent of i such that 

h, + X G 0 4 X , V/ G /. 

Pro©/, (a). =*: If A G ^ , then Ve > 0, 

(h + €) G 4 J . 

This implies 3a ^ A such that û ^ H c t û ^ A, + c, Vz), which implies 
Az- + e i^ — € for all but finitely many i. Also, examination of the map of A 
onto A: makes it obvious that 

h e AZ => A,, G (At%. 

<= : Choose c > 0. For each infinite set F a I, let 

Then the net (xp) is eventually increasing. Since_U is obvious that each xF 

is in Âfa (even A™a\ it follows that A + € is in A™, Vc > 0. Hence 

A G ^ . 

(b) follows from (a) and 2.4. 
(c). If A e 2™, 3X such that H À G ^ and (a) implies 

A, + X e ( 4 ) £ , Vi e / . 

Conversely, if X exists so that all 

ht + X G G4,X, 
we may assume X chosen large enough so that A 4- X ^ 0. Then Az + X 
0, Vz e /, so that (a) implies 

H À G Z xStf* 
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2.12. Example. Let A0 = £, . Define h(r) e (A$*)sa by 

1 1 \ / 1 1 

*(Oo re, e,. 

If r = 1/2, then h(r) e <2M(/10) and is weakly lsc and use, but not middle 
lsc or use. If r < 1/2, then h(r) is middle lsc, and h(r) + X is strongly lsc if 
and only if 

\ 
r + X 0\ . 

0 0/ ~ 

- + 
2 

A -
2 r + X 0\ . 

0 0/ ~ 1 

2̂ H 
which is equivalent to 

X â 
1 - 2r 

Thus by letting r —» 1/2, we can use 2.11 to construct /z 
is "locally middle lsc" but not middle lsc. Here 

A** such that h 

c0 c ^ 0 • JT = £ , . 

This example could also be done with AQ 

Hr)n = 

and h(r)c 

2 2 

1 1 

r e C. 

A/,, 

2.13. PROPOSITION. //*# G Af(^4) is a projection andA0 = her(g) = gyl#, 
//ie« the inclusion of Aft* in A** gives isomorphisms of (A0)™a with A™a n 

^o**, (M Oha with A" n AS;and[(Ao)ZY withJAZr 
onto (A0)Z, Al 

n A%* Also the 
onto (A~Q)™a,

 ar,d map x M> qxq gives surjections of Ar
s 

azr onto[(À0)zr. 
Proof. All that is required is to show that both maps preserve all three 

types of semicontinuity. For the map x 1—» qxq this is a complete triviality, 
since it carries A into A0 and A into A0. For the inclusion of Aft * in A** it 
is necessary to observe that — q e yf™, since — # G M (A), in order to see 
that (A0)™a maps into ,4™. (Of course, q is the identity of Afi*; in the 
present notation A0 = A0 + C • q.) 
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2.14. PROPOSITION. Let A0 be a C*-subalgebra of A, and let q be the 
identity of A%* a A**. Then 

(a) (A0)Z = AZ n A%*. 

(b) Àz n A*0* c a x -
(c) (ÂZ)- nA$* c [(À0)Zr. 

The reverse inclusions in (b), (c) hold if and only if' q G M {A), in particular 

ifq = I-

Remark, q is an open projection, her(g) = her(^40). 

Proof, (a). That (A0)™a c A™a is trivial. For the other inclusion note that 
A(^40) is a topological quotient space of k(A ), under <p i—> tp\A , and that 
h ^ A** ismAçj* iî and only if h (regarded as a function on A(2 ) ) factors 
through the quotient map. Clearly for h G Afi*, h is lsc as a function on 
A(̂ 4) if and only if h is lsc as a function on k(AQ). 

(b). Assume h G Â™a n ,4$* and A > 0 is such that 

h + A G ^ 
5 Û ' 

We claim that A + Xq is lsc on à(A0). Suppose <pa —> <p in A(/40). Extend <pa 

to $a in A(̂ 4) such that | |$J| = ||<pj|. By passing to a subnet (which is 
harmless in this context), we may assume <pa —» some $ G A(^4). Clearly 
<P\A = <P> though possibly ||$|| > ||<p||. Then by hypothesis 

(h + X)(?) = hQf) + A||$|| ^ Um(A(v«) + X||ÇJ| )• 

Therefore 

(A + X9)(v) = /*(*) + X\W\\ â A(Ç) + X||?|| 

^lim(A(Ça) + XHÇJI) 

= Hm(A(v«) + X||VJ|) 

= lim(/i + X?)(Va). 

(c). If A G (2™ )~ n ,4£* and a G V40, then by 2.4 

fl*Afl G ^ n ^0** c (A0)2. 

Therefore 2.4 implies 

If q G M(^4), the reverse inclusions are proved just as in 2.13. If one of 
the reverse inclusions holds, then — q G (Â™a)~ =^> 1 — q G 0?™)~ => 
1 — q is open (by [5] ). # and 1 — q open =^>q G M(̂ 4 ). 
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2.15. COROLLARY. If p G ^4** is an open projection and B = her(/?), 
then 

p G A%* =» B = her(£ n ^ 0 ) . 

Proof. By (a) /? is open for ^40. Clearly 

h e r ^ ) = * n A* 
If (ea) is an approximate identity for B Ci A0, then ea / p; and this implies 
(ea) is also an approximate identity for B (by Dini's theorem applied to 
b*(\ — ea)b as functions on A(i?) ). This shows 

B = her(£ n ^ 0 ) . 

2.16. Remarks. T ^ A** will be called separable if there is a separable 
C*-subalgebra ^40 of yl such that T ^ A$*. This concept is most useful 
when A is a-unital, since then it can be assumed that her(^40) = A. Note 
that if T G ,4**, then 

T G £M(,4)=* T Œ QM(A0). 

The same is true for M (A), LM(A), and RM (A), and the converse 
(ÔM(^0), LM(A0), etc. <zQM(A), LM(A), etc.) holds when her(^0) = ^ . 
Also if A is a-unital and T G QM(A), then Tis separable (since enTen —» T 
where (ew) is a countable approximate identity); and hence any element of 
QM(A)°sa, for example, is separable. An open projection p is separable if 
and only if her(/?) is a-unital: One direction is trivial. For the other, apply 
2.15, where A0 separable => B n A0 separable. These remarks will be used 
in Section 4. The point is to reduce the study of separable elements of A** 
to the case when A itself is separable. 

2.17. PROPOSITION. If q Œ A** is an open projection and B = her(g), 
then 

q(ÂZ)-q C (BZ)-. 

Proof Let <pa —> <p in S(B). Let <pa, <p G S (A) be the unique norm-
preserving extensions of cpa, <p. Since each cluster point of ($a) is an 
extension of <p of norm at most 1, <pa —> $. Let 

Then 

(qhq)(<p) = /*($) ^ lim A($a) = lim(^r/i^)(Va). 

2.18. PROPOSITION. Le/1 / Z>e a« /'dea/ of A with open central projection z. 
Then 

(a) h e A"l => zh e A"{_ and zh G / 

https://doi.org/10.4153/CJM-1988-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-038-5


C-ALGEBRAS 879 

(b) O l / i e A™ ̂ zh G A™ and zh e / sa' 

(c) O S A e a ™ ) " => 2^ G (I™)" and zh G ( / £ ) " . 

Remark. By 2.14 the two parts of (a) are equivalent and the first parts of 
(b) and (c) imply the last parts. 2.19 and 2.17 are strengthenings of the last 
parts of (b), (c). 

Proof, (a). zA + c M(J) + c J™ =* zl™ c 7™. 
(b). Assume 0 ^ /* e ,4™, and take X > 0 such that 

A + A e < . 

We claim that 

^ + A e 4 
which implies the result. To see this, let <pa —» <p in A(/l). Passing to a 
subnet, we may assume 

zq>a -> 0 and (1 - z)<pa -> *//, 

where 0 + i// = <p. Since (1 — z)i// = \p, 

<p(zh + A) = 0(zA + X) + Xl^ll 

^ 0(A + X) + X\W\ 

^ limCz^X/i + X) + X limll (1 - z ) v J | 

^ l imMzA) + XHzcpJI + X|| (1 - z)<pj| ] 

= lim <pa(zh + X). 

(c) follows from (b) (or from (a) via 2.4). 

2.19. COROLLARY. z(Â™a) c 7™. 

Proof. If h G yï™, choose X e R large enough that 

Then 

zh = z(h 4- X) - Xz G J™ + R • z = 7™. 

2.20. COROLLARY. T^i? w # corner of an ideal of A, with open projection q, 
then 

qÂ^q^K and qÂ™aq c B™a. 

Proof. Combine 2.13, 2.18, and 2.19. 

2.21. Remark. The hypothesis that B be a corner of an ideal is weaker 
than the hypothesis that B be an ideal of a corner. In fact any ideal of a 
corner of an ideal is again a corner of an ideal. 
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2.22. COROLLARY (cf. [5, Proposition 3.7] ). In the notation of 2.14 let 
B = her(<7). 

(a) Bfa c qÂZq, BZ c qA^q, and 

(BZV C [qÀZq]-. 

(b) (ÂX C qÂZq, 0?X c A and 

[Mr c[Ar 
(c) If B is a corner of an ideal, then 

K=qÂ™q, S?a = qÀ?aq, and 

(BZ)- = (qÀZaq)-. 

Proof (a) is trivial, since 

BZ C AZ and q = q • 1 • 9 G ^ > 

(b) follows from (a) and 2.14 (applied with A replaced by B). 
(c) just combines (a) and 2.20. 

2.23. Remarks-Examples. The point of 2.22 (b) is to have some kind of 
replacement for the missing reverse inclusions of 2.14. 

(i) Unless B is a corner of an ideal, ]« e i + such that 

qaq £ B™a. 

Proof Since qAq c QM(B) (by 2.17, for example), ^4+^r c P™ would 
imply ĝ 4 + # c M(P) (by 2.3), which implies <̂ 4# c M(B). Then 

5 D (^<?)P - ^ P =» ^ ^ ^ c £.4 c (ABA)~ => q e M(7), 

where 7 = (yllL4)~, the ideal generated by B. 

(ii) LEMMA. If A is a non-degenerate C*-subalgebra of B(H) and 
0 ^ P <= £ ( # ) , fAew P.4P c ^ =^ P G M(^) . 

Proof Let a £ i . Then 

(a*Pa)2 = a*(Paa*P)a ^ A =^ a*Pa e ,4, 

by uniqueness of positive square roots. By polarization, P e gM(yl). 
Then L = aP <E LM(,4) and L*L e ,4. By the proof of 2.6 (b), L <= A. 
Hence P G M ( ^ ) , and since P = P*, P Œ M(A). 

Note. There can be pitfalls from using non-universal representations in 
connection with multipliers, for example in attempting to apply Proposi­
tion 4.4 of [5] when the hypothesis on T*T is known only in B(H) rather 
than in A**. An example of this was shown to us by P. Fillmore and 
J. Mingo. We have avoided these pitfalls above. 

(iii) Unless B is a corner, 3a e A such that 
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qaq £ B™a. 

Proof. Since A = —A, 

qAqczBZ^qAqCiBZn [{BJmV = B c A. 

By the lemma, q G M (A ). 
(iv) The first part of 2.18 (c) (also (a), (b) by (i) ) fails if / is replaced by 

a hereditary sub algebra B; more precisely, there can be a e A+ such 
that 

qaq £ tf£)". 
If A is unital and B is not a corner of an ideal, this failure always occurs 

by (i) and 2.14. For example, take A = E2 and define q by 

= (1 0\ = (I 0\ 
9n \0 1/' q°° \0 0/' 

Let a e 4̂ + be given by 

«* = «oo = d J ' 
Then /z = ### is given by 

hn = \x 2)
9 h°° = \0 oj* 

h is not weakly lsc in A**, though it is weakly lsc in B**. (B = E3.) 
(v) It is not possible to replace (qA™aq)~ by q[ (A™a)~]q in 2.22, evçn if 

B is an ideal. 
Consider, for example, the case where A is unital. If 

ezv cz[a;an = zi: 
then 

(Tm)- = /"\ 

by 2.19. All that is needed is an example of a C*-algebra / such that 
QM(I) ¥= M(I), and then one can take A = T. A = E4, I = E3 c E4 

would be a nice specific example. It will be shown below (2.28) that 
prim A cannot be T2 in an example of this type. 

2.24. PROPOSITION. If (Ia) is an increasing net of ideals with open cen­
tral projections za such that A = (U/ a)~ and h e A™, then 

(a) h e A£ *> zah e Jj^, V«. 
(b) h G. A™a <=̂> 3 \ independent of a such that 

(c) h e 0O~ ** z«h G [ (IZr, Va. 
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Proof, (a). One direction follows from 2.18 (a). For the other note 
that 

zah / h and zah G 1% c Â™. 

(b) follows from (a) just as in the proof of 2.11 (c). 
(c). One direction follows from 2.17. For the other we may assume 

h ^ 0 (replace h by h + X). Let a G (Ui^). Then a Œ Ia for a sufficiently 
large, and hence 

*«* G Ktt™r => v**fl G (4)+ => **** e A+-
Since ( U / ^ ) - = ^ , a*ha G 4 , V Û Ê ^ , and 2 . 4 ^ / i e <A™a)~. 

2.25. PROPOSITION. 7/" prim A is Hausdorff 7, J are ideals, with open 
central projections z, w, such that A = / + / , #«d /z G 4̂*fl*, //z^« 

(a) zh<=l?a and wh <= 7fa =* h e Â?a. 

(b) zA e 7™ anrf W, e J » => A e 2™. 

(c) zh G (7fa)" a«J wh e ( J « ) - => A <= a ™ ) " . 

Proof, (a). It is enough to show 

H 8 G A™, VS > 0. 

Changing notation, we may assume 

zh e C wA <= 7™. 

Then 3/ G 7 + , y G / + such that 

/ + z/z, 7 + w/z ^ 0 => / + j + A ^ 0. 

Since z(i + y) G / + and w(z + y) G / ^ w e may change notation again 
and assume /z â 0. 

Assume <pa —> <p in A(>4) and let e > 0. There are open central 
projections z0, vv0 and closed central projections z1? wx such that 

^0 = z l = z> w0 = w l = w> 

|| (z - z0)qp|| < c, and 

|| (w - w0)q>\\ < 6. 

Write 

<Pa = 0a + ta + Pa> 

where 

°a = Z0°(V ta = wota> a n d 

z0Pa = ^oPa = 0. 
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Passing to a subnet, we may assume 6a —> 0, \pa —» $, and pa —» p. Then 

0 + ;// + p = <p, supp 0 Hk zx fk z, 

supp i(/ ^ Wj S w, and 

z0p = w0p = 0 =* ||zp||, ||wp|| < c =» llpll < 2c. 

Then 

rfA) = tf(A) + iK*) + P(h) 

^ Urn 0a(A) + lim ^a(h) + 2c||A|| 

^\jm(0a(h) + *a(A) + pa(A)) + 2c||A|| 

= 2e||/i|| + lim<pa(^). 

(b) follows from (a) by translation by scalars. 
(c) The proof is the same as (actually easier than) (a) except that now <pa, 

<p G S (A). We may reduce easily to the case h ^ 0. It follows from <pa, <p G 
S (4) that 

114.11 "> II^IU ll*«ll "> 11*11, a n d HpJI - | |p | | . 
(Then zh(0) ^ lim zA(0a) follows from 

zhl— Ulimz*(-M) 

2.26. PROPOSITION. 7/"/ a m / / are ideals, with open central projections z, 
w9A = I + J, and T ^ A**, then 

(a) zT G M(7) an*/ wT G M(J) ^ T G M(^) . 
(b) zT G LM(7) W WT G LM(/) ** 7 G LM(,4). 
(c) zT G gM(7) ««J wT G gAf(J) <= T G g M ( ^ ) . 
(d) / / r e M(i4), f/zew T G yl if and only ifT^ her^**^) by Proposition 

4.5 of [5]. 77ns w so if and only if zT, wT G her^**^), in particular if 
zT G 7, w7 G J. 

Prew/. (a)=>: If Û e ^4, write 0 = * + 7, / G 7, 7 G / . Then 

7a = 77 + Tj = (zT)i 4- (wT)j G 7 + / c A 

Similarly o r e i . 
«= : If / G 7, 

(zT)i = Ti Œ A n 7** = 7. 

Similarly, /(zT) G 7. 
(b). Same as (a). 
(c)4=. Same as (a), 
(d). Since (zT)*(zT) = zT*T ^ 7*7 and (zT)(zT)* ^ 7T*, 

T G her^**(v4) =^ zT ^ her^**^). 
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The converse follows from T*T ^ zT*T + wT*T. 

2.27. Remark-Examples, (i) The converse to 2.26 (c) follows from 2.25 
(c) and [5] if prim A is T2, but is false in general. For example take A = E4 

and let T be given by 

T =(° °\ T =1° l\ = 1 ? 
00 \o o/' n \\ orn 

Here z9 w are given by 

z« = vv« = (o i)' z~ = (o o)' and w~ = (o ?)• 
(ii) For a counter-example to the rest of 2.25 when prim A is not T2, take 

^4, z, w as in (i). Let h e y4*fl* be given by 

h" = \V2 2 )' *°° = (o I/" 

Then zh e / + , since 

(1 0 \ < / 2 V2\ 
l0 0J - \y/2 2 )' 

and also wh e /™. But A £ ^ = (À™a)~, since 

(J Î) * U f)-
(iii) When prim A is T2, 2.24 and 2.25 show that semi-continuity is local 

to the extent that this is reasonable: Assume Ia is an ideal, Va, and A = 
( 2 Ia)~- We wish to decide whether h is lsc by looking at zah e /**, if 
possible. 3.22 below shows that a necessary condition for h e A™a is that 
3a ^ A such that a â h. Since this necessary condition is clearly not local, 
one should assume it. Then 

h ŒA?aoh - a e Z f , 

and 2.24 (a), 2.25 (a) show that 

h-aeA™*>za(h-a)e C W , Va. 

There is also a hitch in locality for the middle case, illustrated by 2.12 
above; but we still have from 2.24, 2.25 that h e Â™a <=> 3X independent 
of a such that 

za(h + X) e ( Ï X , V«. 

For continuity, with the exception of weak continuity, one again has 
locality, even if prim A is not T2. One should prove the analogue of 2.24 
for left multipliers, but this is routine. 
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2.28. PROPOSITION. If prim A is Hausdorff and I is an ideal with open 
central projection z, then 

(a) 0 S A e 2£ => A e 2?a. 

(b) O ^ G (I7a)~ ^h e ® - . 

Proof, (a). Let À > 0 be such that 

* + A Z G C 

We claim that H À Ê Z^ . Thus let <?a -> <p in A(^). Let € > 0. There is 
an open central projection z0 and a closed central projection zx such 
that 

^o = z i = z a n d II (z ~ ZO)<P\\ < *• 

Passing to a subnet, we may assume 

z0<pa -> 0 and (1 - z0)<pa -> i/,. 

Then 0 + *// = <p, supp 0 ^ zx ^ z, and 

* = (1 - z0)^ =» \\z*\\ < 6 => xP(h 4- X) < e\\h\\ + X|M|. 

Then 

^(h + X) = 0(A + X) + xP(h + X) 

â lim(z0cpa)(A + X) + c||A|| + X limll (1 - z 0) vJ | 

^ e\\h\\ + lim[(zoVa)(A + X) + (1 - z0)<pa(h + X)] 

= c||A|| + lim^C/z + X). 

Since e is arbitrary, the result follows, 
(b) follows easily from (a). 

2.29. Examples-Remarks, (i) 2.28 fails if prim A is not T2. Take A = E4 

and define z by 

= / l 0\ /l 0\ 
z« lo ir z°° \o or 

Let /; be given by 

K = (] J), />oo = (o o)-

Then A G (J™)~ (A is even in QM(I) ), but 

^ ^ (Asa) = Asa, 

since 

e 0) * e 3-
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The fact that 2.28 (b) fails implies that 2.28 (a) also fails. To see this 
explicitly, take 

*„ = (? J)' *~ = ( o - £ "'' ° < € < °1 0<e<I . 
0/' 2 

If one replaces / in 2.28 with a hereditary C*-subalgebra B, the result 
fails even if prim A is T2. The same example just given can be used for 
A = E2. 

(ii) Consider the following facts from general topology. Let U be an 
open subset of the topological space X. 

(1) If / is lsc on U and X Si f(x), Vx G U, then / ' is lsc on X where 

x If{x), x e U 
f(> 

[fi> 

x £ U. 

(2) If / is lsc on X\U and X â / ( * ) , Vx <£ U, then / ' is lsc on X 
where 

fix) = 
(X, X G U 

\f(x), x£U. 

We have been attempting to analyze the non-commutative analogue 
of (1). In both (1) and (2) we are dealing only with h ^ A** such that 
[h, p] = 0, where p is the closed projection analogous to X\U. Of course 
[h, p] = 0 always if p is central, and [/z, p] = 0 in one of the Tietze 
extension theorems of Section 3. However, the result like (2) used in 
Section 3 does not seem worth formalizing. Below we discuss some effects 
of the hypothesis [h, p] = 0. 

(iii) The reason 2.19 and 2.18 (a) are true is not that z is central but 
that [h, z] = 0. If in the notation of 2.17 one assumes [h, q] = 0, the 
proof given can easily be adapted to work for h e A™("qhq(<p) ^ /*(?)" 
is the only real change), and then a result for h G Â™a follows. 

Note that [/*, q] = 0 does not imply Ii G V40**, where 

A0 = {a e A:[a,q] = 0}. 

(iv) In 2.22 it would be better to have 

BZ c {qx:x G lfa and [x, q] = 0}, 

etc. This improvement is easily possible for the strong and middle cases. 
For the weak case one could state an unpleasant result, 

(BZr c {qx:x G Â™a and [x, q] = 0 } " , 

but 2.23 (v) rules out a nice result in general. Of course the only really 
satisfactory results of this type are the conclusions of 2.28, which are only 
sometimes available. 
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(v) Let ^ G ^** be a closed projection, h <E A™ such that [h, p] = 0, 
t the top point in o(h) and h' = ph + t{\ — p). Then 

(a) A e ^ A ' e l C 

(b) h e 2™ =* f" e 2™-

(c) A e 0 £ ) " =>*'<= ( J - ) - . 

Proof. Let (ea) be an approximate identity for her(l — p). Let 

A* = 0 - ^ ' ^ o - <g1/2 + /e0. 
Then [/*a, p ] = 0, /?/za = /?/z, and 

(1 - p)ha â (1 - />)[ (1 - ea)
xnt(\ - ea)

m + tea] 

= /(I - />) = (1 - />)*'. 

Therefore ha ^ /z'. Also /*a —> W strongly. 
(a) It is easy to see that 

Since /*a is lsc as a function on k(A ), /*a ^ /*', and ha —> /*' pointwise on 
A(/0, A' i s l scon A(^). 

(b) follows from (a), since (h + A)' = h' + X. 
(c) is proved in the same way as (a) with A(A) replaced by S (A). 
(vi) If p in (v) is central, t can be replaced by the top point in o(php) or 

o(php) U {0}, computed relative to pA**p (thus giving a full analogue of 
(ii) (2) ); but this is false in general. 

Proof. In the central case there is an ideal / and ph is just the image of 
h in (A/I)** = pA**. Clearly ph is lsc in the same sense as /*, and it is 
easy to prove directly that W is lsc on A(̂ 4) or S (A) (cases (a) or (c) ). (If 
<pa —> <p, one can consider separately the cases "<pa vanishes on /, Va" and 
"supp <pa ^ (1 - p\ Va.") (b) still follows from (a). 

Example. Take A = E2, and define p by 

Let h e Al = (ÀZ)~ be given by 

*» = (o s) a n d h™ = (i 4)-
That h is lsc follows from 

(SHJ 
and the top point in a(php) is 6. Since 
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(t S) * G % 
ph + 6(1 — /?) is not lsc. 

2.C. Operator monotone and convex functions. A real valued function / 
on an interval / is usually called operator monotone or convex if / is open 
and the map h I—> /(/* ) is monotone increasing or convex for bounded 
self-adjoint operators h such that a(h) c /. I f / h a s finite limits at one or 
two (finite) endpoints of /, it is well known that, for the continuous 
extension of f to the enlarged interval, h •—»/(A) will still be monotone or 
convex. Thus in this paper the interval / will not be required to be 
open. 

2.30. PROPOSITION. Let f be operator monotone on an interval I of 
the form ( — oo, b), ( — oo, b], or ( — oo, oo), and let h e A** such that 
o(h) c /. 

( a ) / / l E ^ o r O E / andf(P) ^ 0, then 

(b) h E I : = . / ( A ) E I : , 

(c) h e 0O~=>f(h) e (2^)_. 
Remark. H \ <£ A and 0 £ / , it is impossible that /z <E 4̂™ by 2.1 (c). 

Proof (a). By [5] there is a net (xa) in ^ such that xa /* h, and 
*« G \ "*" ̂  where Xa / 0. Then/(x a) / /(/*)• If 1 ^ A, we are done. If 
/ (0) ^ 0, then 

/(*«) e /(Aa) 4- ^ and f(Xa) /» /(0) ^ 0. 

By [5] this implies f(h) e l?a (if / (0) > 0, f(xa) e ^ for a suffi­
ciently large). 

(b). If x a ^ A, then/(x„) / (/*),/(*„) G Asa. 
(c) follows from (b), since h i—> /(A ) is norm continuous and we may 

choose &„ —> h with hn e ,4™ and a(/z„) c J. 

2.31. PROPOSITION. Let f be operator monotone on an interval I of the 
form (a, oo), [a, oo), or ( — 00, 00), and /ef /1 G 4̂™ such that a(h) c /. 

(a) IfOe landf(0) ^ 0,thenf(h) e ^™. 
( b ) / / 0 G I, then f (h) <=A™a. 
(c) / / / = (0, 00), then Ah) G ( 2 - ) - . 

Proof (a). First assume /z ^ 0. Let 5 > 0, and choose aa e A + such that 
aa /< h + 8. Then 

/(«a) e / (0) + ^ c ^ and /(*,„) / /(A + 5). 
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Thus f(h + 8) e A™, V8 > 0; and letting 8 -> 0, we see that /(A) e 

If A 2^ 0, let s be the least point in o(h), so that s < 0. Choose xa / h 
such that xa e Xa + A and Xa /» 0. If 8 > 0, then Xa + 5 > 0 for a 
sufficiently large, which implies xa + 8 gives an lsc function on A(^4). 
Since xa 4- 8 ? h 4- 8, which is >,s at each point of \(A ), Dini's theorem 
implies xa + 8 ^ 5 for a sufficiently large. Thus 

o(xa + 8) c / and /(jca + 8) /» /(A + 8). 

/(*« + 5) e /(Xa + 8) + ,4, and /(Xa + S) ^ /(0) ^ 0 for a large. 
Hence 

f(xa + 8)^Â2=*f(h + 8)^ÂZ. 

Again let 8 -» 0. 
(b) follows from (a) applied to / — /(0). 
(c). If 8 > 0, then by [5] there are aa e 4̂ + such that fla / H 8. 

Then 

Aa + S / A + 28 => / (û a + 8) / /(A + 28). 

Hence f(h + 28) <E 2™. As 8 -» 0, /(A + 28) -> /(A) in norm. 

2.32. COROLLARY. Let f be operator monotone on an interval I and 
h e Â2 such that o(h) c L 

(a) 7 / 0 6 / a/w//(0) S 0, then f (h) e ^ . 
( b ) / / 0 e I,thenf(h) e ^ 
(c) //• 0 w fAe fe/ endpoint of I, then f(h) e (4™) . 

Proof Let 

/ _ = {x G R:JC ^ _y for some y e / } and 

7 + = { i e R:x ^ j> for some y e / } . 

W r i t e / = / _ + / + w h e r e / ± is operator monotone on I±. If / (0) = 0, we 
may assume /+(0), /_(0) ^ 0. Apply 2.30 t o / _ and 2.31 t o / + . 

2.33. Remarks, (i) The sharpness of these results will be discussed in 
2.41 below. 

(ii) It is possible to translate the independent variable of / replacing / 
by/ ( • - 0 and J by / + /. If 1 ^A,h + t will be lsc if h is. Even if 1 £ A, 
h + t may be lsc^ In particular, in the context of 2.32 (c), if 38 > 0 such 
that * - « e ^ , then/(A) e A™a. 

2.34. PROPOSITION. Lef / be operator convex on an interval I and 
h <= QM(A)sa such that o(h) c /. Then f(h) e (2™)~. 

Proof It is well known that / has a representation 
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(1) f(x) = ax2 + bx + C 

1 x — x{ 

XQ — t (XQ — t) + /< / ( rh -^^ + ^ ^ l * - ( / ) 

+ f r {— - - 1 - - * " *°2 W ) -
•">' \r - x t - x0 (t - x0)

2l ^+{ ' 
Here a =£ 0, t < I means t < x, VJC G I, t > I means t > x, Vx e 7, x0 is 
any point in 7°, and ju± are positive measures such that 

1 
/ (1*1 + I)' 

dn±(t) < oo. 

Even if / contains an endpoint, (1) gives a norm convergent integral for 
f(h). ah2 e (A™y b_y_2.7. By 2.1 (a) (A - 0 _ 1 , t < ^ a n d (' ~ h)~\ 
t > / , are both in A^, since ±h e [(^ f l)„ ,]~. This implies that the 
integrals are in (A™a)~. 

2.35. PROPOSITION. Le/ f be a continuous real-valued function on an 
interval I. 

(a) If h G Â^a, o(h) c / =»/(*) G (I™)~ /or a// C*-algebras A (or for 
A — ̂ j) , and / / 30 = r e /, then f is operator monotone. 

(a') / /A G < , a(A) c 7 =>/(/,) G < / 0 ^ = c ® Mn, n = 1, 2 , . . . , 
//*e« / w operator monotone. 

(b) ///* e QM(A)sa, o(h) c I => f(h) <E (j*™)" /or a// C*-algebras A 
(or for A = Ex), then f is operator convex. 

Remarks, (i) The hypothesis on / in (a) is necessary, since otherwise, it is 
impossible to have h e A™a, o(h) c / when A is non-unital. 

(ii) In (a') the algebras are unital and hence there is only one kind of 
semicontinuity. 

(iii) (b) is strictly a non-unital result. 

Proof (a). Choose 0_J§ / e / . Let h' ^ h" in Mk c X where o(h'\ 
o(h") c / . Define h e ^ (A = Ex) by hn = hf + tq, n = 1,2, ..., h^ = 
h" + tq, where 

oo 

q = 2 e.: x et. 

Then 

f(h)n =/(* ' ) + /(0<7, V«, and/(/.)«, = /(A") + / (0*; 

and clearly 

Ah) ̂  azr ^ Ah') ^/(h-). 
(a'). This is left to the reader. 
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(b). Let a e (Mk)sa, b e Mkb c e (Af7)Jfl be such that 

la b\ 
V cjcL 

Fix t G / and consider h e QM(A )sa such that 

hoo = a + ty, 

A„ = 2 v x *y 
1,1 

k,i 

+ 2 Re 2 Zy, X ew+ .+ik 
1,1 

1,1 
^ + i + k X ^n+y' + A: + *9n> 

where 

9 

CX) 

= 2e, 
£+1 

X ev 

oo 

qn = 2 <?i X e , - + 2 e, X et. 
k+\ n+k+l+\ 

Then all the operators f{hn) are unitarily equivalent, though not equal as 
in (a), and all the operators 

q'Ah)q' = q'f^ *)<?', 

where q' = 1 — q. Thus f(h) e (Â™a)~ implies 

This inequality for all choices of k, /, a, b, c implies / is operator convex. 
(See [16], for example; also cf. Remark 2.37 (b) below. The t on the left of 
the inequality drops out.) 

2.36. THEOREM. Let f be operator convex on an interval / 3 0. The 
following are equivalent. 

(i) For A =Ex,h& QM(A)sa and a(h) c / =>/(*) e Aja. 
(ii) For p, h G B(H)sa such that p is a projection and a(h) c / , 

Pf(php)p ^ m . 

(iii) Forp, h e B(H)sa such that 0 â p g 1 and a(h) c / , 
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f(php) ïk f(h) + /(0)(1 - p). 

(iv) The condition in (i) holds for arbitrary A. 
(v) Either/ = 0, or f(t) > 0 V/ G / and — \lfis operator convex. 

(vi) f has a representation 

p) fw = /-r</r^*-(r) + />/rb*+ ( r ) + c' 
where fi± are positive measures such that 

/ - dfi±(r) < oo a/?<i c ^ 0. 

^4/s0 iff satisfies the conditions and f can be continued to an operator convex 
function on some interval J Z) /, then f satisfies the conditions on J. In par­
ticular, unless f = 0, f cannot approach 0 at a (finite) endpoint of I. 

2.37. Remarks, (a) (ii) only nominally requires 0 e /, since neither side 
of the inequality would be affected if we extended f\co^h))to a continuous 
function on all of R. (i), (iv), (v), and (vi) do not depend on the hypothesis 
0 G / a t all. Since the conditions other than (iii) are easily seen to be 
invariant under translation of the independent variable, (iii) must 
be invariant under translations that preserve the hypothesis 0 e /. 
Alternatively, let / b e a function on an arbitrary interval /, a e /, and 
consider: 

(iii)fl: V/?, h e B(H)sa such that 0 ^ p ^ 1 and o(h) c /, 

f(p(h - a)p + a) ^ f(h) + f(a)(\ - p). 

Then (iii)a is independent of a. 
(b) It would appear that the sharp case of (iii) occurs when p is a 

projection. The only reason we considered (iii), instead of being satis­
fied with (ii), was to have something that would make sense in a C*-
algebra without enough projections. It is interesting to compare various 
operator inequalities. Operator convexity is characterized by 

pf(php)P = Pf(h)p, 

p a projection. (Davis; See [16], where the history is also discussed.) A 
slight reworking of Davis' inequality will occur below (2.54): 

/(i\^|/(w 
n 

\l9...,\n e IF1; ^ 0 , 2 / r ; = l. 
l 

(Here h is a finite matrix, o(h) = {X1? . . . , Xn}, and Ft = pEtp, where the 
E-s are the spectral projections. Naimark's dilation theorem shows all 
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choices of Fl9...,Fn can occur.) If 0 G / and f(0) ^ 0, operator 
convexity is also characterized by f(pxp) ^ pf(x)p (Davis) and by the 
stronger inequality f(a*xa) â a*f(x)a, \\a\\ ^ 1 (Hansen and Pedersen 
[22] ). The relation between (ii) and (iii) is somewhat analogous to the 
relation between Davis' and Hansen and Pedersen's inequalities, but note 
that in (ii) and (iii) / (0) > 0. 

(c) That the function x \—> l/x, x > 0, satisfies (ii) can easily be verified 
directly. To see this, use the formula 

a b\ = (I 0\la 0 \/ l a"lb\ 
b* cj \b*a~l l/\0 c - b*a~lb)\0 1 /' 

which makes it easy to compare 

(*• 9 a n d (o ?)• 
(d) Each of (i)-(vi) already implies / operator convex. The proof of this 

for (v) (the only non-obvious one) is contained in 2.38 below. 

Proof of 2.36. (i) =» (ii): First note that by taking h = t • 1, / e /, we can 
conclude t h a t / ^ 0 on / ; in particular/(0) ^ 0. Now consider the same h 
used in the proof of 2.35 (b) with / = 0. Then 

Pf(*)P =/(*oo) where/? = 1 - q. 

By the criterion for strong semicontinuity (see Section 5.C), Vc > 0, 3N 
such that 

pf(a)p^f(hn) + e, V« ^N. 

The inequality 

(1 - q„)pf(a)p(l - q„) ^ (1 - qn)[f{hn) + e](l - q„) 

is equivalent to 

(o/w î) - / ( : . 3 + -
as an inequality in Mk+l. Letting c —» 0 we obtain the special case of (ii) 
where 

Since finite rank operators are dense, this is adequate. 
(ii) =» (i): Let p ^ qbe projections and h e B(H)sa such that a(/*) c J. 

By applying (ii) to #/*#, we see that 
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Pf(php)p ^ qf(qhq)q. 

Now let (pm) be a sequence of finite rank projections such that pm / 1, 
and h G QM(A)sa such that a(/z) c / . Then 

)Pm ? /(*oo)-

By the criterion for strong semicontinuity it is sufficient to prove: Vm, 
Vc > 0, 37V such that 

n ^ N => Pmf(PmhooPm)Pm = Ah
n) + €-

But 

*w -> ^oo weakly =» ^Ai7™ ~* pJiooPm i n n o r m 

=* 37V such t h a t / C ^ o o / ^ ) ^ f(pmhnpj + c, V/i è TV. 

Therefore 

PmAPmhooPm)Pm = Pmf(PmhnPm)Pm + e = M , ) + €> 

where we have used (ii) again. 
(i) and (ii) => (iii): Let 0 ^ /? ^ 1 and x <= Jfsa such that o(x) c /. 

Choose a sequence (;?„) of projections such that pn~* p weakly. Then we 
can define h G QM(A )sa by 

A/i = PnXPn> ^oo = />*/>• 

Choose K Œ jf such that ^ ^ /(h^) and c > 0. Then f(h)^A?a=* 
3JV such that K â /(/*„) + e, V/i ^ TV. By (ii) 

PnAhn)Pn = /(*)> 

and this means 

/(An) =i / ( * ) + /(0)(1 - Pn). 

Therefore 

A" ^ f{x) + /(0)(1 - />„) + e, V» i= AT 

= > t f ^ / ( x ) + / ( 0 ) ( 1 - / > ) + e. 

Since A and e are arbitrary (and since / ( A J ê 0 => /(AQQ) G JT+), we 
conclude 

/( /«/>) = /(*oo) ^ / ( * ) + /(0)(1 - />)• 

This inequality for x G J f implies the general inequality since finite rank 
operators are dense. (Also, the inequality for finite matrices implies the 
inequality even in non-separable Hilbert spaces.) 

(iii) => (iv): Let x G QM(A)sa such that a(x) c / ) and (ea) an approxi­
mate identity for A. Then 
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ya = f(eaxea) - f(0)(l - ea)^f(x). 

Also 

eaxea G A =*f(eaxea) G /(0) + A =$ ya G A. 

Since ya ~~*/(*) in the strong topology of ^4** (and in particular as func­
tions on A(/l) ), this implies f(x) G A™a. 

(iv) =̂> (v): Let 70 be a subinterval of / such that / > 0 on I0. 
(If necessary translate the independent variable so that 0 G I0.) Then for 
h G gM(,4) J f landa(A) c J0, 

/(A) G Âfa^f(hyl G l a j j " (2.1 (a)) 

=> - / ( / 2 ) ' 1 G ( I - ) " . 

By 2.35 (b), — 1 / / is operator convex on I0. But a convex function can 
never approach — oo at a finite endpoint. This implies that we can take 
IQ = I, unless / = 0. 

(v) => (vi): In the proof of 2.34 we saw the integral representation (1), 
for an arbitrary operator convex function, and now we want the stronger 
form (2). In comparing (1) and (2), take x0 = 0 (we may assume 0 G 1° 
for (v) => (vi) ) and r = \t\. Thus we have: 

(1') f{x) = ax2 + bx + c+ f I—J— - - + 4 W - ( 0 
J r < y \r + x r r 1 

If 

/
- du±(r) < oo 
r 

the Mr and x/r2 terms can be dropped from the integrals and absorbed 
into bx + c. Assume / ¥= 0, and write 

g(x) = , 
X 

so that g is operator monotone. Then since 

fix) \ / (0) / g(s) 

x / (0) / (x) 

and / (0) > 0, 

g(x) = g(x) 

f(x) /(0) + xgix) 
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is operator monotone. The case g = constant cannot occur, and the 
case 

g(x) 

/(0) + xg(x) constant 

yields 

/(*) = 
A 

/(*) = B + CX' 

which is a trivial case of (vi). Thus we assume neither of the two operator 
monotone functions is constant, and this implies both carry the upper half 
plane into itself. If Im z = y > 0, then 

g(z) / ( O ) I m g ( z ) - y\g(z)\2 

Im-
/(0) + zg(z) positive 

. / (0) Im g(z) > y\g(z) |2 =* Im g(z) <f-^-. 
y 

From (1') we obtain 

(3) g(x) = Lji— -)-du+(r) 

— I )-du_(r) -f ax -f b, and 
J r<l \r 4. x r] r 

(4) lm8(z)=jr>lV^2-rdu+(r) 

^ L<i^fzJ-/u.(r) + ay. 

This implies 

,2 
..2 _, f . y1 i 

Jr>I 
ay + Jr>l] â~du + (^ 

j r<.i \r + z\ r 

If Re z = 0, then \r ± z\2 = r2 + y2 and 

f-^--2-du±(r) ^ \ J -du±(r). 
J \r ± z\ r 2 Jr=y r 

Thus we conclude 
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h a = 0 and / -du±(r) < oo. 

We now assume that the Mr and xlr2 terms are dropped from the 
integrals in (T) and absorbed into bx + c. This does not change (4) but 
causes the "— 1/r" terms to be dropped from (3). Then 

/<»> • ( L Ttrh?""*w + /— ;Fh>*-w 

If we let z —> oo so that Im z is bounded away from 0, the dominated 
convergence theorem applies and gives 

/(0) -0 ^ \b\2 ^b = 0. 

Now we calculate 

f y2 i 
hm ylmg(z)= km / - 1 — — î ' W r ) , 

J;-»OO j->oo ^ J + r r 
Rez = 0 

wkere /i = / i + -h /x Fix « > 0. For r ^ ( l / « ) j , 

/ 3 r2 + / S (l + 4 1 * = > 1 ^ - ^ ê - ^ T -
\ n I r + y n + I 

Tkus 

/ V ) * > Im g(z) S - j ^ / g ( 1 / n ) > , ^ M O -

Tkerefore 

n — 
/ -d[i(r) ^ km 7 Im g(z) 

n2 f \ 
â km 7 Im g(z) ^ 2 » -<//x(r). 

« + 1 ^ r 

Since « is arbitrary, 

km j Im g(z) = / -d/x(r); 

and 

Im g(z) < ^ => / -rf/iC) ^ /(0) = c + / -<//</•). 
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Thus c ^ 0. 
(vi) => (i) follows easily from 2.1. 
The fact that / still satisfies the conditions on / when / can be 

continued to J follows from (vi) and the uniqueness of the integral 
representation. 

2.38. COROLLARY. If k < 0 is an operator convex function, then 
f = — \lk is operator convex and has integral representation of the special 
form (vi). 

Proof We need only show that / is operator convex, and then use 
(v) =̂> (vi). Since k is operator convex, 

h G QM(A)sa, o(h) c / =* -k(h) G [(ÀJJ- =»/(*) G Âfa 

by 2.1. Thus 2.35 =» / operator convex. 

2.39. PROPOSITION. Let f be operator monotone on an interval I of the 
form ( — co, b), ( — oo, b], or ( —oo, oo). 

(a) Iff ^ 0 on I, then 

h e (AZ)~ and o(h) c / ^ f(h) e ^ 

(b) Iff is bounded below on / , then 

h G (ÀZr and a(h) c / =>/(/,) G 1™. 

Proof, (a) / has a representation 

(5) / ( * ) = ax + b + J —— - ——£/ju(r), 

where A, JU ^ 0 and 

/ -^ du(r) < co. 
r2 + 1 

lim / (x ) > — co => a = 0 and / d[i(r) < co. 
jr>i r _ x x—* — oo 

Therefore the " —(1/r — JC0)" terms can be dropped from the integral in 
(5) and absorbed into b. We obtain 

(6) f(x) = b+ fr>i-L-dli(r). 

Since 

b = lim f(x) è 0, 
A"—-* —OO 

(6) and 2.1 (a) imply the result, 
(b) follows from (a) applied to 
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/ - lim f(x). 

2.40. Remark. It should be clear that if / is as in (5), the conditions in 
2.36 are equivalent to the hypothesis of 2.39 (a). 

In the next three remarks we discuss the sharpness of the above results. 
Consider the following questions, each of which is nine-fold because of the 
three types of semicontinuity. 

(I) Given a C*-algebra A and an interval / , is it true that for all h e A *a* 
with o(h) c / and all operator monotone functions f on I (or, where 
appropriate, all / such that /(0) ^ 0 or / ^ 0 on / ) h lsc => f(h) lsc? 

(II) Given a function / on /, is it true for all C*-algebras A that h lsc => 
Ah) lsc? 

In Remark 2.41 we argue that a yes answer to (I) that does not follow 
from 2.30-2.32 or 2.39 can occur only if A is very special. Namely, A must 
be unital or satisfy (i), (ii), (iii) of 2.2. Moreover, in these cases the yes 
answer to (I) follows easily from 2.30-2.32 or 2.39, the special condition on 
A, and 2.33 (ii); so that it is not worth being stated formally. In Remark 
2.42 we argue that any yes answer to (II) follows from 2.30-2.32 or 2.39. 
Moreover, Ex is a universal test algebra for (II). Of course (I) and (II) are 
not the only questions that could be asked on this subject. 

2.41. Remark. First we dispose of the case A unital. In this case there is 
only one meaning of lsc and translations of independent variable cause no 
problems. Thus 2.32 (b) gives a positive answer to (I) always. 

Now if A is not unital, it will be impossible to have h e A^, o(h) c 7 
if / c ( —oo, 0). Hence such / should not be considered when the 
hypothesis is h strongly lsc. 

(a) strong —> weak. 
The yes answer to (I) follows from 2.32 unless / has a left endpoint 

s > 0. Consider 0 < 8 < s and let 

/ ( * ) - — — „ • 

x — o 
By 2.1 (a) if / takes strongly lsc to weakly lsc, it must be true that h e 
Â?a, o(h) c / =» h - 5 G Âfa. It is useful to state: 

LEMMA. Let I be a non-degenerate interval such that I c (s, oo) for some 
s > 0. If the conditions of 2.2 are not satisfied, then 3h G A™a such that 
o(h) c I and h - 8 <£ 2?a for any 8 > 0. 

Proof Choose x e (A™a)~\A™a, and choose xn e A™a such that xn —> x 
in norm. Let \n be minimal such that xn + \n G A™a. Since x £ A™a9 

Xn —> oo. This implies that for n large the ratio between the top and bottom 
points in o(xn + Xn) (both of which will be positive) is close to 1. Let 

* = rn(Xn + K)> 
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where n is large and rn is chosen so that the bottom point in o(h) is slightly 
more than the left endpoint of / . 

If the conditions of 2.2 are satisfied, by 2.2 (ii) we may translate the 
independent variable to replace I by I — s. 

(b) strong —> middle. 
If 0 G / , the yes answer to (I) follows from 2.32; and if / has a left 

endpoint s > 0, the reasoning in (a) above is decisive (when 2.2 (iii) holds, 
case (a) and case (b) are the same). The remaining case is / = (0, t) or 
(0, t]. In this case consider/(JC) = — \lx. By 2.1 (b), i f / t akes strongly lsc 
to middle lsc, then 2.2 (i) holds. In this case the yes answer to (I) follows 
from 2.32 (c) and 2.2 (iii). 

(c) strong —> strong. 
Since X • 1 e A™a if and only if X ^ 0, clearly we need / ^ 0 on 

/ Pi [0, oo). This means that the portion of (I) in parentheses is applicable. 
If 0 G /, 2.32 gives the yes answer. If 0 is the left endpoint of / , t h e n / ^ 0 
implies / has a finite limit at 0; so that 2.32 (a) still applies. If / has a left 
endpoint s > 0, the reasoning in (a) above shows that the conditions of 2.2 
are satisfied; and again we can replace I by I — s. To see this, one should 
note that in (a) we could have taken 

which is positive on /, with equally good effect. 
(d) middle —» weak or weak —> weak. 
These cases are the same, since h I—> f(h) is norm continuous 

answer to (I) follows from 2.30 unless / has a left endpoint s > 
this case we may perform a translation to reduce to the case s = 
consider 

fw = — I T Ï 8 > 0 -
X + 0 

A yes answer to (I) would imply (by 2.1 (a) ) that 

/I + Ô G ^ , V Ô > 0 , 

which implies h G A™a, for all h e A™a such that a(h) c / . This gives 2.2 
(ii), which means that 2.32 (c) applies. 

(e) middle —> strong or weak —» strong. 
Again these cases are the same, and the parenthetical part of (I) is 

applicable (here we need / ^ 0 on / ) . If / has a finite left endpoint s, again 
we may assume s = 0, and the reasoning in (d) (take f(x) = 1/8 — 
\/(x + 8)) shows that the conditions of 2.2 are satisfied, if there is a 
positive answer. Thus 2.32 (a) applies (see (c) if this is not clear). 

If the left endpoint = — oo, 2.39 (a) gives a yes answer to (I). 
(f) middle —> middle. 

The yes 
— oo. In 
0. Now 
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The yes answer to (I) follows from 2.30 unless / has a finite left 
endpoint s. Since h I—» f(h) is norm continuous, a positive answer here 
would imply a positive answer in case (d), which implies the conditions of 
2.2. Then 2.32 applies (see (b) if this is not clear). 

(g) weak —> middle. 
Since the function f(x ) = x is allowed here (unlike case (e) ), this case 

can have a positive answer only when the conditions of 2.2 are satisfied. 
Then this becomes the same as (d). 

2.42. Remark. Since A is arbitrary in (II), it is in particular non-unital, 
and we again exclude the case / c ( —oo, 0) when h is required to be 
strongly lsc. 

(a) strong —» weak. 
A positive answer to (II) follows from 2.32 unless / has a left endpoint 

s > 0. Consider 

g(x) = f\- f o r x near 1 - —, 
\1 — XI XQ 

where x0 e 1° C (S, 00), and the answer to (II) is yes. By 2.1 (a) g takes 
weakly lsc to weakly lsc, and 2.35 (b) implies g is operator convex. Since 
clearly / operator monotone =̂> g operator monotone, g must continue to a 
function (still both operator monotone and convex) on ( — 00, 1 — \/x0); 
and this implies that / continues to a function (still operator monotone) 
on / U (0, JC0). Now 2.32 (c) applies. 

(b) strong —» strong. 
/ must be ^ 0 o n / Pi [0, 00), and then a positive answer follows from 

2.32 unless / has a left endpoint s > 0. Assume / of this type and a 
positive answer to (II), and consider the g used in (a) above. Now g takes 
weakly lsc to strongly lsc and a fortiori QM(A )sa to strongly lsc (on some 
subinterval of its largest domain). Now by 2.36 (see also 2.37 (a) ) g must 
be positive on all of ( — 00, 1 — l/x0). Thus not only does / continue to 
/ U (0, JC0) (which we already know from (a) ), but the continuation is still 
positive. Hence 2.32 applies. 

(c) strong —> middle. 
A positive answer follows from 2.32 unless / c (0, 00). Using 2.11, we 

see that for any compact I0 c /, there must be X > 0 such that 

helfa and o(h) c I0 =*f(h) + A e lfa. 

Then by (b) this relation must hold on co(/0 U {0} )• Thus / has a finite 
limit at 0 (we already know by (a) that / continues to 0) and 2.32 (b) 
applies. 

(d) middle —> weak or weak —» weak. 
These cases are the same and 2.35 (b) implies/must be operator convex 

(as well as operator monotone) for a positive answer. Thus 2.30 applies. 
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(e) middle —» strong or weak —> strong. 
Again / is operator convex and operator monotone for a positive 

answer. Thus / can be extended to an interval whose left endpoint is — oo. 
By 2.36 the extended function will be ^ 0 on its entire domain. Hence 2.39 
(a) applies. 

(f) middle —» middle. 
Since a positive answer here implies a positive answer in case (d), / must 

extend to an interval to which 2.30 applies. 
(g) weak —> middle. 
Again / must extend to an interval with left endpoint — oo. By 2.11 for 

any compact I0 c / there is X > 0 such that / + X takes weakly lsc to 
strongly lsc for o(h) c I0. Then by 2.36 / + X must be positive on its 
whole domain. Hence 2.39 (b) applies. 

In parts (c) and (g) we did not quite prove that a positive answer to (II) 
for A = Ex implies a positive answer for all A. When we used 2.11, we 
were invoking A = c0 0 Ex. But c0 0 Ex can be embedded in Ex so that 

her(c0 0 Ex) = El9 

and then 2.14 implies that a positive answer for Ex implies a positive 
answer for c0 0 Ex. 

2.43. Remark. We now discuss the sharpness of 2.34, 2.36. 
(a) If h e A** and f(h) is weakly lsc for all operator convex/, then ±h 

are weakly lsc so that h must be in QM(A ). 
(b) If in (a) we replace weakly lsc with middle or strongly lsc, we would 

obtain that h e M (A) or h e A. Since A and M {A) are C*-algebras, there 
are no interesting results here. 

(c) Given / , 2.34 and 2.35 completely solve the problem "When does / 
take QM(A) to weakly lsc?", and 2.36 completely solves "When does 
/ take QM(A) to strongly lsc?" By reasoning similar to that in 2.42 (c) 
and (g), we can see that / takes QM(A) to middle lsc if and only if 
/ + À satisfies the conditions of 2.36 for some X e R. 

2.D. Relations with compact and open projections. The next result is not 
original with us, but we do not know precisely to whom the credit 
belongs. 

2.44. PROPOSITION. Let 0 = h G A**, and let q be the range projection 
ofh. _ 

(a) If h e A™, then q is open. 
(b)Ifh G [ (Asa)m]~ and 3e > 0 such that 

o(h) n (0, c) = 0, 

then 1 — q is open. 
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Proof, (a). Assume h ^ 1. By 2.31_(a) ha e ^ for 0 < a < 1. Since 
Aa / ^ as a \ 0, this shows ^ G ^ f ; and [5] implies q is open, 

(b). By 2.30 (c), 

ha^l(ÀJmr f o r 0 < a < l . 

The condition on a(/z) implies ha —» g in norm, so that 

Hence 1 — q e (̂ 4™)~~, and [5] implies 1 — q is open. 

2.45. COROLLARY, (a) 7/"/* e [ ( Z ^ X J - fl^d ^ bottom point, s, in o(h) 
is isolated, then Ets^(h) is open. 

(b) If h G (4™) a«d the top point, t, />z a(/j) is isolated, then Ett^(h) 
is open. 

(c)Ifh G QM(A)sa and either extreme point of o(h) is isolated, then the 
corresponding spectral projection is open. 

2.46. Examples, (i) 2.44 (a) fails if we assume only h e A™a. Take 
A = Ex and define h by 

^oo = ~e\ X ex, 

*- = (^i + ^ - + i ) x ( à e , + ^ H (cf'2J2)-
(ii) Even if v4 is unital, there can be lsc h e A**, t e R, and c > 0 such 

that 

o(h) H (7 - e, t + e) = 0 

but E(too^(h) is not open: Take 

^ = ^ *„ = (o o)' n = 1 ' 2 " - " 

/ 5 10 \ 

~\, 4 
h is lsc since hn è /z^. a(/i) = { — 1/2, 0, 1/2, 1} and E{X/2\}(h) is not 
open. 

2.47. DEFINITION-LEMMA. Let p e A** be a closed projection. Then p 
is called compact ( [4] ) if it satisfies one of the following equivalent 
conditions. 
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(i) 3a e A such thatp = a ^ 1 (this implies [a, p] = 0). 
(ii) 3a e A such that p = a. 

(ii') p e herA**(A). 
(iii) p is closed in A** (under A** C v 4 * * = v 4 * * © C ) . 
(iv)/? G 04 J ~. 
(v) /? w closed in M (A)**. 

Proof, (i) is Akemann's original definition, and he proved the 
equivalence of (i), (ii), and (iii) (II.4 and II.5 of [4] and their proofs), (ii') is 
just a restatement of (ii) in view of Theorem 1.2 of [3]. 

(i) => (iv): Let (ea) be an approximate identity of her(l — p). Then 
(1 — ea) \ p. Hence 

au\\ - ea)a
ul \ ay2pam = P-

(iv) =» (v): It is obvious (trivial portion of 2.14 (a) ) that p e (M(A )sa)~. 
This implies 1 — p e M(A)™a so that 1 — p is open in M(A)** by [5]. 

(v) => (i): (This is really the same as (iii) =» (i).) Let 

B = h e r A W ] - P)-

Then since p I—> 0 in (M(A)/A)**, B maps onto M(A)/A. In particular, 
some b e B maps onto 1 e M (A)/A. We may assume 0 ^i 6 =i 1 
(use Lemma 2.2 of [6] ). Then b = 1 — a, a e A, where 0 ^ a ^ 1; and 
1 — a ^i 1 — p =ï> a = p. 

Remarks, (i) [5] showed that all meanings of lsc are the same for projec­
tions, but this is not the case for use. For projections weakly use <=> middle 
use <̂> closed. 

(ii) The proof of 2.47 used the hypothesis that p is closed, but (iii), (iv), 
and (v) already imply p closed. 

By applying 2.14 (a), we obtain: 

2.48. COROLLARY. If AQ is a C*-sub algebra of A, and p e A$* C ^**, 
then p compact as an element of A** implies p compact as an element of 

2.49. Definitions. Let h e Af*. 
(i) h is called q-lsc if E(too)(h) is open, V / e R (equivalently E^^^h) 

is closed V/). 
(ï) h is g-usc if — h is q-\sc. 
(ii) h is called strongly q-\sc if h is q-lsc and E,^ _€i(A) is compact, 

V6 > 0. 

(ii') h is called strongly q-usc if — /z is strongly g-lsc. 
(iii) h is q-continuous if it is g-lsc and g-usc. 
(iv) h is strongly q-continuous if it is strongly g-lsc and strongly g-usc. 
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Remarks, ^-continuity was defined and strong ^-continuity was 
introduced (but not named) by Akemann [1] and [4]. [4] showed that h is 
strongly ^r-continuous if and only if h e Asa and that h e M(A)sa ^> h 
^-continuous. Pedersen [28] and Akemann, Pedersen, and Tomiyama [7] 
completed Akemann's conjecture by showing that h ^-continuous implies 
h G M (A), g-semicontinuity was used (but not named) by Pedersen [28] 
and Olesen, Pedersen [25]. 

2.50. PROPOSITION. 

(a) h q-lsc => h e 2™a. 
(b) h strongly q-lsc => h e A™a. 

Proof, (b). Assume a(h) c [s, t] where s < 0, / > 0. For 1 ^ k ^ n 
let 

<lk* = E(kt/n,oo)(h) and pkn = E^^^^h). 

Then qk n is open, pk n is compact and hence 

n n 

*« = - 2 />*„ + - 2 ?fc,„ 
« i « i 

is in ^™. 

\\h„-h\\ s l | |A| |=>A e ^ . 

(a). Choose À > 0 such that /* 4- X ^ 0. It is obvious that h + À is still 
g-lsc, and for positive operators q-\sc and strongly q-lsc are the same. By 
(b) 

Since g-semicontinuity is strictly (by 2.46 (ii) ) stronger than all three 
types of semicontinuity, it has probably occurred to the reader that maybe 
we should adopt g-semicontinuity as the basic notion. It seems clear that 
this is wrong, and that we have to regard the q-\sc elements as just a class 
of particularly regular lsc elements. Since every element of Asa is q-
continuous, {x:x is q-lsc} is not closed under increasing limits. Also it will 
be shown in Section 5 that for A = Ex or E2 every middle lsc element of 
A**is the sum of a multiplier and a q-lsc element; i.e., {x:x is q-lsc] is not 
closed under addition. 

(a) and (c) of the following was told to us by G. Pedersen. 

2.51. PROPOSITION. Let h e A**. 

(a) If h is q-lsc, f/, and f is continuous from the left, then f(h) is q-lsc. 
(b) If h is strongly q-lsc, f/, f is continuous from the left, andf(0) ^ 0, 

then f(h) is strongly q-lsc. 
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(c) Iff(h) is weakly lsc for all continuous, monotone increasing f then 
h is q-\sc. 

(d) If f(h) is strongly lsc for all continuous, monotone increasing f such 
thatf(0) = 0, then h is strongly q-lsc. 

Proof (a). ^(-«^( / ( /O) = E^^h), where 

r\(-oo,n) = (-00, a 
(b) follows from the same formula as (a) and the observation that / < 

0 =» f < 0 (/(0) ^ o). 
(c). V/ G R, there is a sequence (/w) of continuous increasing functions 

such that fn / X(/,oo)> pointwise. This implies 

f„(h) S E(tpo)(h). 

Hence 

/„(/*) G a ™ ) " , V/i => £(/>00)(A) e ( 2 X =* £(,,oo)(A) «Pen-

(d) If t ë 0, the/„'s used in (c) can be chosen so that/„(0) = 0. If t < 0, 
the /„'s can be chosen so that /„(0) = 1. Then if gn = /„ — 1, 

g„(A) / (-£(«,,,](*)). 

Since gn(h) e 4̂™, this shows 

£(-oo,/](A) G (^,Jm =» E(-oo,t)(h^ c o m P a c t -

2.52. COROLLARY, (a) /* w #-lsc <^> f{h) is weakly {middle) lsc, V/as z>z 
2.51 (c). 

(b) h is strongly g-lsc <̂> f(h) is strongly lsc Vf as in 2.51 (d). 
(c) {h:h is q-\sc} and [h:h is strongly #-lsc} are norm closed. 

Call h G QM(A )sa smooth if f(h) is weakly lsc for all continuous convex 
functions / . Then h is smooth if and only if (h — X) + is weakly lsc, V À G R 

(given h e QM(A )sa). We have not been able to find any other descrip­
tion of smooth quasi-multipliers or to make good use of the concept, but 
in view of 2.52 and Section 2.C it seems a reasonable analogue of 
g-semicontinuity. Also it seems to be in the right spirit for use in 
improving some of the results of Section 3. (3.49 and 3.47 are not as good 
as 3.48 and 3.46.) 

2.53. PROPOSITION. If h e QM(A)sa ando(h) has only four points, then h 
is smooth. 

Proof. Assume o(h) c {Al5 A2, X3, X4}, where X} < X2 < X3 < X4. 
Since 

(h - tX' - (1 - f)A")+ = t(h - A') + + (1 - 0(h ~ *")+ 

when 0 ë f ^ 1 and o(h) n (Xf, A") = 0, it is sufficient to check that 
(h — X;)+ is weakly lsc. 
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(h - A,)+ =h~K (h~ A4)+ = 0, 

(h - A2)+ = h - X2 + (A2 - A,)£{Xi}(A), and 

(A - A3)+ = (A4 - X3)E{Xi)(h). 

Thus the result follows from 2.45 (c). 

2.54. Example. 3h e QM(A)sa such that o(h) has only five points but h 
is not smooth: Take A = Ex. Let 

H(J >-(i :) H(^) 
Then F1? F3, F5 ^ 0 and ^ -f F3 4- F5 = 1 (in M2). By Naimark's dilation 
theorem we can find projections Ex, E3, E5 on C^ for some N > 2 such 
that 

Ex + E3 + E5 = I and prc2(is.) = Ft, 

where pr denotes compression. Let 

A, = - 1 , A2 = - ^ , A3 = 0, A4 = V I , A5 = 1. 

As in the proof of 2.35 (b) we can construct h e QM(A) such that 

/*oo = 2 \Fi9 hn = 2 XjEjin), and £,(«) —» i5- weakly. 

Here (/^(w), E3(n), E5(n) ) is "unitarily equivalent" to (Ex, E3, E5) and 

F2 = FA = E2(n) = E4(n) = 0. 

For any / , 

f(hn) = 2 M ) ^ ( « ) + /(oxi - ^(/i) - £3(«) - W ) . 
and 

/ (*„ ) -> 2 / ( \ ) / ? + / ( 0 ) ? , 

weakly, where 

q = 1 - e{ X ex - e2 X e2. 

Thus /(A ) is weakly lsc if and only if 

/(E^.)^/(W 
Now take / (x ) = x+. Computation shows that 

o(2 XjFj) = {X2, A4} and 
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Since 

2/(A,)J^ = F5 and ^ • ! > - . ! , 
A ' ' ' 5 3 2 3 4 

f(h) is not weakly lsc. 
We remark that for A = Ex it is possible to find a strongly lsc h such 

that a(/z) has only three points but h is not q-lsc. However, this is not 
possible in a unital algebra. In 2.46 (ii) A is unital and o(h) has four 
points. 

2.E. Miscellaneous Results. In this subsection we add a bit to Pedersen's 
classification of the lsc elements in the center of A**, discuss the relation 
to semicontinuity of the map h K> T*hTfor T some kind of multiplier, and 
discuss when a function of a quasi-multiplier can be a quasi-multiplier. 
(We show that Proposition 4.4 of [5] is really a convexity result.) 

Pedersen [28] (or 4.4.6 of [29] ) showed that the weakly and middle lsc 
elements of the center of A** are the same and can be identified with the 
bounded lsc functions on prim A. Also these elements are all q-\sc. 

2.55. PROPOSITION. Let h be a central middle lsc element of A**. The 
following are equivalent. 

(i) h is strongly #-lsc. 
(ii) h G Â%. 

(iii) Vc > 0, the quotient algebra of A corresponding to the closed central 
projection E^^ _e^(h) is unital. 

Proof (i) => (ii) follows from 2.50. 
(ii) =̂> (iii). If / is the ideal being considered (the open central projection 

of / is £(-£>oo)(^))> ^ e n clearly h, the image of h in (A/I)**, lies in 
[ (A/I)™a]~. Since h ^ - e , 2.1 (c) implies A/1 is unital. 

(iii) =̂> (i). We can find a e Asa such that 0 ^ a ^ 1 and a maps to 1 
in AII. This means that 

so that E, oof-Ah) is compact. 

Remark. If A is commutative, say A = C0(X), the strongly lsc elements 
correspond to the bounded lsc functions f on X such that / _ vanishes at 
co. To interpret the above in an analogous way, we would have to consider 
the closed compact subsets of prim A to be the closed subsets correspond­
ing to compact central projections, rather than just using the topology of 
prim A. 
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2.56. PROPOSITION. For T G A** consider the map 

VT'Asa Asa 

defined by <pT(h) = T*hT. 
(a) IfT e QM(A ), 9 r je/ufc ^ /Tz/o (A™y. 
(b) / / T e LM(^) , <pT sends (A™aV into itself. 

(c) / / T e RM (A), <pT sendsJ?a into itself 
(d) If T G M(^l), <pT sends A™a into itself (and (b), (c) also apply). 
(e) IfTeA, cpr j*mfc (Jï£)~ into < . 

Proof (a). For a G ^ 1 ^ , 

Since <pr is positive and continuous, (a) follows, 
(b). For x G Âsa, T*xT G QM(A)sa. 
(c). For a G ^ , r * f l r G ^ . 
(d). F o r * G ^ P I T G M(^)Jf l. 
(e) follows from 2.4. 

2.57. Examples-Remarks. The following are enough to show there are no 
obvious improvements of 2.56. 

(i) IT G LM(A) such that <pr does not send Jfa into A™a: In fact any 
T such that T*T £ M (A) will be an example (and there are many such), 
since 

1 G M(A)+ c 4 £ . 

Since T T G <2Af(v4), if T*T were in A™a, 2.3 would imply T*T G 
M(,4). 

We also give an example where T*AT <£ M (A). (As above T*AT c 
gM(yl) and T ^ r c 1 ^ ^ r * ^ r c M (A).) Take ^ = J^. Define 
T G LM(.4)by 

r« = e\ X <?i + e\ x **> roo = ex X el9 

and a G 4̂ by <2„ = a^ = ex X e t. In general for T G LM(A), T*AT C 
Af (̂ 4 ) if and only if T induces an element of M (I) where / is the smallest 
ideal such that T G /**. This can occur for T G LM(A)\M(A) and it has 
some relation with certain pathologies in M(A). See 3.56. 

(ii) 3T G #M(,4) such that <pr does not send A™a into G4™)~: In fact 
any T G J R M ( ^ 4 ) \ A / ( ^ ) will be such an example. Since — 1 G A™a, if <pT 

sends 2™ into (1™)~, then 

T*Te \(Asa)mr. 

Since ITT G 1 ^ (by (c) ), 2.3 implies T*T G M(.4); and Proposition 4.4 
of [5] implies T G LM(.4). 

We also give an example of 0 ^ h G 4̂™ such that 
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T*hT £ ( > Q . 

Take A = Ex; define Thy 

Too = e\ x <?i> Tn = ex X <?, - en+] X e,; 

and define h by 

*" = ( ^ ' + ^ e » + ' ) x ( 7 î " + V f ' " + 1 ) <d'2J2)-
(iii) If 

7 G 6M04) and « ^ -> < , 

then r G #M(>4). 
In fact the hypothesis implies T*AT c A Then 2.6 (b) applies to #7, 

a G A. 
(iv) There are no general results where <pT, T G M (A ), sends some semi-

continuity class into a smaller class, since there are invertible multi­
pliers. 

2.58. LEMMA. Assume 0 < e ^ h G ^4**. 
(a) 7 /̂z w weakly use and h~l G gM(^4), z7ze« /z G M (A). (In particular 

this applies if h, h~x G gM(^) . ) 
(b) If 38 > 0 such that h — S is strongly lsc aw J /z~ G QM(A), then 

h G M(^4). 

Proof (a). By 2.1 (a) /z~ * is strongly lsc. Hence 2.3 implies h~] G M (.4 ). 
Since M (A) is a C*-algebra, this implies /z G M (A). 

(b). By 2.1 (b) A"1 is middle use. Hence 2.3 implies / T 1 G Af(^), 
whence h G M(A). 

In the following we will use a simple fact of general topology: 
(F) If / j and / 2 are lsc functions on a topological space and / j + f2 is 

continuous, t h e n / l 5 / 2 are continuous. 

2.59. PROPOSITION, (a) If fis a non-linear operator convex function on an 
interval I, h G QM(A)sa, o(h) c I, andf(h) G QM(A), then h G M (A). 

(b) 7/"/ w operator monotone, operator convex, and non-constant on an 
interval!, if h G (2™)~, a(A) c /, andiff(h) G QM(A), then h G gAf(^). 
(Hence, by (a), A G M ( ^ ) unlessf is linear.) 

(c) 7 /y w operator monotone on an interval I such that either 0 ^ I or 
I = (0, b), if h G A™, o(h) c 7, fl/irf / / /(A) G QM(A), then h G M ( ^ ) 
except when I = (0, b) and 

f(x) = - - + B, C ^ 0. 
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Proof, (a). We refer to the integral representation (1) for / (proof 
of 2.34). If / = f{ + f2 with fh f2 operator convex, then by (F) fx(h\ 
f2(h) G QM(A). Any Borel set of R \ 7 can be used to obtain such a 
decomposition from (1). Since the integrand in (1) is norm continuous (in 
t), this implies that (h — t)~l G QM(A) for any t £ I which is in the 
closed support of ft±. If there is such a t, 2.58 (a) implies h G M(A). Also 
if a ¥= 0, (F) implies h2 G QM(A); and then Proposition 4.4 of [5] implies 
h G M(A). 

(b) is proved in the same way as (a). 
(c) is proved the same way, except that 2.58 (b) is used. 

2.60. Remark. We now discuss Proposition 4.4 of [5]. The function 
T \—> T*T is (operator) convex on B(H). Suppose / is a real-valued 
function on an interval / c [0, oo) such that 0 G /. Then we have an 
operator function 

ty:T\->f(T*T) 
defined for all T G B(H) such that | | r | | is sufficiently small (this is a 
convex set). It is natural to ask when i/y is convex, and it can be shown 
that the answer is: t/y is convex if and only if / is both operator mono­
tone and operator convex. Of course this implies / can be continued to 
/ U ( —oo, 0). For such an / we can apply 2.59 (b) with h = T*T. 

I f / i s as in 2.59 (b), T G QM(A), a n d / ( r * T ) G QM(A), then T G 
LM(A). Moreover, T*T G M (A) unless / is linear. 

Of course one could also use 2.59 (c) for h = T*T, T G RM (A). 
We will now apply the above to answer the following: When is it 

possible to find T G QM(A)\LM(A) such that Tn or \T\n G QM(A)1 
We will consider three possibilities: T G QM(A) + , T G QM(A)sa9 or 
T G QM(A ). Of course if we find an example in one class, there is no need 
to consider larger classes. 

2.61. / / h G QM(A)+ and ha G QM(A) for 1 * a > 0, then 
h G M(A). 

Proof. Use 2.59 (a) and the operator convex function 

x h-> -xa or x h-> - x 1 / a , 

according as a < 1 or a > 1. 

2.62. / / 0 < € ^ h G QM(A) and ha G QM(A) for a < 0, then 
h G M {A). 

Proof. Use 2.59 (a) and the operator convex function 

x H» xa or x H-> xi/a 

according as \a\ ^ 1 or |a| ^ 1. 
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2.63. IfTŒ QM(A) and \T\a G QM(A) for some a > 2, then \T\ G 
M(^) . 772W /mp//as r G LM(A)9 and if T = T* it implies T G M (A). 

Remark. A similar result with a slightly weaker conclusion is true for 
a = 2, but this would be exactly Proposition 4.4 of [5]. 

Proof Use 2.59 (a) and the operator convex function 

f(x) = -x2l\ 

applied to h = \T\a. Note that 2.34 implies/(A) weakly lsc, and 2.56 (a), 
for example, implies f(h) weakly use. 

2.64. LEMMA. If h G QM(A)sa and h + , h_ are weakly use, then h + ,h_, 
\h\ are in QM(A). 

Proof. Let <pa —> <p in S 04). We want to show 

v«(A±) -» v(A±). 

Let 77, 77a be the GNS representations for <p, <pa, extended to yl**. We may 
assume the Hilbert spaces for 77, ira have the same dimension. (If not, 
replace A by A 0 Jf(H) for / / a Hilbert space of sufficiently large 
dimension.) Then, passing to a subnet, we may realize 77, iTa on the same 
Hilbert space H, with one unit vector f cyclic for 77 and all 77a's and 
inducing <p, <pa, so that ira(x) —> 7r(x) strongly, Vx G ^ (cf. Section 3.5 of 
[18] ). We claim that ira(h) -» 77(A) weakly and Vv G 77, 

l i m ^ A + K v) ^ (ir(h±)v, v). 

Assume ||v|| = 1. Then we can define \p, \^a G S (A) by 

i//(*) = « * > , v), ^ ( x ) = (7Ttt(x)v, v), V x G i 

(The fact that 77, 77a are non-degenerate is important here.) Then \jsa —» \p 
weak* (since 7Ta(x) —> 77(x) ), and this and the hypotheses on h, h± give the 
claim. Now passing to a subnet, we may assume irjji^) —> fc± weakly, for 
some operators k±. Then 

0 S A:± ^ 77(/z±), and 

k+ — k_ = lim 77a(/*+ — A_) = 77(A) = 77(A + ) — ir{h_). 

Since 77(A + ) • 7T(/Z__) = 0, this implies k± = ir{h±)\ i.e., iTa(h±) —» TTQI^) 

weakly. Hence 

v„(A±) = W * ± ) t Ô -> W M £ Ô = v(A±). 
2.65. COROLLARY. 7/"h G QM(A)sa and \h\a

 G QM(A) for some a > 1, 
f/ie/î A G M(^4). 

Proof. Since |A|a is weakly use, 2.30 implies 

\h\ = (\h\a)i/a 
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is weakly use. Since \h\ = h+ + h_, h = h+ — h_, and — h = h_ — h + 
are all weakly use, we have the hypotheses of 2.64. Hence \h\ G QM(A) 
and 2.61 implies \h\ G M(A). Thus h2 = \h\2 G M(A\ and Proposition 
4.4 of [5] completes the proof. 

2.66. Example. We show a general method of constructing examples of 
h G gM(^4)5 a \M(^) such that f(h) G gM(yl). Assume for simplicity that 
1 G domain / . Let b* = b G Mk such that bn = 1. Take 4̂ = 2^ and 
define h by h^ = 1, 

/*„ = 2 2 bpqei+{p_l)n X eJ-+to_1)lI + 1 - 2 el-, X et. 
1=1 />,? i 

Then /zw —» ̂  weakly, so that /z G gM(^4 )5fl. To insure that /z„ **> h^ 
strongly (so that h <£ M (A) ), we simply need b x ^ 0 for some p > 1. 
Now for any / , /(A J -> f(b)u - I weakly. Thus /(A) G QM(A ) if and only 
i f / ( l ) = / ( * ) „ . Write 

B = Udi2ig(\l9...9\k)U* 

for U unitary, \ l 5 . . . , Xk G domain / , and let tp = WXp\
2. Then 

A: 

tp^o, 2 *, = l, 
i 

and any such f 's can arise. The conditions bn = 1, f(b)n = f(\) are 
equivalent to 

A: 

The condition bpl ¥= 0 for some /? > 1 is equivalent to: tp ¥* 0 for some /? 
such that Xp ¥= 1. Thus we can find the desired example by this method if 
and only if (1, / ( l ) ) is not an extreme point of the graph of / . Note that 
this construction does not illuminate the distinction between operator 
convex functions and arbitrary convex functions. 

Conclusions. If f(x) = \x\a, 0 < a < 1; xn, n odd and positive; x~n, n 
any positive integer; or |JC |a, a < 0, then 

3h G QM(Ex)sa\M(Ex) such that/(A) G Ô M ^ ) -

Of course for the last two cases, 0 £ domain / , and the h we construct 
is invertible. The cases /(JC) = |x|a, a = 0 or 1, are trivial, of course; and 
xn, n even, is the same as |JC|". Thus the problem is completed for 
h G QM(A)+ and/z G QM{A)sa. 

2.67. Example. For 1 < a < 2, IT G ÔM(^)\LM(,4) such that |7T G 
<?M(,4): Take ,4 = Ex and define T by 
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ôo = e\ X e\ and 

T„ = exX ex + exX en+x 

+ (2(2/a)-l _ l ) l / 2 (^ + 1 X e , + ^ + 1 X e „ + 1 ) . 

2.68. Example. 3h e gM(^) M \Af (^ ) such that A" e QM(A), for 
all odd positive «: Take 4̂ = Ex. Choose a sequence (pn) of projections 
such that pn~* 1/2 weakly. Define h by hn = 2pn — 1, A^ = 0. Then 
/z3 = A. 

2.69. 2A e (2M(>4)ja\M(>4) JWCA /Aûf A" e QM(A), for all odd positive 
n, and h~ exists {in A**). 

Proof. By the Weierstrass approximation theorem, the hypothesis on 
h implies f(h) e QM(A) for every odd continuous / . In particular, 
since 0 € o(h), u = sgn(/z) e QM(A). (If p± are the range projections 
of h±, u = p+ — p_.) Proposition 4.4 of [5] (or 2.45 (c) ) show that 
w, p± e M (A). The proof is completed, for example, by applying 2.61 to 
h+,h_ separately. 

2.70. Example. IT e QM(A)\LM(A) such that Tn e g M ( ^ ) for all 
integers «: Take 

where ^ = 5 0 M2 and 5 e QM(B)\LM(B). 

2.71. Example. 3 T G <gM(^4) such that T2 = Tbut the range projection 
of T is not open: Take A = Ex and define T by 

^oo = ex X q , r„ = ex X ^ + en+x X ^ . 

(In this example T € RM {A). 2.44 (a) rules out this phenomenon for 
r G LM(^) ( r r * e I 7^) . By looking at T® T where r « RM (A), we 
could make an example where T £ LM(A ) U RM {A ).) 

3. Main results. Any a-compact locally compact (Hausdorff) space is 
normal. Also any a-compact open subset of an arbitrary locally compact 
space Xis normal, for example {x:f(x) ¥= 0} for s o m e / G C0(X). Toward 
a non-commutative analogue of this, consider (Nl) to (N5) below, each of 
which is either a basic property of normal topological spaces or a non-
commutative analogue. 

(Nl) Urysohn's lemma. 
(N2) (interpolation) If / is an lsc function and g a use function on a 

normal topological space, and if / ^ g, then there is a continuous function 
h such that / â h ^ g. 

(N3) If B:A —» B is a surjective homomorphism of a-unital C*-algebras 
and h e M(B)sa, then there is h e M(A)sa such that 
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0**(h) = h and o(h) c co(a(/z)). 

(N4) If p e. A** is a closed projection, where 4̂ is an arbitrary or 
a-unital C*-algebra, and h G P^f^P is strongly ^-continuous or 
^-continuous on /?, then there is h e ^ or M(^4)5a such that [£, /?] = 0, 
ph = h, and 

a(h) c co(a(A) U {0}) or o(h) c co(a(A)). 

(N5) If F is a closed face of A(̂ 4) containing 0 and h a continuous real 
affine functional on F such that h(0) = 0, then there is a continuous 
extension h of h to k(A) such that h(A(A)) c /z(F). 

The non-commutative version of (Nl) for the strong case was found 
by Akemann [4]: If p is a compact projection, q a closed projection, and 
pq = 0, then 3h e Asa such that p ^ h ^ I — q. The middle case of (Nl) 
is Lemma 3.31 below. (N2) provides an efficient method of establishing 
the basic properties of normal spaces. Its proof is similar to that of 
Urysohn's Lemma, and only slightly harder, and the Tietze extension 
theorem (as well as Urysohn's Lemma) is an immediate corollary. The 
non-commutative cases of (N2) were discussed in Section 1. (N3) is the 
middle case of an analogue of the Tietze extension theorem, with closed 
sets being replaced by ideals. It was proved by Pedersen [30], generalizing 
a version by Akemann, Pedersen, and Tomiyama [7]. The strong case of 
(N3) is trivial, and the weak case, which involves QM(A), and also a 
version for LM(A) were proved in [10]. (N4) contains the strong and 
middle cases of an analogue of the Tietze extension theorem, with closed 
sets being replaced by closed projections. It specializes to (N3) when p is 
central and will be proved below (3.43) as an application of interpolation. 
We have no weak version of (N4), but the weak version of (N3) could also 
be deduced from interpolation. (N5) is an even more non-commutative 
analogue of the Tietze extension theorem (strong case). We have no 
middle or weak version but do have some one-sided versions (involving 
non-self-adjoint operators). (N5) has nothing to do with interpolation or 
semicontinuity so far as we know. If the condition h (A(̂ 4 ) ) c h (F) is 
dropped, it becomes a known result (though we do not know whose 
result); our reason for investigating the more precise version was to find 
out if there was a true analogue of the Tietze theorem. 

Before taking up (N5), we discuss the techniques of Section 3. Our proof 
of interpolation does not resemble the classical proof of (N2), though our 
proof of Theorem 3.40 (middle case) does use some ideas of classical 
topology. (N2) for paracompact spaces follows from the most basic 
of Michael's selection theorems [24], and thinking about how to use 
Michael's theorem for the example A = C0(X) ® JT was a great help to 
us. 
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3.A. x h-> pxp, x I—> xp, and x I—> (px, xp) (maximally non-commutative 
Tietze extension theorems). 

3.1. LEMMA. Let p, q be projections in a W*-algebra M, € > 0, and 
x e M. 

(a) If \\xq\\ ^ 1, ||JC|| ^ 1 + €, then 3y e M(l - q) such that 

\\y\\ ^ Vie 4- €2 ««J ||JC - j>|| ^ 1. 

(b)// | | /7x^| | ^ 1, ||x|| ^ 1 + e,then3y e (1 - /?)M + Af(l - 4) swc/z 

HJII ^ 2V2€ + c2 aw/ ||JC - y\\ ^ 1. 

Proof. We will use matrix notation. 
(a). Write * = (a b), a = xq, b = x(\ — q). 

aa* + bb* ^ 1 + 2e + e2 =» 6Z>* ^ 1 4- 2e + €2 - aa* 

=» Z> = (1 + 2e + e2 - aa*)V2t with ||/|| ^ 1. 

Write V = (1 - fl£i*)1/2/. Then ||Z/ - 6|l ^ Vfc + e2. (x - y = 

(b). Write 

x = (c 9' * = (")• T2 = 0 ' f l = ^ * e t c -
Y*7i = a*a + c*c = (1 + c) . Symmetrically to the proof of (a), write 

c = t(\ + 2e + c2 - a*a)u2, \\t\\ ^ 1, and 

d = t{\ - a*a)xn. 

Thus ||c' - c || â V2e + e2. Also if y', = M , then 

/l 

Hy',11 ^ 1 and y', = y , L / 1 - a*a ^1/2I 

This implies 

YlYl* + Y2Y2* ^ YiYf + Y2Y2* ^ (1 + «)2-

Now if the argument of (a) is applied to x' = (y\ y2), we find y2 such 
that 

\ VI + 2e + €2 - a*a 

||y2 - y2|| ê V2e 4- e2 and || ( / , y2) || â 1. 

Take x - y = (y', y2). 
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Note. In (a) the estimate v2e + e2 is sharp, and in (b) the order of 
magnitude is sharp. Consider 

3.2. LEMMA. Let p, q G A** be closed projections, and let R be the (norm) 
closed right ideal of A corresponding to p and L the closed left ideal corres­
ponding to q. 

(a) Let x ^ A such that \\xq\\ ^ 1 and \\x\\ ^ 1 + c, e > 0. Let 8 > 0. 
Then By G L such that 

\\y\\ ^ V2c + €2 and \\x - y\\ ^ 1 + 8. 

(b) Let x e A such that \\pxq\\ ^ 1 and \\x\\ ^ 1 4- e, e > 0. TTiew 

3 j G L + iî such that 

\\y\\ ^ 2V2€ + €2 and ||JC - y\\ ^ 1 + ô. 

Proof (a) Assume not. Let 

B = {z G yl:||z - jell < 1 + ô}, 

^ = {z G v4:||z - JC|| ^ 1}, and 

C = {y G L:|MI ^ V2c + e2}. 

Then 

0 £ 5 - C => dist(0, ^ - C) è Ô. 

Therefore 3 / G ^4* such that 

inf Re fBx > sup Re fc. 

This implies 7TX
W* n Cw* = 0 in ^**. But 

£ ^ * = {z ÇE A**:\\z - x\\ ^ 1} and 

Cw* = {y G LW*:|M| ^ V2€ + c2}. 

(For any closed subspace X of A, Xw is the bidual of X, and the unit ball 
of X is dense in the unit ball of its bidual.) But Lw* = A**(\ — q), so that 
3.1 (a) is contradicted. 

(b) is proved in the same manner as (a). A result of Combes [14] states 
that L + R is closed. 

(L + R)~w* = A**(l - q) + (1 - p)A**. 
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3.3. THEOREM. Let p, q e A** be closed projections and let R and L be 
the closed right and left ideals of A corresponding to p and q. 

(a) Let x G A be such that \\xq\\ â 1 and \\x\\ ^ 1 4- e, e > 0. Then 

W > V2c + c2, 3 J / Ê L such that \\y\\ ^ e' and \\x - y\\ ^ 1. 
(b) Let x e A be such that \\pxq\\ ^ 1 and \\x\\ ^ 1 + e, e > 0. Then 

W > 2Vie + e2, 3^ e L + # swc/z /AA/ \\y\\ S e' A/K/ ||JC - y\\ ^ 1. /« 

particular if € < 2, we may take e' = 4e 7 . 

Proof, (a). Choose 0 < €w \ 0 such that 

€j = e and 2 €*/2 < oo. 

Choose yx as in 3.2 (a) with 8 = e2. Then choose y2 as in 3.2 (a) with x 
replaced by x — yh e replaced by e2, and 5 = e3. Continue. Then 

\\yH\\ ^ Vlen + 4 ^ 2<l/2 

for n sufficiently large, and 

II* - y \ - ••• - ynW = l + <wi-
Therefore j ; = 2 yn exists, ||JC — j>|l = 1, and 

oo 

\\y\\ ^ 2 Vlen + c2 = V2c + e2 + 2 V2c„ + c2. 
2 

By choosing 62> *3> • • • appropriately, we can achieve ||x — y\\ % e\ 
(b) is proved in exactly the same way, using 3.2 (b). 

3.4. COROLLARY. Let p ^ A** be a closed projection and h e pAsap such 
that o(h) (computed in pA**p) c [s, t]. Then if either 0 e [s, t] or 1 & A, 
3h G Asa such that pîip = h and o(h) c [s, / ] . 

Remark. It was proved by Akemann, Pedersen, and Tomiyama 
(Proposition 4.4 of [7] ) that the map x 1—> pxp is an isometry of AIL + L* 
onto pAp (which is therefore closed). 3.3 (b), applied with p = q, gives 
the additional information that each x e /?v4/> can be written pxp with 
I\x\I = ||JC||, rather than ||3c|| < ||JC|| + 8. 3.4 simply gives the self-adjoint 
version. 

Proof First assume 1 e A. If s = —t, the conclusion is immediate. 
The general case can be reduced to this by translation: Replace h by 
h - ( (s + t)/2)p. 

Now if 1 <£ A, consider 

A** c A** = ,4** 0 C. 

Let / ^ = 0 0 1 e 2**. Then p' = /? + ^ is closed in 2**, p'A**p' = 
pA**p © C, and a(/z), computed in p'A**p', c [s, /] (since 0 e [s, /] ). 
Hence 3/T G Jï^ such that a(^) c [̂ , /] and ///*// = /z. Since /7^/z = 0, 
p^h must = 0; and h e y45a. 
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3.5. COROLLARY (restatement of 3.4). If F is a closed face of &(A) 
containing 0, / is a continuous real affine functional on F vanishing at 0, 
and f\Fns(A) takes values in [s, t]y then there is a continuous real affine 
functional f on A(̂ 4) such that f\F = / and f\s(A) takes values in [s, t], 
provided either 1 e A or 0 e [s, t]. 

Remark. Our contribution is only that it is not necessary to use [s — 8, 
t + S] in the conclusion. 

Proof Let p be the closed projection corresponding to F. The elements 
of pA**p may be regarded as affine functional on F, vanishing at 0; and 
for h e pAf^p, co(o(h) ), computed in pA**p, is the same as the range of 
h\Fns(Ay We need to show that pAsap c pAf£p consists precisely of the 
continuous functionals. An elementary theorem in Choquet theory states 
that any vector space of continuous real affine functionals on a compact 
convex set F which separates points and contains the constants is norm 
dense in the space of all continuous real affine functionals. Now pAsap 
clearly separates the points of F, and it follows routinely from the above 
theorem that pAsap is norm dense in the space of continuous affine 
functionals vanishing at 0. Since pAsap is closed (by [7] ), the result 
follows. 

We give a short proof (following [17] ) of a theorem of Ch. Davis and 
S. Parrott ( [27] ). 

3.6. THEOREM. Let p, q be projections in a W*-algebra M and a e pMq, 
b e pM(\ - q\ c G (1 - p)Mq. If \\a + b\\, \\a + c\\ ^ 1, then 3d G 
(1 — p)M(l — q) such that 

\\a + b + c + d\\ ^ 1. 

Proof. We use matrix notation. Thus we are given \\{a b) ||, || (£) || ^ 
1, and we wish to find d such that 

a*a 4- c*c ^ 1 => c*c ^ 1 — a*a =» It such that 

||/|| ^ 1 and c = t(\ - a*a)l/2. 

Similarly aa* + bb* ^ 1 =»3w such that 

\\u\\ ë l and b = (1 - aa*)l/2u. 

Take d = —ta*u. Then 

a b\ = (\ 0\/a 0 - ™*)Xn\(\ 0\ 
c d) lo / j \ ( 1 _ a* f l )i/2 _ a * jlo u\ 

The reader may need a little thought to see that the factorization makes 
sense. Of course the middle factor is unitary. 
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3.7. COROLLARY. Let R, L be norm closed right, left ideals of a C*-algebra 
A. Let <nx\A —» AIR, TT2:A —> AIL, and TT:A —> AIR n L be the quotient 
maps. Then 

|k(jc) || = max( \\TTX(X) \\, |k2(x) || ), V* G A 

/V00/. Let p, q be the closed projections corresponding to R, L. Then 

R** = (1 - /?>4**, L** = ^**(1 - 4), and 

(R n L)** = (1 - p)A**(l - q). 

Since AIR —» ^4**/,R**, etc. are isometries, the result follows. 

3.8. COROLLARY. With the same notations, if R , L are the annihilators 
in A*, then R + L is isometrically isomorphic to the natural quotient of 
R° 0 L°, where the direct sum is given the \-norm. 

Proof R° 0 L° -> R° + L° is the adjoint of AIR n L^ AIR © AIL 
(where the latter direct sum is given the oo-norm). (Combes [14] showed 
R° + L° weak* closed.) 

3.9. THEOREM. Let A be a o-unital C*-algebra, p Œ A** a closed 
projection, and T e A**p such that \\T\\ = 1 and AT c Ap. Then 3R e 
RM (A) such that \\R\\ = 1 and T = Rp. 

Remark. For p central this specializes to (N3) for right multipliers (4.13 
of 10] ). 

Proof. Let (en) be a sequential approximate identity of A such that 
en+\en = en> ^n- We will construct a sequence of an e A such that: 

(i) I k 11 ^ 1. 
(ii) a„p = enT. 

(iii) 3S„ G A such that | |5J| ^ 2 1 _ ( " / 2 ) and 

** - a*-i e «„ + [ 0 ~ ^ - i M F -

«! can be chosen arbitrarily such that axp = e{T and \\ax\\ = \\exT\\ ^ 1 
(3.3 (a)). (Note: a0 = e0 = 0.) Suppose ax, . . . , an are constructed. 
Choose b such that ||2>|| ^ 1 and bp = en+lT(3.3 (a) ). Let 

/ = enb — an e L = {x e A:xp = 0}. 

Let R = [ (1 — en)A]~ and TTX:A —» yl/i?, 7r2:yl —> ^4/L the quotient maps. 
Then 

\W2(b - OH = |k 2 (6) | | ^ 1. 

Also 

lh(è - /) || ^ 11̂ (6 - enb) || + I k ^ ô - / ) | | = \Wx(an) || ^ 1. 

Thus by 3.7 3J G i? n L such that 
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\\b - I - d\\ ^ 1 + 2 " ( n + 1 ) . 

Since \\ (b - I - d)p\\ = \\bp\\ i 1, 3S E L such that 

||fi|| ^ 2 - 2 " ( ( w + 1 ) / 2 ) and \\b - I - d - 8\\ ^ \ (3.3(a)). 

Take an+l = b — I — d — 8. (i) and (ii) are clear. Also 

^ i K + i ) = 7^(6 - enb) + ^ ( ^ 6 - /) + 0 - ^(5) 

= ^Mn) - ^y 
Take 8W+1 = — ô. 

Now since ^ ( 1 — ̂ - j ) = 0, VA: < n — 1, (iii) =̂> 

II**** ~ *A*„-ill ^ IMJI ^ 2l~(W/2) for « ^ ^ + 2. 

Therefore (ekan) converges in norm as n —> oo, Vfc; and in view of (i) (an) 
converges right strictly to some R G RM (A) with ||2^ || ^ 1. Also 

Rp = lim(«w/?) = l im(^ r ) = T. 

For p a closed projection and L the corresponding left ideal of A, let 

L = RM(A) Pi ,4**(1 - p) 

= {S G #M(,4):^S c L} = {S G RM(A):Sp = 0}. 

3.10. COROLLARY. //* 4̂ w o-unital and p a closed projection, then 
RM {A )p is norm closed and equal to 

{T G A**p:AT c Ap}. 

\/R G RM(A), 3y G L such that \\R - y\\ = \\Rp\\. 

3.11. COROLLARY. If A is o-unital, L is a closed left ideal, and 0:A —> AIL 
is a homomorphism of left A-modules, then 35: A —» A, a homomorphism of 
left A-modules, such that 9 lifts 0 and \\S\\ = \\0\\. 

Proof 8 is automatically bounded, by the same proof as for right 
centralizers (see 3.12.2 of [29], for example). Since AIL = Ap, we may 
regard 0 as a map from A to Ap c A**p. If (en) is an approximate identity 
of A, (0(en)) has a weak cluster point T G A**p, with | | r | | ^ ||0||. 
Then Va G A, aT is a weak cluster point of (a0(en)) = (0(aen)). But 
0(aen) -> 0(a) in norm. Hence 0(a) = aT, and by 3.9, 3# G RM(A) such 
that ||i*|| = ||T|| ^ ||0|| and T = Rp. Let 0(a) = aR. 

3.12. Remark-Example. Since ,4/L n # embeds isometrically in 
^4**/(l — p)A**(\ — q), we can replace the map 

TT'.A -^ AIL n # 

with 
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m'-.a I—> {pa, aq), 

where the map takes values in 

{ (x, y) G pA** ® A**q:xq = py} 

(notation as in 3.7). Although IT' gives an isometry of A/L Pi R onto 
its range, which is therefore norm closed, it is not in general true that 
z E 7T'(A) can be written TT'(Z) with ||z|| = ||z||: Take A = E2 and let 
p = q be given by 

Pn 
1 0 
0 0/' 

1 , 2 . . . , Poo = 
1 0 
0 \y 

Thus 

B = her(l -p) = LnL* = LC\R 

= \x'xn = (0 d ) w i t h 4, -* 0, Xoo = Ol. 

Take a sequence (c„) such that 0 < en < 1 and £„ \ 0, and let a e A be 
given by 

1 

Ve» 0 - £«) 2 / 

/ l 0 

0 I 
\ 

Then a* = a, \\an\\ = 1 + e„, | | A J I = 1- I f 

/ . \ 

\A„0 _ «„) «„ 
I 

then lla l̂l = 1. If a(N) is given by 

\ / 

a^ = 

„W 

2 ,̂ n < N, 

[a„, n è N 

then a^v' - a G 5 and ||a(Ar,|| = 1 + eN. This and | | a j | = 1 imply 
\\ir(a) || = 1. But tb G B such that \\a- b\\^\.Ub existed, then it could 
be taken self-adjoint. Then 

(a - b\ = 
1 v«„o - ««) 
V«B0 - €«) >n 

and (a — Z>)„ = I => yn = en. This implies 

IM 
1 + 3£„ 
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a contradiction. 

If p and q are finite rank projections (i.e., L and R are finite inter­
sections of maximal one-sided ideals), then E. Effros pointed out to us that 
the Kadison density theorem can be regarded as giving information about 
any of the maps a I—> paq, a I—> pa, a i—> aq, or ir':a I—» (pa, aq). Although 
the formally strongest version of the theorem deals with ir\ the things that 
are true about any one of these maps for arbitrary closed projections, 
specialized to finite rank projections, are adequate to imply the theorem 
(provided we know the Kaplansky density theorem and that finite rank 
projections are closed). Whether our results will have any real applications 
remains to be seen. 

3.13. Example. We have discussed the maps x i—> pxp, x I—-> xp, and 
ir':x\—> (px, xp)fovx G A, and the second of these maps for x G RM (A). 
We show that equally good results do not hold for the other obvious 
variants. Specifically, for A = Ex, 3 a closed projection p G A** such 
that: 

(i) 3x G [pM(A)p]~ such that x £ pQM(A)p. 
(ii) 3x G [M(A)p]~ such that JC £ LM(A)p. 

(iii) 3x G [TT\M(A) ) ]~ such that x £ IT\QM(A)). 

(iv) 3x G [LM(A)p]~ such that x £ QM(A)p. 
This phenomenon is related to the fact, which will be discussed in Section 
3.F, that closed projections for A need not be regular relative to M(A) 
(i.e., as elements of M (A)** D ^4**). 

For A = El9 define p G A** by 

n 

Poo = U Pn = 2 Vk X Vk 
k=\ 

where 

V~lek+ VK+«-k Vk 

The fact that p^ = 1 implies p is closed, 
(i) Let xk G pA**p be given by 

(0, k > n 

%n x %„> k ^ n. 

Then xk = pxkp, where x k G M (A) is given by 

(0, k > n 
(**)oo = 0 and (xk)„ = 

Let tk ^ 0 be such that 
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tk —» 0 as k —» oo and /^ 7e 0[—y2 

Then 

oo 

l 

Suppose JC = pxp for some 3c e ()M(V4). Choose M > ||x|| and choose k0 

such that 

**n > 7T72-
3M 

For n ^ fc0, 

/C0\ KQI 
+ 

+ , ( V L + /I'
 ek() + n)' kQ 

Im|[2 VH1 " r ) + rl 
i / c 0 \ /c0 / /C0J 

The first term approaches 0 as n —» oo, since 3c„ —> JC^ = 0, weakly. The 
sum of the last three terms is majorized by 

3|lx|l 

By choosing n sufficiently large, we obtain 

3M 
r/c0

 < 7Ï72> 

a contradiction. 
(ii) Let xk G yl**/7 be given by 

fO, k > n 
(**)oo = 0 a n d (**)„ = { 

U*+n X VM' k ~ n' 
Then x .̂ = Xjj> where xk e M {A )sa is given by 

(0,k>n 
(x^ = 0 and (xk)n = 

\k{/\ek+n X ^ + I I ) , * ^ /!. 

Choose /^ as in (i) and 
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x = 2 tkxk e [M(A)p] . 
1 

If x = xp, x e LM(A), choose M > ||x|| and k0 such that 

M 

For « ^ &0, 

_ / 1 \1 / 2^ 1 
%% + n ~ Xn%,n ~ [l J^J Xnek0 + £T72 W « " 

\\xnek || —> 0 as n —> oo since x„ —> x ^ = 0, strongly, and hence we see 

kfkc + nW ^ 7T72 
v0 

for « large, a contradiction. 
(iii) is almost the same as (ii), since the x of (ii) is actually in 

[M(A)sap]~. It follows that 

(x*,x) e K ( M ( ^ U ] - . 

If (x*, x) = 7r'(3c), x e QM(A), we may assume x = x*. Then for 
n ^ fc0, 

/ 1 ^ ,1/2 1 

efore 

/ 1 ^ 

- ( • 

v l / 2 

k0> ) * » ' "h 

1 

( • - /c0> 
) (*„%» *, 0 = K0 

o) 

= '7T72(xnek0> % + , 
AC0 

J 

(complex conjugate). Since (*„?£ , ek ) —» 0 as n —» oo (x„ —> 0 weakly), it 
follows that 

(*#!%> %+») -* ° as « -* oo. 

Then we proceed as above from 

i y / 2 i 

H (*„%> eko+n) + -jj 

(iv) Define xk e A**p by 

I M 1 / 2 ! 
'*o = \l - JT) ( X "%' % + »> + -jTn(Xnek0+n' % + J-
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(0, k > n 
(**)oo = 0, (Xk)n = J 

\ek X \n> k = n-

Then xk = Xjj? where xk e L M ( / Ï ) is given by 

(0, k > n 

[kV\ek X ek+J9 k^n. 
(^)oo = 0 and (xk)n = 

Choose tk as in (i) and 

oo 

x = 2 tkXk e [LM(^)/?]~. 
l 

If x = 3c/?, 3c e QM(A), then choose M and &0 as above. For « ^ /c0, 

1 \1 / 2 1 
H ( V V %> + 7Î7 

Proceed as above. 
(v) For later use we point out that the x of (i) is in (pC)~, where 

C= {y e QM(A):yp = py). 

To see this, define yk G C by ( J ^ X ^ = 0, 

(0, A: > w 

l M1 / 2 1 
= v"k) ( V ^ °̂} + ^ ( * A o + « > %)• 

where 

n=-y)-ek+ v 1 - £ ' * + » • 

Then / % = x^. 

3.B. Strong interpolation. 

3.14. LEMMA. Le/ yl be a C*-algebra. Assume k ^ h, \\h — k\\ ^ 2/3, 

* e (̂ jfl)m» * G ^C> ° < € < 1/6> * ~ e = x = ^ + €' * e ^ > and8 > °-
77ié?/i 3JC' G v4 swcA /Au/ k - 8 ^ x' ^ h + 8 and Ibc' - jell ë 4c172. 

Proof. Let 0 < TJ < 6. By [5] there are nets (aa), (6^) in Asa such that 
aa S h + y, bp \ k — 7). Since 

fla - fy / A - it + 2ÎJ g 0, 

Dini's theorem (for functions on &(A) ) implies aa — bp ^ — TJ for a, /? 
sufficiently large. Also since 
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aa + e — 7] — x / h + t — x ^ 0 

(and since aa + (e — 17) — x is lsc on A(̂ 4) ), Dini's theorem implies 

aa + e — 7) — x ^ —7] 

for a sufficiently large. Similarly 

bfi ~ (€ ~~ V) ~ * = V 
for /? sufficiently large. Thus we can choose a, b e A such that a ^ h -f 17, 
b ^ k — 7], a — 6 + 17=^ 0, and fe — c ^ x ^ Û + c. Thus 0 ^ x + c — 
& ̂  a — Z) + 2c. Since 2c > 77, a — 6 + 2c is invertible, and 

x + e - Z ) = (fl-Z> + 2c)1/2*(a - 6 + 2c)1/2, 

where 0 ^ f ^ 1, t e 2 , and f = 1/2 (mod v4). Thus 

* = £ _ € + (fl - 6 + 2e)1/2/(a - 6 + 2c)172. 

Let 

x' = b - - + (a-b + rj)mt(a - b + TJ)172. 

Then JC' G ,4, 

6 - - ) + (a - i 4- 77) - a + - ^ A 4- -77, 
2/ 2 2 

and x' ^ b - T\I2 g fc - (3/2)TJ. 

| |y - jell S (c - 5) + (2c - r,)1/2||a - b + 26||1/2 

+ (2€ - 1,)1/2||<I - b + T,| |1 /2 

^ c - 5 + (2e - TÏ)1/2[ ||A - it + 2T7 + 2c||1/2 

+ ||A - * + 3r,||1/z] 

S € + 2 • (2c)1/2 ^ 4c1/2 

if 77 is sufficiently small. Choose 77 ^ (2/3)5 and small enough for the 
above to be true. 

3.15. THEOREM. Let A be a C*-algebra. Assume k ^ h, \\h — k\\ ^ 2/3, 
k e (Asa)~, / i G l f , 0 < K 1/6, andk - e^ x ^ h + e,x ^ A. Then 
3x' e A such that k ^ x' ^ h and \\x' - x\\ ë 5e1/2. 

Proof. Choose cw > 0, n = 1, 2 , . . . , such that ex = c, cw \ , and 
2^° €^/2 < 00. Let xx = x and apply 3.14 with S = e2, to obtain x2 G A 
such that k — e2 = x2 — n + €2 an(* 11*2 ~~ *ill — 4c1/2. Continuing, 
we obtain xn ^ A such that 
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k - e„ ^ xn ^ h + €„ and \\xn ~ *„-,ll =i fcj'i,. 

Then if x' = lim xn, we see k ^ xf ^ h and 

oo oo 

Ik' - *|| S 4 2 «J'2 = 4,1/2 + 4 2 ej'2 S 5c1/2 

1 2 

if the en's are chosen suitably. 

3.16. COROLLARY. If k ^ A, k e (>4Jfl)~, A G ^ , /A /̂i 3a e 4̂ swe/z 
f/raf k ^ a ^ h. 

Proof We may assume ||A||, ||fc|| ^ 1/12 ^ 1/3. Then the hypotheses of 
3.15 are satisfied with € = 1/12, x = 0. 

The following indicates the order of magnitude of the best estimate 
obtainable with our method. 

3.17. COROLLARY. There are universal constants Cl5 C2 such that for 
any C*-algebra A, if k ^ /z, k — e ^ x ^ h + e, where k e (^45û)~, 
A e ^ ^ , x G A, and e > 0, then 3x' e A such that 

k ^ x' ^ h and \\x' - x\\ ^ max(Cxe9 C2\\h - ^ | |1 / 2€1 / 2). 

Proof Choose / > 0 such that 

2 1 
t\\h - k\\ ^ - and te < - . 

3 6 
By 3.15, 3x" e A such that 

rifc ^ x" ^ /A and ||JC" - *JC|| ^ 5/1/261/2. 

Withjcr = t~xx\ 

\W - JC|| ^ 5 r 1 / 2 € 1 / 2 . 

If for example f = min( (2/3)||/z - k\\~\ (1/7)£_1), one obtains 

/75\ 1 / 2 

Cx ^ 5V7 and C2 ^ ( y ) . 

Remark. Anyone who cares what Cx and C2 are should use 3.41 
below. 

3.18. COROLLARY. If X ^ h + k, x <= A, h, k <= A^a, then 3a, b e A 
such that a ^ h, b ^ k, and x = a 4- b. 

Proof First apply 3.16 to solve the interpolation problem: x — k ^ 
a ^ h. Then solve x — a ^ b ^ k. 

3.19. COROLLARY. 7/"JC ^ h + k, x <^ A, h, k ^ 1%, then Vc > 0, 3a, 
b ^ A+ such that a = h, b ^ k, and x = a + b + e. 
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Proof. Let 8 > 0, and choose nets (aa), (bp) in A + such that aa / h + 8, 
bp z1 k 4- S ( [5] ). By Dini's theorem 

x = an + bo + 8 

for suitable a0, /?0. Since 0 ^ aa ^ /z + ô, 3.15 (or 3.17) implies that 
3a <= A + such that a ^ h and ||a - a || ^ /(5), where /(S) -> 0 as 
8 —> 0. Similarly 36 G 4̂ + such that 

b^k and | | ^ o - 6|| S / ( « ) . 

Then x = a + b + 2/(8) 4- ô, and we need only choose 8 sufficiently 
small. 

3.20. COROLLARY. J / X ^ A 4- £, JC G ,4, A G A^, c â 0, then Vc' > c, 
3a G 4̂ such that 0 ^ a ^ h and x ^ a 4- €'. 

Proof. Apply 3.19 with k = e. 

3.21. COROLLARY. 7/" A G v4, A G Z £ , e > 0, a«d a*a ^ h + €, /Aew 

Vc' > €, 3Z> G ^ such that b*b ^ h and \\a - b\\ ^ (e')V2. 

Proof. By 3.20, 3c ^ A such that 0 ^ c ^ h and #*a ^ c 4- c'. Therefore 
a = t(c 4- c')1/2, where / G 4̂ (since c 4- c' is invertible) and ||/|| ^ 1. Let 
fc = tcxl\ 

3.22. COROLLARY. If h G A™a, then 3a ^ A such that a ^ h. 

Proof. Choose X ^ ||A||, and apply 3.16 with k = —X. 

3.23. Remark-Examples. Consider the following properties for a given 
C*-algebra A. 

(Dl) VA G ^ , {x G Asa\x ^ A} is directed upward. 
(D2) If x ^ h + k, x e A, h, k e A™, then 3a, b <^ A+ such that 

a ^ h, b ^ k, and x ^ « 4- b. 
(D2') Same as (D2) except that x ^ 0. 
(D3) K J C ^ H M E ^ / I G V4^, € > 0, then 3a ^ A such that 

0 = a ^ A and JC ^ a + e. 
(D3') Same as (D3) except that x ^ 0. 
(D4) {x G ^4:x â 1} is directed upward. 
It is not hard to see that (Dl) <=> (D2) <=> (D2')> (Dl) => (D3) <=* (D3'), 

(D3') => (Dl) if A is unital, and (Dl) =» (D4). 
Unlike the Riesz interpolation and decomposition properties, (Dl) and 

(D2') are satisfied if A is finite dimensional. (D4) will remind the reader of 
Dixmier's result that {x G yl + :|U|| < 1} is always directed upward. (In 
(D4) it is irrelevant whether we require x G A + or x G Asa.) Of course 
(D2) is just 3.19 without the e and (D3) is 3.20 with e' = c. It will be shown 
in Section 5 that for A = Jf (D3) and (D4) are true but not (Dl). 

(i) For A = E2, (D4) is trivially true, since A is unital, but (Dl) is false: 
Let A be given by 

https://doi.org/10.4153/CJM-1988-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-038-5


930 LAWRENCE G. BROWN 

*~ = (o o)' A» = (o 1)' M = 1'2'"--
Let /?, g G v4 be given by 

^ = (o o)' n = ° ° ' ! ' 2 ' • • • ' °̂° = (o o) and 

/cos2 0„ cos 0n sin fy 

\cos 8n sin 0W sin2 0„ 

where 0 < 0n < IT/2 and 6n —> 0 as « —> oo. Then p, q ^ h, but %x ^ A 
such that p, q ^ x ^ h. 

(ii) For yl = is^, (D4) is still (almost) trivially true, and (Dl) is still 
false: Let h e A™ be given by 

" 0 ^ 
I w 

\0 1 / 

Let p, q be as in (i) (except that now n = oo does not occur), and take 

x = hl/2phl/2, y = hV2qhxn. 

Then x, y ^ A; x, y ^ h; but ^a e A such that x, jy ^ a ^ A. 
(iii) For A = E3, (D4) is false: Example (i) actually shows this also. 
(iv) For A = Ex, (D4) is false: Let x be given by xn = ex X ex, n = 

oo, 1, 2, . . . . Let y be given by 

^oo = e\ X * i , 

>>7 = cos2 0n(ex X e^ + cos 0n sin flje, X en+x + ew+1 X e j 

0n as in (i). If x, y ^ z ^ 1, then en+ x X en+ x = zw, V«. For n sufficiently 
large 

This contradicts z ^ G X 

3.C. Monotone limits, weak interpolation. 

3.24. THEOREM. Let A be a C*-algebra and h e A™. 
(a) V/°̂ 4 is separable, h G ^4^. 
(b) For arbitrary A, 3 Û « ^ (Z>a) m 4̂ such that 0 ^ ba ^ h, ba -^ h 

strongly, and\fi] > 0, Vc G ^ such that c fk h, c fik ba + rjfor a sufficiently 
large. 
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Proof. By [5] there is a net (xa)a(ED in A such that xa = Xa + aa, aa G A, 
Xa y* 0, and xa /* h.U 8 > 0, then Aa > — 8 eventually and hence xa + 8 
is lsc on A(/l) eventually. Since xfl I 8 / H S i 0, Dim's theorem 
implies xa + 8 i^ — 8 for a sufficiently large. Thus for a sufficiently 
large, 

aa ^ xa è - 2 8 , and aa ^ A - Xa ë A + 28. 

The basic idea is to apply 3.15 (or 3.17) with k = 0 and e = 28. 
(a) Since A is separable, h(A ) is second countable. Therefore we may 

assume (xa) is a sequence, and we denote it by (xn). (This follows from a 
standard result in topology: If (fa)a(=D is a family of lsc functions on 
a second countable space X, then there is a countable D0 c D such that 

sup{X(*)-« G A)} = sup{fa(x):a G / ) } , Vx G X. 

It is enough to apply this to xa\S(Ay for example.) We construct recursively 
0 = bQ ^ bx ^ . . . ^ A such that 

6m G v4 and bm ^ xm - —, Vm ^ 1. 
m 

Assume b0, ...,bm_x have already been constructed. Then the above 
reasoning applies to (xn — bm_x) / (A — bm_x). Choose n i^ m such that 
3c G A with 

0 =S c =i A - fcm_, and ||c - (an - bm„x) \\ ^ - . 
m 

This is possible by 3.15 if the 8 used above is sufficiently small. Then let 
bm = bm_x + c. Note that 

bm = bm-\ + (an ~ bm-\) ~ ~ = an ~ ~ = Xm ~ ~ -
m m m 

Now clearly lim bm exists and lim bm ^ h. Also 

^m = xm - - =» lim Z>m ^ lim xm = A. 
m 

(b) Let D' = D X (0, oo), with (0, oo) ordered downwards, and let 

D" = { (a, e) G D'\3b G ,4 with 0 ^ Z> ^ A and \\b - aa\\ < e}. 

By 3.15 and the above D" is cofinal in D''. For (a, e) G D" choose bae G A 
such that 

0 ^ 6 ^ S A and | | ^ - flj| < €. 

Since xa —» A strongly and Xa —> 0, aa —» A strongly. Therefore Z?a € —» A 
strongly. If 4̂ 3 c ^ A, then by the above reasoning, applied to xa — c y 
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h — c, aa è c — 28 for a sufficiently large. Thus it is clear that ba € ^ c — 
J] for (a, e) sufficiently "large". 

Remark. Just the fact that ba = h and ba^> h weakly is enough to imply 
h lsc on A(v4 ). The last part of (b) is intended to compensate for the fact 
that Dini's theorem is available only for monotone nets. In fact it follows 
from (b) that VTJ > 0, Vah . . . , ah 

K + V = £«,>••• A , 
for a sufficiently large. This last is an adequate hypothesis for Dini's 
theorem. 

3.25. COROLLARY, (a) If A is a separable C*-algebra and h e A™a, then 
h e A°sa. _ 

(b) If A is any C*-algebra and h e A™a, then 3 a bounded net (ba) in A 
such that ba ^ h, ba —> h strongly, and Vc e A such that c = /Î, c = l)a + Î) 
for a sufficiently large. 

Proof. Combine 3.24 and 3.22. 

3.26. THEOREM. Let A be a o-unital C*-algebra. 
(a) If A is separable, then 

itfTaVU = QM{A)\ and {A^V = QM(A)°sa. 

(b) In any case if h e (A™a)~~, then there is a bounded net (xa) in 
QM(A)sa such that xa =g h and xa —» h strongly. If h ^ 0, then xa can be 
taken positive. 

(c)Ifk^h,ke[ (Âsa)m]~, h e (A™aV, then 3x <= QM(A) such that 
k ^ x % h. 

Remark. 3.26 (a) and (b) are the weak counter-parts of 3.24-3.25 (a) and 
(b). 3.26 (c) is the weak counter-part of 3.16. 

Proof. The basic method of deducing these results from their strong 
counter-parts is the same in all cases. Let e be a strictly positive element 
oiA. 

(a). If 0 ^ h <= (A?a)~9 then by 2.4 ehe e A"{_. By 3.24 there are 
an G A± such that an / ehe. Since 0 ^ an ^ \\h\\e2, 3\tn e A** such that 
an = etne<md0 ^ tn ^ \\h\\. 

etne <E A => (Ae)tn(eA) c A => At„A c A 

(since (eA)~ = A) 

=»*„ e QM(A). 

Clearly an/ => tn /, and e^e —» /̂ze weakly => tn^> h weakly (since |\tn \| is 
bounded and e has a dense range when regarded as an operator on the 
universal Hilbert space of A ). The case where h is not positive follows by 
translation by scalars. 
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(b) is proved in the same way. Since the convergence here is not 
monotone, one should note that xa ^ /z, xa —» h weakly, and \\xa\\ bounded 
imply xa —> h strongly. 

(c). Apply 3.16 and 2.4 to obtain a <E A such that 

eke ^ a ^ ehe. 

If X S max(||A||, ||Jfc|| ), then 

-Xe2 ^ a ^ Xe2 =* 0 ^ a 4- Xe2 ë 2Xe2 

=> 3/ e ,4** such that a H- Àe2 - ete. 

Let x = t — X, so that a = exe. Then as in (a), x e QM(A), and 
e&e ^ exe ^ e/*e =$> k ^ x ^ h. 

Remarks, (i) a-unitality cannot be dropped from the hypothesis of (c), as 
is seen already from the commutative case. If A = C0(X), then the weakly 
lsc and use elements of A** are just the bounded lsc and use functions on 
X ( [28] ). Thus (c) is true if and only if X is normal. Of course there are 
normal locally compact spaces which are not a-compact, but not every 
locally compact space is normal. 

(ii) The answer to the middle case of (Q3) (see Section 1) is "no" 
whenever QM(A) ¥= M (A): Let 

T e QM(A)sa\M(A). 

Since T e (2™)~, 3hn e Â™a such that 

T ^ hn ^ T + - . 
n 

Similarly 3kn e (Âsa)m such that 

T - - ^ kn^ T. 
n 

If the answer to (Q3) were yes, there would be xn <E M {A ) such that 

T - - ^ kn^ xn ^ hn g T + -. 
n n 

Then xn —» T in norm and T e M (A ). 

3.27. THEOREM. If A is a o-unital C* -algebra, then the following are 
equivalent: 

(i) If 0 < € ^ h e Âfa, then 38 > 0 such that h - 8 e A™a. 
(ii) O i * e < = > J e A£. 
(in)AZ = (AZy. 
(iv) QM(A) = M (A). 
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Proof. In view of 2.2 it is enough to prove (iv) =» (ii). If 0 ^ h G Â™a, we 
can apply 3.26 (b) to h. Thus there is a net (xa) in QM(A)+ = M(A)+ 
such that xa ^ h and xa —> /* strongly. Since M(v4)+ c. A™, each xa is 
lsc on A(/l). Therefore h is lsc on A(/l). 

3.D. Middle interpolation. If 5 and C are hereditary C*-subalgebras 
of A with open projections p and #, we say that B and C q-commute if 
[/?, g] = 0. In this case it follows from a result of Akemann [1] that pq is 
the open projection for B n C. 

3.28. THEOREM. Le£ 5 and C be q-commuting hereditary C*-subalgebras 
of A. Then there is an {increasing) approximate identity (ea) of B C\ C 
such that 

\\b(\ - ea)c\\ - > 0 , V è G 5 , c G C 

Moreover, if B, C, and B C\ C are o-unital, then (ea) can be taken as a 
sequence. 

Proof (cf. proof of 3.12.14 of [29] ). Let p and q be the open projections 
for B and C, r = pq, and (rp)pGD an approximate identity of B n C. Note 
that V / ) Ê B , C G C , 

be = (bp)(qc) = brc =̂> b{\ — r)c = 0. 

Let bx, . . . , bn G B, cx, . . . , cn G C, and consider 

« times 

Since r^ —> r strongly in ^4**, 

6,.(1 - r^c, -» 0 

in the weak* topology of A**, Vz; and therefore dp —> 0 in the weak 
Banach space topology of A © . . . ®A. It follows that V/?0 G Z), 0 is in the 
norm closed convex hull of {dp./S § fi0}. 

Now let J5* be the collection of all finite subsets of B X C and D' = 
D X # X (0, oo). For each a = (/30, F, e) G 2)' let ea be one element of 
co( {rp.p è /?0} ) such that 

||6(1 - ea)c|| < c , V ( 6 , c ) G F. 

Order Z)' by 

«1 = 0?1> *i> € l ) = (A)> F0> €o) = a0 

if and only if 

P\ = A» *i D ô> ei = % and eai ^ e^. 

Then D' is directed and 0?a)aGZy has the required properties. 

https://doi.org/10.4153/CJM-1988-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-038-5


C*-ALGEBRAS 935 

For the last sentence let 6, c, and x be strictly positive elements of B, C, 
and B n C, respectively. If (ea) is as above, we can choose a, ^ a2 = . . . 
such that 

||6(1 - ea)c\l\\(\ - ea)x\\ <-. 
n n ÏÏ 

Let un = ea . Then 

6(1 - un)c - * 0 => (£6)(1 - wJ(cC) -> 0 

=» 6'(1 - w > ' -> 0, V6' e £ , c' e C, 

since (£6)~ = 5 and (cC)~ = C. Similarly, (1 - w„)x' -> 0, VJC' G 
5 n C (and also x\\ - un) = [ (1 - KJJC'*]*). 

3.29. LEMMA. If p, q, r are projections such that r = p, r = q, and 
p(\ — r)q = 0, then [p, q] = 0 and r = pq. 

(Proof left to reader.) 

3.30. LEMMA. Let B and C be q-commuting hereditary C*-subalgebras of 
A, b e 2?+, c G C+, and r0 e (B PI C) + . 77ze« £/*ere are q-commuting 
hereditary C* -sub algebras Bf, C such that b e B' c B, c e C c C, 
r0 e F n C aw J £', C , B' n C are a// o-unital 

Remark. Actually the facts that B' and C" are a-unital and their open 
projections have a positive angle imply B' n C" a-unital. 

Proof. Let (ea) be as in the conclusion of 3.28. By choosing appropriate 
elements of (ea), we can recursively construct rn e B n C such that 

0 ^ r „ ^ r „ + 1 ^ 1 (for* ^ 1), 

||6(1 - rjcll < - , and 
n 

| |(1 - rn)rk\\ < - , A: = 0, \,...n - 1. 

Let B' = her(6, r0, rl9. . . ), C = her(c, r0, r1?. . . ), p the open projection 
for B', q the open projection for C", and r = lim rn. 

|| (1 - r„>J | < - , k < n => (1 - /•)!* = 0 VA: =» (1 - r)r = 0. 
n 

Also 

||6(1 - rn)c\\ < - = > 6 ( l - r)c = 0. 
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Thus r is a projection and x(l — r)y = 0 whenever x, y are in the 
*-algebras generated by {/>, r0, r1?. . . }, {c, r0, rx, . . . } respectively. It 
follows that JC(1 - r)y = 0 Vx G J8', y G C" and hence /?(1 - r)# = 0. 
Therefore 3.29 implies that B' and C ^-commute and (with help of [1] ) r is 
the open projection for B' n C. The fact that rn / r implies that (rw) is an 
approximate identity for 5 ' Pi C (Dini's theorem or [6] ), and the proof is 
complete. 

3.31. LEMMA. Let A be a o-unital C*-algebra and px, p2 ^ A** closed 
projections such that pxp2 = 0. Then 3/z G M {A) such that px = h = 
1 - p2. 

Proof. Let Bt = her(l — pt). Then Bx and .62 ^-commute and \\zx(Bx U 
2?2) = T4. It follows that 3bt G (#,) + such that èj H- b2 is a strictly positive 
element of A. By 3.30 there are g-commuting hereditary C*-subalgebras 
B\, B'2 such that bt G B\. C £,., and B\, B'2, B\ n £J> are a-unital. Then 

h e r ^ U B'2) = A 

Hence if / / b /?2 a r e t n e closed projections corresponding to B\, B2, then 
P\Pi = 0 a n d Pi = Pf It is sufficient to construct h such that p\ ^ h ^ 
1 — /?2- Changing notation, we may assume Bx, B2, and Bx n B2 are 
a-unital. 

Now let bi be a strictly positive element of Bi9 c a strictly positive 
element oî C = Bx n B2, and choose cw > 0 such that 

00 

€„ \ 0 and 2 <4/2 < 00. 
1 

By 3.28 there is sx = xx G C such that 

0 ^ j j ^ l, | |(1 - sx)c\\ < 2~\ and 

\\bx(\ - sx)b2\\ < €,. 

Next apply 3.28 to bx(\ - sx)
vl G ^ and (1 - sx)

x/2b2 G B2 to obtain 
xr G C such that 

0 g x' ë 1, H (1 - *')(1 - J!)1/2c|| < 2~2 , and 

||ft,(l - ^)1 / 2(1 - * ' )0 - *i)1/2*2ll < €2. 

Then 

116,(1 - 5 , ) , / V( i - s,)1/262|| â 116,(1 - , , )1 / 2( i - . , ) ' % | | 

+ ||6,(1 - s,)1/2(l - x')(l - sx)
U2b2\\ < e, + £2 g 2e,. 

Let ^ = |6,(1 - 5i) l / 2x'1 /2 | , so that e„ e2 e C and 

||e,<?2|| = ||6,(1 - s , ) " V ( l - s,)1/262 | | < 2c,. 
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Let /:[0, oo) —» [0, 1] be a continuous function such that / = 1 on 
[2ej/2, oo) and / = 0 on [0, t\'\ Let y = f(e2) e C. Then since 
f(t)/t^e;U2, 

\\e]y\\^\\e,e2\\-e;m<2e\/2. 

Also || (1 - y)e2\\ ^ 2i\n. Let 

*2 = (1 - , , ) ' / V 1 / V 1 / 2 ( l - S\)V\ 

x'2 = (1 - s , ) , / V , / 2 ( l - J K 1 / 2 ( 1 - s,)1/2, and 

s2 = 51 "*" X2 + x2-

Then 

||6,*2 | | ^ 116,(1 " ^ , ) 1 / V 1 / 2 j | | • | k 1 / 2 ( l - * , ) , / 2 | | g 2£1 /2, and 

H4fo2|| ^ | |(1 - 5,)1 /V1 / 2 | | • | |(1 - y)x'u2(l - s,)V2b2\\ 

ta || (1 - y)e2\\ ^ 2e\/2. 

Also 

1 - S2 = 1 - SX - (1 - J ^ ' V O - ^O172 

= (i - sx)
x/\\ - * ')0 - *i)1/2 ^ o, 

11^(1 - s2)b2\\ < €2, and || (1 - s2)c\\ < 2~2 . 

If we repeat this process recursively, we obtain xn, xf
n e C+, « = 1, 

2, . . . (xi = 0) such that 

J„ = 2 (x* + 4 ) ^ i, 
i 

||&,x„||, | |x^ 2 | | ^ 2£y_2, (« > 1), 

116,(1 - s„)b2\\ < £„, and 

| |(1 - v ) c | | S 2"". 

It follows that (sn) is an approximate identity of C. Hence 

oo 

lim sn = 2 (J*. + x^) = r, 
l 

the open projection for C. Let 

CO 

h = px + 2 x* e ^**. 
l 

Then 
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oo oo 

(1 - h) = p2 + r - 2 xk = p2 + 2 x'k. 
l l 

By construction bxh e ^ c A(blpl = 0), and (1 - h)b2 G B2 G A. 
Therefore 

Bxh = (Bxbx)~h G A =* hBx G A, and 

(1 - h)B2 = (1 - h)(b2B2)~ G A =* hB2 G A. 

Since her(2?j U 1?2) = ^4, this implies hA G A, and since /i = h*, 
h G M(>4). 

A direct proof of the following would make it possible to adapt 
Urysohn's proof of Urysohn's lemma to the non-commutative case. 

3.32. COROLLARY. With the hypotheses of 3.31 there exist open projec­
tions qx, q2 G A** such that qt = pt and qxq2 = 0. 

Proof. Let 

#2 = £[0,(l/3))(*)> Q\ = E((2/3),\](hy 

For a projection p G A** we denote by pM its closure in M(A)**9 

relative to M (A) (under ,4** c M(^)** = A** © (M(^)/(^)**) . 

3.33. COROLLARY. If A is o-unital andpx, p2 G A** are closed projections 
such that pxp2 = 0, then px p2 = 0. 

Proof If we consider the spectral projections in M (A)** of h G M (A), 
then, for the A of 3.31, 

px
M^E(x}(h) and p2

M ^ E{0](h). 

3.34. COROLLARY. Let A be a o-unital C*-algebra and q G A** an open 
projection. The following are equivalent. 

(i) her(#) is o-unital. 
(ii) q = y^Lx pi9 Pi a compact projection. 

(iii) q = V°^j pt, pt a closed projection. 
(iv) 3h G M(A)+ such that q = E(0oo)(h). 

Proof, (i) => (ii). Let e be a strictly positive element of her(#) and 

Pi = E[(\/i),oo)(e)-

(ii) =» (iii) is obvious. 
(iii) => (iv). Apply 3.31 to pt and 1 — q, obtaining ht G M (A) such that 

pi = ht ^ q. Let 

oo 

A = 2 2~%. 
l 
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(iv) => (i). Let e b e a strictly positive element of A. Then hl/2eh]/2 is a 
strictly positive element of her(g). 

3.35. COROLLARY. With the hypotheses of 3.31, / / her(l — px — p2) is 
o-unital, then h can be chosen so thatpx = Er^(h) andp2 = Ef0^(h). 

Proof. Let rt be closed projections such that 

1 - P l - f t = V » , r , 

By [1] P\ + ri a n d P2 + rt a r e closed V/. Choose /zj, A" e M(v4)^ such 
that 

^ S AJ ^ (1 - p 2 - r,) and />, + /j ^ h? =i 1 - p2. 

Let 

oo 

A = 2 2" ,'_1(A; + A;')-
i 

3.36. COROLLARY. Lef A be a o-unital C*-algebra and B, C q-commut-
ing hereditary C*-subalgebras such that A = her(Z? U C). 7%e« there are 
bt G B+, ct e C + 5wc/z //ïûtf ( 2 ï (6j + Cy) ) ^ û n approximate identity of 
A. In particular if I e. A, then 1 G. B+ + C + . 

Proof. The hypothesis (and conclusion) of 3.36 is equivalent to that of 
3.31 (where px, p2 are the closed projections corresponding to B, C). Let h 
be as in 3.31 and let at G A+ be such that (2? at) is an approximate 
identity of A. Take 

fc. = (1 - h)xnai(\ - h)l/1 and ct = hx,1aih
x/1. 

Of course the last sentence follows from Akemann's Urysohn lemma ( [1] 
or [2] ). 

Remarks. 3.34 and 3.35 benefitted from conversations with J. Anderson. 
There are other things along these lines that one would like to do, but 
non-commutativity seems to interfere. 3.36 applies in particular if A = 
B + I9 B hereditary, / an ideal. G. Pedersen asked whether in this case 
A± = B+ + J + . Although the answer to Pedersen's question is no (3.53), 
the question was helpful. 

For B a hereditary C*-subalgebra of A, let 

M(A, B) = M (A) H B** c A** and 

QM(A, B) = QM(A) n B**. 

M(A, B) = {x e M(A):Ax c L and xA a R}9 where L and R are the 
closed left and right ideals of A corresponding to B (since L = A Pi L**, 
R = A n R**). If B is an ideal, this notation agrees with that of [30] and 
M(A, B) is also described (by Pedersen) as the kernel of M(A) —> 
M(A/B). In general M(A, B) is a hereditary C*-subalgebra of M(A). 
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3.37. COROLLARY. Let X be a Bx — B2 Hilbert bimodule, where Bx and B2 

are o-unital, and U a partial isometry in QM(X). Then U e LM(X) -f 
RM(X) in the following way: Let C, = her(I/£/*), C2 = her( !/*!/), and 
6:C2 —> Cx the isomorphism c I—» Ucll*. Then there is h0 e M(B2, C2) such 
that 

0 < h0 ^ VU and UU* - 0**(h0) e M(Bh Cx); 

and 

U = Uh0 + (\ - 6**(h0))U G LM(X) + M ( J f ) . 

Proof. 3.31 deals with a special case of the present situation: Let 
X = (BXAB2)~ and 1/ = r in the notation of 3.31. In this special case 
Cx = C2 = C, 0 is the identity on C, 

^o = 2 ^ = 1 ~~ h — p2 and 

I/I/* - 0**(/*o) = 2 ** = A ~ VV 

( (1 - 6>**(/Ï0) ) ! / = (UU* - 6**(h0) )U) The construction of N. T. Shen 
[31] reduces the general case to this special case. (Our hypothesis that Bx, 
B2 be a-unital is too strong of course. We only need that the A produced 
by Shen's construction be a-unital.) It may be helpful for the reader to 
consult Section 2 of [10] and 2.3 in particular. 

For the reader who does not understand the above, it is possible to 
make the proof of 3.31 work in the present context. One should note that 
U*U and UU* are indeed open projections by 2.45 (b). Also I/C2, CXU c 
X by Proposition 4.4 of [5] (cf 2.6 (b) ). (These results should be applied in 
a suitable linking algebra; or the reader may assume Xis a C*-algebra and 
X = Bx = B2.) 

3.38. Remark. Consider the following situation: Bx and B2 are C*-
algebras with hereditary C*-subalgebras Cx and C2. 6:C2 —» Cx is an iso­
morphism. We ask when can Bx and B2 be "patched" along 0. In other 
words: When does there exist a C*-algebra A containing Bx and B2 as 
^-commuting hereditary C*-subalgebras such that Bx n B2 = Cx = C2 

(and Cj = 6(c2) for c2 e C2)? [31] produces an answer to this question, but 
it does not seem easy to apply; namely, to get an A it is necessary and 
sufficient to have a suitable partial isometry U e QM(X). (Note that for 
qx, q2 projections, [qx, q2] = 0 <̂> qxq2 is a partial isometry.) 

Now in general for the problem of [31] X should be given, but here one 
can construct X. Let Lx = (BXCX)~, R2 = (C2B2)~, and regard Lx as a 
Bx — C2 bimodule (via 0) and R2 as a C2 — B2 bimodule. Then 

XQ = Lx® R2 

is a Bx — B2 Hilbert bimodule. Moreover, there is a well-defined partial 
isometry U in XQ * : 
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U = Hm(6(el/2) ® eXn\ 

where (en) is an approximate identity of C2. Then Bx and B2 can be 
patched if and only if U G QM(X0), but how does one check whether 
U G QM(X0)1 3.37 gives an answer: Bx and B2 can be patched if and only 
if 3h0 G M(B2, C2) such that 

0 g h0 S r2 and ^ - 0**(AO) e ^(#i> Ci) 

(rt G 2?f * is the open projection for Ct). (The bimodule X of [31] need not 
be X0: X0 is the cutdown of X to the ideals generated by Cx and C2. The 
question whether 2?j and i?2 can be patched depends only on X0, though 
the result of patching depends on all of X) 

It is interesting to consider the special case of the problem where C-
is an ideal in Bt and Bx, B2 are required to be ideals of A. (In this case 
X = X0 = Ct.) This problem (or rather a more elaborate but similar one) 
came up in connection with work done four years ago ( [11] ) and was 
solved independently of [31]: Bx and B2 can be patched if and only if 
BXB2 c Cx c M(CX), where Bx maps to M(CX) in the usual way and 

B2 -> M(C2) -> M(CX). 

(In other words certain products in M(CX)/CX must = 0.) How does one 
show that this answer agrees with that based on 3.37 (under the a-unitality 
hypothesis of 3.37)? The bridge is provided by the following: If C is a 
a-unital C*-algebra, x, y G M(C), and xy G C C M(C), then 3/z0 G 
M(C) such that 0 ^ A0 ^ 1, h0y G C, and x(l - A0) G C. This last result 
is Theorem 13 of Pedersen [30] and follows, in a simplified proof due to 
J. Cuntz, from (N3). Since 3.31 is the main lemma needed to prove (N4), 
we have now come full circle. 

q 
3.39. DEFINITION-LEMMA. For h, k G Af*, write h i^ k if and only if 

Vs < t G R, 
E(-oo,s)(h) ' E[too)(k) = 0. 

q 
(Note that if [h, k] = 0, h g k <^> h â k.) Then 

q 

h ^ k ^ h ^ k . 

Proof. Assume o(h) U o(k) c [s, t]. Let 
Pi = E(s + (i/N)(t-s),oo)(h) a n d 

9i = E(s+(i/N)(t-s),oo(kX i = 1, • • • N - 1. 

Then />• ^ r̂-, since 

'(-oo,s + (i/N)(t-s)](h) 

https://doi.org/10.4153/CJM-1988-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-038-5


942 LAWRENCE G. BROWN 

is ort logonal to 

E[s + (\/N)(t-s) + e,oo)(k)> 

Vc > 0. Also 

1 - N~l 1 
\s + 2 A ~ h\ 
1 N i ' 1 

' r + 
N l 

- k\ 

VII 

t - s 1 - N~l 1 
\s + 2 A ~ h\ 
1 N i ' 1 

' r + 
N l 

- k\ 

VII 

N 

3.40. THEOREM. If A is a o-unital C*-algebra, h, k G A**, h is q-lsc, k is 

q-usc, and h = k, then 3 x G M {A )sa such that k = x = h and h — x, 
x - k e l ^ . 

Proof. Let 

A = £(_«,,,](*) and ^ = £[j>po)(*). 

Then />,, ^ are closed pt = p, for ?| ^ ?2>
 as = Is f°T s\ — s2> a n d 

Pfls = 0 for / < 5. Let 

Pt PtM a n d Qs «."• 

Then /?,, §5, which are elements of M (A)**, have the same properties as 
pt, qs, by 3.33. There is a standard way to construct h\ k' e MG4)*a* 
such that 

£(-oo,/](A') = , / ^ A ' and E[soo)(k') = ^ q ^ 

To do this, choose a countable dense set D in some sufficiently large 
interval (s0, t0). Represent the Boolean a-algebra of projections generated 
by the pt

9s as a a-field of subsets of some set S modulo a a-ideal 
(Loomis-Sikorski theorem). One can represent the projections pp t e Z), 
by subsets Pt of S such that tx < t2 

a measureable function / on S by 
R c R . Also let R = S and define 

t\ U It) 

f(y) = ml{t:y e 7»}, j G 5. 

Then 

/ ^ ( - o o , / ] ) 

and if h! is the operator corresponding to / , W has the required properties. 
The construction of k' is similar. 

Now hf and k' have the same properties, relative to M (A ), as h, k have 
relative to A. The g-semicontinuity follows from the fact that the infimum 

of any family of closed projections is closed. That hf ^ k' follows since if 
t < s, 3/ < t' < s' < s. Then 

E(-ooj](h') ^ Pf and E{soo)(W) ^ qs, 
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Since M(A) is imitai 3.16 and 2.50 imply 3x G M(A)sa with k' ^ x ^ A'. 
Now if z is the open central projection in M(A)** corresponding to the 
ideal A of M(A\ then zk' = k, zW = h. Thus k ^ zx ^ h in A** c 
M(^4)**, and this simply means k ^ .x ^ A in ^4** in the notation of the 
theorem. The fact that h — x, x — k G A™ follows from 2.18 (a); i.e., 

h' - x, x - kf G (M(A)"t)~ => z(A' - JC), Z(JC - A:') G ^ " . 

Remark. It is not true that h G J™, fc G (2^)m , and A - k G Z f => 
3.x G M(^4) such that k ^ x ^ h. This fails, for example, for A = 2s6, as 
will be shown in Section 5.E. 

3.E. Applications of interpolation. The following result concerns the 
closure in A** of certain bounded convex subsets in the a-weak (or 
equivalently a-strong) topology. In view of the proof of 3.2, this seems to 
be of interest. 

3.41. THEOREM. Assume h ^ k in A**. 
(a) / / h ^ÂZandk G (A J ' , then 

9> = {a G A'.k ^ a ^ h) 

is strongly dense in 

3T = {a G A**:k ^ a ^ h). 

(b)Ifh G yl + , then Sf = {0 G v4:o*a ^ /i} w double-strongly dense in 
3T = {a G A**:a*a ^ /*}. 4 

(c) 7 / ^ w o-unital, h is q-\sc, k is q-usc, <2/?d h = k, then Sf = {y G 
M(A):h ^ y ^ k) is strongly dense in ZT = [a ^ A**:k ^ a ^ h}. 

(d) 7/v4 w o-unital, h G (2™)~, and k ^ [ (Asa)m]~, then &> = {y G 
QM(A):h ^ y ^ k} is weakly dense in ^T = {a G ,4**:À: ^ « ^ h}. 

(e) Z/,4 w o-unital and h G [ (Jï^)"] + , f/iéTi 5" = {T G LM(A):T*T ^ 
A} w double-strongly dense in 3~ = {x G ^4**:x*x ^ h}. 

Proof, (a). By 3.16 3x G ^ Since A - x, JC - fc G ^ , by 3.24 (b) 
there are nets (ba), (cp) in A such that 0^ iZ> a ^ /z — x, 0 ^ cp ^ x — k 
and ba—> h — JC, C^ —> x — fc strongly. Now let « G X Then 0 ^i a — & ̂ i 
A - A: => 3/ G yl** such that 

O ^ / ^ l and a - k = (h - k)V2t(h - k)vl. 

Thus 

a = k + (h - k)l/2t(h - k)xn. 

By the Kaplansky density theorem there is a net (ty) in 4̂ such that 0 ^ 
/y ^ 1 and ty -+ t strongly. Then 

*afh = X- Cp + (ba + Cp)U\(ba + Cfi)
U2 

is in Sf and za£y —» a strongly. 
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(b). Choose a net (ba) in A such that 0 ^ ba ^ h and ba-> h strongly 
(3.24 (b) ). If a G ^ t h e n a = thxn for some / G ^** such that ||;|| ^ 1. 
Choose a net (c^) in A such that ||c^|| = 1 and c^ —> t double-strongly 
(Kaplansky). Then 

cp!>a2 e & a n d c^a2 - * *• 

(c) is proved in the same way as (a). The only differences are that x is 
now in M(A) and 3.40 is used. 

(d). Let a G y and e a strictly positive element of A. Then eke ^ eae ^ 
ehe. By (a) and 2.4 there is a net (ba) in ,4 such that eke ^ ba ^ ehe and 
ba —> éw strongly. As in the proof of 3.26 (c) there are ya G QM(A) such 
that Z?a = eyae. Then >>a G <5̂  and eyae —> eae strongly =̂> j f t —» « 
weakly. 

(e). Choose a net (Sa) in QM(^) such that 0 ^ Sa ^ A and S a -^ A 
strongly (3.26 (b) ). If « G ^"then a = thl/2 for some f G A** such that 
||f || ^ 1. It is enough to show that tSlJ2 is in the double-strong closure of 
y for each a. Choose Ta G LM(A) such that T*Ta = Sa ( [10], 4.9). Then 
tSxJ2 = /Ta for some r E ^ * * with ||r|| ^ 1. Choose a net (c^) G ,4 such 
that llĉ H ^ 1 and Cp —> r double-strongly (Kaplansky). Then cpTa G </> 
and cfiTa -> rr a . 

3.42. Remark. Both Akemann's Urysohn lemma [2]and a well known 
result of St0rmer [32] follow easily from 3.16. 

(a) If pq = 0, p compact, q closed, then the interpolation problem 
p ^ x ^ 1 — q satisfies the hypotheses of 3.16. 

(b) (/ + / ) + = /+ + / + : Let z, w be the open central projections for 7, 
/ and a G (/ + /)_,_. Solve the interpolation problem a(\ — w) ^ x ^ az, 
and note x G 7+ , a — x G / + . (This result will be generalized below 
(3.48).) 

For (N4) we need a definition. If p G A** is a closed projection and 
A G pA*fy, then A is called q-continuous on p ([7]) if E^^^Qi) and 
E[t,oo)(h) a r e closed in ,4**, Vf G R, where the spectral projections are 
computed in pA**p. Also h is called strongly q-continuous on p if in addi­
tion E^^^^Qi) and E^too^(h) are compact for f > 0. 

3.43. THEOREM. Let p G A** be a closed projection and h G pA*^p. 
(a) 7/*/i w strongly q-continuous onp, then 3h G Asa such that [/z, p] = 0, 

/>£ = h, and o(h) c co(a(A) U {0} ). 
(b) 7/^4 is o-unital and h is q-continuous onp, then 3h G M (A )sa such that 

[h, p] = 0, ph = h, and o(h) c co(o(h) ), where the latter spectrum is 
computed in pA**p. 

Proof, (a). Let [s9 t] = co(a(A) U {0}). Let JC - A + s(\ - p), 
y = h + t(\ —q p). It is easy to see that x is strongly q-usc, y is strongly 
q-\sc, and y ^ x. Thus 3.16 and 2.50 imply that the interpolation 
problem x = h ^ y can be solved for h G A . 
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1/' 

s(l - p) ^ h - h ^ t{\ - p) => [h, p] = 0. 

(b) is proved in the same way as (a) based on 3.40. 

3.44. Remark-Example. This result is sharp, even if 3.40 is not, since 
every element of p{x G Asa:[x, p] = 0} is strongly ^-continuous on p 
and every element of 

p{x G M(A)sa:[x, p] = 0} 

is ^-continuous on p. 
Recall that pAsap can be identified with the set of continuous affine 

functionals vanishing at 0 on the closed face of A(̂ 4) corresponding to p. 
Not every element of pAsap need be ^-continuous on p. Thus, for an h not 
^-continuous on p, it follows from 3.16 that either h + t(l — p) fails to be 
in A™a no matter how large Ms, or h + s(\ — p) <£ (Asa)~ no matter how 
small s. 

The example is very simple. Let A = E2, which is unital. Let p be given 
by 

P„ = (l o)>" = ï ' 2 ' - - and />°° = (J ?) 
Let a ^ Asabe given by 

an = [x of i = °o> 1, 2 , . . . , 

and A = pap. Clearly h ¥= pîï îor h ^ A and [h, p] = 0. In this case 
h -h /(l — p) is never lsc or use. Note also that her(l — p) is a corner 
of an ideal. 

By combining 2.39 (v) (c) with 3.26 (c), one can obtain a "weak" result: 
Let 

C = {y e Ô M ( ^ ) : ^ = ^ } . 

Then for h G pAf^p, h G /?C if and only if 3s, t G R such that 

h + s(l-p)e l a j j " and A + f(l - />) e # £ ) - . 

We do not consider this a "weak" version of (N4) (or 3.43) because the 
characterization of pC cannot be stated solely in terms of the closed face 
of A(̂ 4) corresponding to p (so far as we know). Also 3.13 (v) shows that 
pC need not be norm closed. 

3.45. COROLLARY. If p G A** is a closed projection, then 

{h G pA*^p:h is strongly q-continuous on p} 

is the real part of a C*-algebra. If A is o-unital, the same holds for 

{h G pA*£p\h is q-continuous onp}. 
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3.46. THEOREM. Let B0, Bx be q-commuting hereditary C*-subalgebras of 
A, B = her(i?o U Bx), and q0, qx, q the corresponding open projections. 

(a) If h G Bsa and [h, q0] = 0, then h = h0 + hx, where 

ht e (BXa, [hi9 q0] = 0, ando(hx) c co(a(h) U {0} ). 

(b) If A is o-unital, h G M(A9 B)sa, and [h9 q0] = 0, then h = h0 + hx 

where 

ht G M(^ , BX* [hi9 q0] = 0, and 

o(hx) c co(a(A) U {0}). 

Proof Let [5-, /] = co(o(h) U {0} ). Both parts are proved by solving the 
interpolation problem, 

(1 - q0)h + sq0qx ^ hx ^ (1 - %)/i + tq0qx. 

Either 3.40 or 3.16 applies, since h is ^-continuous (strongly in part (a) ). 
The following are special situations where 3.46 can be applied, each 

more general than the next. In all of these cases 3.46 (a) is trivial. 
(1) B0 is an ideal of B: In this case the hypothesis [hy q0] = 0 is 

automatic. That B = B0 + Bx can be seen by elementary arguments. This 
special case of 3.46 (b) becomes: If A is a a-unital C*-algebra, B0 and Bx 

are hereditary C*-subalgebras, and B0 is an ideal of her(i?0 U Bx), then 

M(A, B0 + Bx) = N(A9 B0) + M(A9 Bx). 

(2) B0 is an ideal of A and Bx any hereditary C*-subalgebra. 
(3) B0 and Bx are both ideals of A. 

A forthcoming paper by J. Mingo, who told us about the problem, will 
give a more elementary proof of the result in situation (3): 

(3) M(A, Ix + /2) = M(A, Ix) 4- M(A9 I2). 

For quasi-multipliers we have a result for situation (1). 

3.47. THEOREM. If A is a o-unital C*-algebra, B0 and Bx are heredit­
ary C*-subalgebras such that B0 is an ideal of B = her(2?0 U Bx), and 
h G QM(A, B)sa9 then h = h0 + hl9 where 

hé G QM(A, Bt) anda(hx) c co(o(h) U {0} ). 

Proof There is an ideal I of A such that B0 = B Pi / . Let z be the open 
central projection for / . We use the same interpolation problem as in 3.46 
but note that 

y = (1 ~ %)h + tq0qx = (1 - z)h + tzqx. 

Since h is no longer ^-continuous, we need to give a direct proof that 
y G (Â™a)~. Then 3.26 (c) applies. 

https://doi.org/10.4153/CJM-1988-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-038-5


C*-ALGEBRAS 947 

Let <pa —> <p in S(A ). Passing to a subnet, we may assume z<pa —> 0, 
(1 — z)<pa —> i//, where <p = 0 + ;//. Moreover, 

IkJIJMI = I=HU<PJI -> ||*||, 11(1 -z)*J|->IMI. 
Clearly i// vanishes on I. Thus 

My) = M) = lim[(l - z)<pa](h) = lim[(l - z)<pa](y). 

Also 

e(y) ^ t\\e]Bx\\ 

(since ^ e 5f*) 

^ ^Hm||zcpa|Bil| = t ljm(z<pa)(qx) = Um(*Va)(jO. 

Thus 

3.48. THEOREM. Let Bx and B2 be q-commuting hereditary C*-subalgebras 
ofA, B = her(2?j U B2), and qx, q2, q the corresponding open projections. 

(a) If x G Bsa and [x, qx] = [x, q2] = 0, then x = xx + x2 with 
Xi G (Bi)sa> I*i> 9j] = °> and 

o(xx), o(x2) c co(a(x) U {0} ). 

(b) If A is o-unital, x e M(A, B)sa, and [x, qx] = [x9 q2] = 0, then 
x = xx + x2 with xt G M(A, Bt)sa, [xt, qj] = 0, and 

o(xt) e co(a(x) U {0} ). 

Proof Let [s, t] = co(a(;c) U {0} ). Both parts are proved by solving the 
interpolation problem, 

k = (1 — q2)x + qxq2[ (x — t) V s] ^ xx 

^ (1 - q2)x + qxq2[ (x - s) A t] = h. 

Clearly [h, k] = 0, and 

x - s ^ x ^ s, t ^ x ^ x - t(s ^ 0, t ^ 0) 

=^h^k=>h^fc. 

We need to show that h is g-lsc and k q-usc (strongly in case (a) ). Let 
p = E^^^Qi). For a < 0, 

p = E^^^x) • (1 - q2)9 

which has the required properties. For a ^ t, p = 1. For 0 ^ a < t, 

p = [^-oo^Cx) • (1 - q2) ] V [£(_0O>a+s](x) ] V (1 - <?,)• 
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(By [1] the sup of finitely many commuting closed projections is closed.) 
The proof for k is similar, and hence 3.16 or 3.40 applies. 

Again our result for the "weak" case is weaker. 

3.49. THEOREM. If A is a o-unital C*-algebra, Bx and B2 are hereditary 
C*-subalgebras, and Bx and B2 are both ideals of B = h e r ^ U B2), then 

QM(A,B)+ = QM(A,BX)+ + QM(A, B2) + . 

Remark. Of course B = Bx + B2, and this result includes the case where 
Bx and B2 are ideals of A. Without the " + 's" 3.49 would follow from 
3.47. 

Proof There are ideals Ix and I2 of A such that Bt = B C\ It. Let zl5 z2 

be the corresponding open central projections and x G QM(A, B)+. By 
2.18 (c) and 3.26 (c) we can solve: 

(1 — z2)x ^ xx ^ zxx. 

3.50. LEMMA. If I and J are ideals of a C*-algebra A and x G / + / , then 
x = i+j,i G i,j G / , H/H, \\j\\ ^ ||x||. 

Proof Write x = uh (polar decomposition), u ^ A**, h ^ I + J. By 
St0rmer [32], h = hx + h2, hx G J+ , h2 G / + . uh G A =s> uhx, uh2 G A, 
since hx, h2 G (hA)~~. It follows that / = uhx G / and j = uh2 G / . 
(I = A O /**, for example.) 

3.51. Remark. With 3.50 we can derive results for non-self-adjoint oper­
ators from 3.48. With the hypotheses of 3.48 each of the C*-algebras 

Cx = {x G B:[x, qx] = [x, q2] = 0} and 

C2 = {x G M(A, B):[x, qx] = [x, q2] = 0} 

is the sum of two ideals: 

Cx = Cx n Bx + Cx n B2 and 

C2 = C2 n M(A, Bx) + C2 n M(A, B2). 

A similar trick could be used to supplement 3.46. For completeness 
we also consider analogous results for non-self-adjoint left or quasi-
multipliers. For / an ideal of A, let 

LM(A, I) = LM(A) n /** c A**. 

Suppose x G LM(A, Ix + I2). If Ix + I2 is a-unital, we can easily 
show x = xx + JC2, xt G LM(A, It), \\xt\\ ^ \\x\\. To do this, apply 
Urysohn's lemma to Ix + I2, obtaining h G M(IX + 72> Ix) such that 
0 ^ h ^ \ and 1 — h G M ( / J + 72, ^2)- (The existence of /z follows from 
[30] ( (N3) ) or from 3.31.) Let xx = hx, x2 = (1 — h)x. (That xt is in 
LM(A ) follows from xA c /j + 72.) F ° r quasi-multipliers the proof is 
more elaborate. 
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3.52. THEOREM. Let Ix and I2 be ideals of a C*-algebra A, and assume A 
and Ix + 12 are o-unital Then ifx G QM(A, Ix + 72), x = xx -\- x2 with 
xt G QM(A, It) and \\Xi\\ ^ \\x\\. 

Proof Let e be a strictly positive element of A and 

e2 = (s 3' 
a strictly positive element of A 0 M2. Assume ||x|| = 1, and let 

T = ( ^ *) e <2M04 0 M2). 

In 4.9 of [10] (see also 4.10) we showed that T = L*L, L G LM(A 0 M7). 
Since e2Te2 and e2 have the same image in A 0 M2/(IX + 72) ® ^2» 
the proof of 4.9 shows that L maps to 1 in LM(A 0 M2/(IX + 72) 0 M2). 
Then if 

L = y I11 H *-(£") ( H 
^21 ^22/ v^2l/ V^22/ 

where both columns are isometries, and L12, L21 G LM(A9 Ix + 72). Now 
choose a Urysohn element /z G M ( / J + I2, Ix) as in 3.51. Then hLX2, hL2X, 
(1 - h)LX2, (1 - /i)L21 G LM(,4). Take 

xj = L*xx(hLX2) + (L$xh)L22 and 

x2 = ^ [ ( 1 - A)L12] + [La(l - A)]L22. 

Remark. Even in the self-adjoint case 3.52 does not follow from 3.49, 
since QM(A, I) need not be generated by QM(A, / ) + . For example, 
consider .4 = Ex and / = {x G E ^ J C ^ = 0}. Then ÔM(,4,1)+ c ^ < / 0 
but QM(A,I) £ M(y4). 

3.53. Example. In the decompositions, x = Xj 4- x2, obtained in 
3.46-3.52, we were able to impose conditions on both xx and x2 if [x, qx] = 
[x, g2] = 0; but if only [x, q2] = 0, we can impose conditions only on 
xx: Let 

-it h 
(A S Ë6). Let 

-it I - I I" b\ e _*:« 

* - M : Î I - ^ 

Jf, ft,. C G j f j . 

= Jf 1 and 

= c = = rf = A 
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*-l i K 1 e^ + . 

Then x £ B+ + h- In fact iJ x = b + / 
necessarily 

»-c 
-

) 
L ( 

( 3 and / = Xkm f) 

Then / is an ideal, B is hereditary, and A = B + I. Also A and B are 
unital, so that A = M (A) = QM(A). Let K G X be positive and one-
one, and 

b G 5 + , / G /+, then 

for some L E J such that 0 ^ L ^ 1. i ^ 0 => A:1/2 = L1/2S*T1/2 for 
some S G £ ( # ) with \\S\\ ^ 1. This implies LU2S = 1, which is 
impossible, since L G j£T If \\K\\ < 1, it can also be shown that 

/l + \\K\\\ , , ^ _ c . 
x - ^ ——j + yx + y2, yx fc 5, >>2 e /, 

Wi , |* - (L±JH) 

3.F. A problem on commuting closed projections. In the context of 3.46, if 
h G M (A, B) does not commute with either q0 or qx, we certainly can not 
expect to prove that h G M(A9 B0) + M{A9 Bx). However, there is a 
sensible problem, which is explained by the following definition. Let 
Bx and B2 be ^-commuting hereditary C*-subalgebras of A and B = 
her(Bx U B2). We say that (Bl9 B2) satisfies (C) if M(A, Bx) ^-commutes 
with M (A, B2) and 

M(A, B) = herM(A)(M(A, Bx) U M(A9 B2) ). 

There is another description. A theorem of topology states: If X is a 
normal space and Fl9 F2 c X are closed, then 

(Fx n F2)~^ = Ff n F/9 

where ~^ denotes closure in the Stone-Cech compactification. This 
theorem can sometimes be applied in the context of fibre bundles. The 
most obvious non-commutative analogue is explained by the following 
definition. Let pl9 p2 G A** be closed projections such that [px, p2] = 0. 
We say that (px, p2) satisfies (C) if 

[px
M, p2

M] = 0 and (PlP2r
M = p,Mp2

M. 

If Bi = her(l — /?•), then [pl9 p2] = 0 <=> Bx and B2 ^-commute. Also 
(given [pX9 p2] = 0) 

her(^! U B2) = B = her(l - pxp2). 
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To see that (C) and (C) are equivalent, note that 

VM(A)( h e W l - pt
M) = M(A, Bt) and 

h e r M W ( l - (pxp2)
 M) = M(A, B). 

(For p G M (A)**, 

herM{A)(\ - pM) = {x G M(A):xp = px = 0}. 

When p G A** c M (A)**, the computation of xp and px can be done in 
A**.) Thus [px

M
9 p2

M] = 0^> M(A, Bx) and M(A, B2) ^-commute; and if 
[PxM, PiM] = 0, then 

herM(A)(M(A9 Bx) U M(A9 B2)) = h e r M W ( l - px
Mp2

M\ 

so that 

M(A9 B) = herM(A)(M(A, Bx) U M(A9 B2)) 

if and only if (pxp2)~
M = px

Mp™. 
3.33 says that (pl9 p2) satisfies (C) whenever pxp2 = 0, for v4 a-unital. 

Also if Bx is an ideal of B9 M(A, Bx) is an ideal of M(A9 B); so that 
M(A, Bx) and M(A, B2) certainly ^-commute. Thus 3.46, specialized to 
situation (1), implies that (Bh B2) satisfies (C) whenever Bx or B2 is an 
ideal of B = h e r ^ U B2). We will prove some other positive results, but 
in general (C) and (C) are false, even for nice algebras. Recall that a pro­
jection p G A** is called regular ( [33] ) if \\xp\\ = \\xp\\9 Vx G A. 

3.54. PROPOSITION. Let B be a hereditary C*-subalgebra of A andp a pro­
jection in B** c A**. Thenp â p in the following two cases: 

(i) B is a corner of an ideal of A. 
(ii) p is regular relative to B. 

Proof (i) Let B be a corner of the ideal / . It is enough to show pB ^ p1 

and p ^ pA. For the first let q G M (I) be the open projection corres­
ponding to B. Then for x G J, 

xp = 0 <=> x<zp = 0 «=> qx*xqp = 0 <̂> (qx*xq) - pB = 0 

xqpB = 0 «* jcp5 = 0. 

(since qx*xq G 5 ) 

<=> x # 5 = 0 <= 

For the second, let JC G A Then 

JC/? = 0 «=> I(xp) = Q*=* (Ix)p = 0 <=> ( / J C ) / = 0 <^ J C / = 0. 

(For Ixp1 = 0 =» J C / = 0, note that J C / G /**.) 
(ii) By Theorem 6.1 and Lemma 3.5 of [20] p regular relative to 

B => {<p G S(5):supp <p ^ /?} 

is weak* dense in 
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{<p e S(£):supp <p â pB). 

(We are here using the equivalence of (3) and (4) of 6.1, which is valid 
for arbitrary B. Effros' proof of (2) =̂> (3) assumes a unital algebra.) For 
<p G S(B), let <p be the unique element of S(A) such that <p|5 = <p. 
If <pa —> <p in S(B), then the uniqueness of norm-preserving extension im­
plies <pa —» $ in S (A). For «p G S(i?) the support projection of $ in ^4** is 
the same as the support projection of 9 in B**. Since 

pA â supp 1/,, Vif G {« G S(,4):supp 0 ^ / ?}""* , 

the result follows. 

3.55. THEOREM. Let px, p2 ^ A** be closed projections such that 
\P\i Pi\ = 0- Assume that B = her(l — PiP2) is o-unital and p^ p2 are 
regular relative to M (A) (as elements of M (A)** D A**). Then (ph p2) 
satisfies (C) . 

Proof For x G M(A)+, xpx = 0 or x/?2 = 0 =» xp^p2 = 0 =̂> x e 
M(^4, 5 ) . Consider j/t = pt — pxp2 e 5**, which is closed relative to B. 
Then M(v4, 2?,) (notation as above) can be identified with 

herM (^B )( l - ( /T M ( / , ' B ) ) . 

Claim. pt regular relative to M (A) => j/t regular relative to M (A, B). 
Proof of claim. Let <p e S(M(A, B) ) c S(M(A)) such that 

SUpp q> = pt
 y ' J = pt

 K \ 

Then by [20], there are <pa G S (M (A) ) such that supp <pa ^ /?, and <pa —» <p 
weak*. If ^ e M(yl)** is the open projection corresponding to M(A, B) c 
M(^4), then the facts that <p is supported by q and ||<p|| = 1 imply 

Hence #<pa# —> <JP weak*. But 

supp <pa S /?• => supp q<paq ^ /£ 

since the component of q on A** c M (A)** is 1 — /?i/?2- This proves the 
claim by [20, Theorem 6.1]. 

Now consider B c M(A, B) c M(B). M(A, B) is hereditary in M(B), 
since 

M(A, B)M(B)M(A, B) c M(A, B). 

Since p\ and /?2 a r e orthogonal closed projections relative to B, 3.33 
implies 

(v\rM(B) • (P'2y
M(B} = 0. 

By 3.54 (ii), this implies 
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(y]}-M(A,B) . (p>2yM(A,B) = 0 

Since 

ï**«) = i - q + W )-^.«) = (P:P2y
Mw + wrM<AJi\ 

this shows that 

{pM(AK -M(A}] = 0 a n d - M W . ÏÏM(A) = {pipj-MM 

3.56. Remark. Even, if B is an ideal of A, M(A, B) need not be an ideal 
of M(B). If it were an ideal, 3.54 (i) could be used to prove (C) without 
any regularity assumption; but in one of the counterexamples to (C) 
below, B is an ideal. (Cf. 2.57 (i).) 

3.57. LEMMA. Let p e A** be a closed projection. Then p is regular 
relative to M (A) in the following cases. 

(i) There are a closed central projection z G i * * and a projection 
q G M (A), such that p = zq. 

(ii) her(l — p) is an ideal of a corner of A. 

Proof (i) z is also central in M {A)** D v4**, and we can forget A. Let 
B = qM(A)q and JC e M (A). Then 

\\xp\\ = \\xqp\\ = \\\xq\p\\ = \\\xq\pB\l 

since \xq\ e B, p is central in B**, and central projections are always 
regular. It is routine to check that pB = pM^A\ Thus 

\\xp\\ = \\\xq\pM\\ = \\xpM\\. 

(ii) Let q be a projection in M (A) such that her(l — p) is an ideal of 
her(#). Then there is an open central projection w e A** such that 
(1 — p) = wq => p = 1 — wq = 1 — q + zq, where z = 1 — w. Here 
1 — q is regarded as an element of M (A) c A**. It is easy to see that 
pM = (1 - 4 ) ~ M + (z?)~M , where (1 - ? ) ~ M = 1 - q regarded as 
an element of M {AY*. By the criterion of [30] p is regular if and only if 
M(A) 9 X ^ / J ^ I ^ pM. (The first inequality can be computed in ,4**, 
since /?<E ^4**, but the second is in M (A)**.) But 

x = p = (1 - q) + Z# => X 

= > Jt — (l - q)^ <*«)"" 

(by (i) ) 

=>* è (l - q)~M f + (^rj 

(1 - ?) S zq 

M _ -M 

3.58. COROLLARY. Let ph p2 ^ ^4** 6e closed projections such that 
[P\> Pii = 0. 77/ew (/?!, /?2) satisfies (C) z/z //zese coses: 

(a) her(l — PiP2) is o-unital and each pt satisfies (i) or (ii) of 3.57. 
(b) p j 6>r /?2

 /5 compact. 
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Proof, (a) is clear from 3.57 and 3.55. 
(b) is also easy. px compact implies px and pxp2 are already closed 

relative to M {A ). Then the computations needed to verify (C) can be done 
in the ^4** component of 

M(A)** = A** e (M(A)/A)**. 

Remarks, (i) We will see that pxp2 compact =£> (C) . 
(ii) With regard to (a), it is actually sufficient for only one of px, p2 to 

satisfy 3.57 (ii). 

3.59. Examples. Let A = Ex. 
(i) Let 

and p any projection such that p iï ex X ex. Define px and p2 by 

(P\)n = \ X \- (P2>n = % X wn> » = 1,2,..., 

and (/>,)«, = (P2)oo = p . Then [px
M, p2

M] = 0 but 

(PiP2)~
M * PxM • P2M-

First we show that M {A, Bx) and M (A, B2) have the same image in 
M(A)/A. To see this, note that, for x e M (A), x e M(A, Bx) <=> x/7] = 
pxx = 0 <̂> x„v„ = x*v„ = 0 and x^j? = / ^ = 0. But 

*ooP = 0 => X ^ = 0 => Hx^H -> 0, 

since x„ —> x œ strongly. This and 

Also H-xX+ill, \\x*ex\\ -» 0. Then we can find flnGJf such that \\an\\ -> 0 

and (*„ + *„)*/!+1> (x„ + an)*en+\> (Xn + «W>1» a n d (** + fl
w)**l a r e a 1 1 

0. Thus we have found a ^ A such that x + a e M (/I, i?2). This and 
symmetry show that / j j M and /£,M have the same image in (M(A)/A)**. 
Since their components in A** are /?j and p2, 

[px
M, p2

M] = 0. 

Now 

X G M ( ^ , B) <=> X/7^2 = />i/>2* = 0 <^> V = P*oo = °-

But by the above 

x e her(M(^, 2^) U M(^ , £2) ) => \\xnen+x\\ -* 0. 

Clearly 3x G M(yl) such that x ^ = 0 and | | ; c^ n + 1 | | -\> 0. Thus (C) and 
(C) fail. 

https://doi.org/10.4153/CJM-1988-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-038-5


C-ALGEBRAS 955 

(ii) Let vn and p be as in (i) and 

Again take (px)n = vn X v„, (p2)n = wn X w„, (p^ = (p2)00 = />. 
Then 

[/r,M, /r2
M] * o. 

We prove this by showing that 3.28 fails; i.e., 3b G M(A, BX), C G 
M (A, B2\ and € > 0 such that Vx G M (A, Bx) n Af(̂ 4, £2) w i t h 

0 â x â 1, 

||6(1 - x)c|| ^ €. 

Now as in (i), 

x G M(A, Bx) =* \\xnen+x\\9 \\x*en+x\\ -> 0. 

Similarly 

x G M(A, B2) => | | x > „ + 1 4- e„+2) ||, | |x*(^+i + *„+2> II -> 0. 

Define 6 by 

*« = *«+2 x ^+2> » = 1, 2 , . . . , ftoo = 0, 

and c by 

cn = ( ^ + 1 - ^ „ + 2 ) x (-L,„+1 - -L,n+2), 

w = 1, 2 , . . . , Coo = 0. 

Then | |ô„cj| = l / \ / 2 > 0. From above, 

x G M(A, Bx) n M(v4, 2?2> => ||x„e„+1||, l k ^ + 2 | | -> 0 

=>||VJ|^0=*||Z>(1 -x)c|| ^ - L . 
V 2 

Note that if we take p = 1 in (i) or (ii), then 

B = {a G ^ifloop = ^ o o = 0} 

is an ideal of A. Also Bx and 2?2 are corners of the ideal B in this case. If we 
take p = ex X ex, pxp2 is compact. Note also that although px and p2 are 
not regular, there does exist a constant K su< 
the p of example 3.13 not even this is true. 
not regular, there does exist a constant K such that \\xpt || ^ A |̂|x/7Z||. For 

4. Results on T h-> 7*7. 

4.A. 2?as7c results. 
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4.1. PROPOSITION, (a) T G RM(A) => T*T G A + . If A is o-unital, 

T G RM(A) =» r * r G ̂ a
+. 

(b) T G gM(^i) =» T*r G g M ( ^ ) ^ . / / ^ w a-unital, 

T G QM(^) => T*r G ÔM04)a
+. 

Proof. Let (ea) be an approximate identity of A, sequential if A is 
a-unital. 

(a). T G #M(,4) =* r % r G ^ + . Clearly r * e a r / T*7. 

(b). r G QM(A) => r%r G gM(^)+. Again r*é?ar / r*r. 
4.2. PROPOSITION. Let A be a o-unital C*-algebra and A G A%*. Then 

(i)-(iv) are equivalent and (i')-(iv') are equivalent. 
(i)helfa (i') h G (4Z)~ 

and is separable (2.16). and is separable. 
(ii) h & A°+. (ii') h G <?M(,4)V 

(iii) h G ^ . (iii') h G ( P ( ^ r + ) " . 

( i v ) * e ^ (iv')/, e ( Ô M ( ^ 0 " . 

Proof, (i) => (ii): There is a separable C*-subalgebra 5 of ^ such that 
A G 5** and her(£) = ^ . By 2.14 A G B^. Then 3.24 (a) implies A G 
£+ c ^ 

(ii) => (iii) => (iv) is trivial, (iv) => (i) is clear from 2.16. 
The other half of 4.2 is the same except that we use 3.26 (a) instead of 

3.24 (a) and observe that 

her(£) = A => QM(B) c QM(A). 

4.3. PROPOSITION. If e is a strictly positive element of a C*-algebra A and 
A G A%*, then h = T*T for some T G QM(A) if and only ifehe = R*Rfor 
some R G RM (A ). 

Proof If A = T*T, then ehe = (Te)*(Te); and T G QM(A) =» Te G 
RM (A ). 

If eAe = R*R, R G #M(,4), then R*R ^ ||A||é>2. Therefore R = Te for 
some T G ^4**. 

^ c ^ = > ,47e a A =* AT(eA) a A =* ATA c A, 

since (^4)~ - ^ . Therefore T G QM(A)9 and é?r*7e = eAe => T*T = h. 

4.4. THEOREM. Le/ A be a stable o-unital C*-algebra and h G A%*. 
(a) A = T*T for some T G RM(A) if and only if h satisfies 4.2 (i)-(iv). In 

particular, if A is separable, this is so if and only if h is strongly lsc. 
(b) A = T*Tfor some T G QM(A) if and only if h satisfies 4.2 (i')-(iv'). 

In particular, if A is separable, this is so if and only if h is weakly lsc. 
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Proof. 4.1 implies the necessity of the conditions, 
(a). If A G A\, write 

oo 

h = 2 an9 an G A + . 
l 

Since A is stable, there are isometries Un G M(̂ 4 ) such that U*Um = 0 for 
n ¥* m and 2 f^f^ = 1 with convergence in the strict topology of M {A). 
(To see this, write A = B 0 J f so that M(£) 0 £ ( / / ) c M(^4) by [7]. 
Choose the Un

9s in 1 0 B(H).) Then it is easy to check that 2 f Una
l
n
n 

converges a-strongly and right strictly to aT Œ A** such that T*T = /z. It 
follows that T G #M(,4). 

(b). Let e be strictly positive in A. Obviously h separable =» e/ze 
separable, so that 2.4 =̂> ehe satisfies 4.2 (i). The result follows from (a) 
and 4.3. 

4.5. COROLLARY. If A is o-unital and stable, then 

{T*T:T G RM (A) } and {T*T:T G QM(A) } 

are norm closed. 

4.6. Question. Does the conclusion of 4.5 hold if the stability hypothesis 
is dropped? 

Remark. If the A of 4.4 is not separable, there may be elements of A"l 
not of the form T*T, T G QM(A). For example, h could be an open 
projection such that her(/z) is not a-unital (2.16). 

4.7. COROLLARY. If A is a-unital and stable, T G QM(A), and T*T G 
^ , //!£?>! 3# G RM(A) such that R*R = T*T. 

Remark. This is false if A is not stable by 5.F below. 

4.8. PROPOSITION. If A is a o-unital C*-algebra and 0 < e ^ h G V4**, 

rtéTi A = T*Tforan invertible T G RM (A) if and only ifh~x G QM(A). 

Proof. lîh~x G g M ( ^ ) , then h~l = L*L for an invertible L G LM(V4) 
by 4.8 of [10]. Then take T = (L~1)*. L~l is in LM(A) by 4.1 of [10]. 

If A = T*T for T G # M ( V 4 ) and invertible (in >4**), then 

By 4.1 of [10], ( r * ) " 1 G LM(A), and this implies h~l G gM(>4). 

Example. It is easy to use 4.8 and 4.4 to construct examples where 
h ^ € > 0, h = T*T for some T G RM(A), but h ¥* T*T for any in­
vertible T G RM (A). A very simple example would be to take A = Ex, 
hn=l,n=l,2,...,h00= 1/2. 
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4.9. Questions, (i) If A is stable and a-unital (or separable) and 0 < € ^ 
h G ( J O ~ , is h = T*T for an invertible T e QM(A)1 

(ii) If in (i) we assume only that h is one-one (on the universal Hilbert 
space of A ) , can T be taken with dense range? (It will automatically be 
one-one.) 

(i') Same as (i) except drop the assumption that A is stable and add the 
assumption that h = T*T toi some T e QM(A). 

(ii') Same as (ii) except drop the assumption that A is stable and add 
the assumption that h = T*T for some T e QM(A). 

It will be shown in Section 5 that the answers to (i), (ii) are yes for 
A = Ex. 

4.B. Applications. Let i? be the C*-subalgebra of ^4** generated by 
QM(A) and <%0 the norm closed real vector space generated by A™a, or 
equivalently ( [5, Proposition 2.6) by A™a. It was shown by Combes [15] 
that J 0 is a Jordan algebra. By 4.15 of [10] J c J 0 +i$Q. This implies 
that the atomic representation of A is faithful on J ; but an arbitrary 
faithful representation of A, though it is isometric on QM(A), need not 
be faithful on â. This is shown by the example of Fillmore and Mingo 
alluded to in 2.23 (ii). 

4.10. THEOREM. If A is a separable C*-algebra, then &0 + i&0 is a 
C* -algebra. If A is also stable, then J*0 + iâ$0 = =2. 

Proof. First assume A stable. It is an easy consequence of 4.4 that 
J 0 c â. Thus by 4.15 of [10], J = J 0 + / % 

For general A, consider B = A 0 J^ and identify A with A 0/7, where p 
is a rank one projection in X. It is easy to see, and follows from 2.13, 
that 

^A) = p@0(B)p. 

Therefore %(A) + i&0(A) = p2(B)p, which is a C*-algebra, since2(B) is 
a C*-algebra and p e M(B) c â(B). 

It is well known that the set of continuity points of any function with 
values in a metric space is a G8 set and that for an lsc or use (real) function 
on a compact Hausdorff space this G8 set is dense. Since every element of 
^ 0 is the norm limit of a sequence (fn — gn)9 fn, gn G A™a, it follows 
from the above and the Baire category theorem that the set of continuity 
points of an element of ^ 0 , regarded as a function on A(^4), is a dense G8. 
D. Olesen told us that this observation might have applications in 
connection with crossed products. The two corollaries below are offered 
on the chance that they would facilitate such applications. 

4.11. COROLLARY. If A is a separable C*-algebra and V c J ^ + i@0 is 
norm separable, then A(^l) contains a dense G8 set of simultaneous continuity 
points for C*(V), the C*-subalgebra of A** generated by V. (Here, as above, 
elements of A** are regarded as functions on A(^4).) 
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Proof. From the above it is obvious that any norm separable subset of 
&0 + iâéQ has a dense G8 set of simultaneous continuity points. The only 
point here is that C*(V), which is still separable, is still contained in 
J 0 + /J0. 

4.12. COROLLARY. If A is a separable C*-algebra and x, y G ^ 0 + iéiï0, 
then the map <JP I—» x<py = <p(x • y) regarded as a map from A(̂ 4 )toA* (weak* 
topologies), has a dense G8 set of continuity points. 

Proof The map takes values in a bounded subset of A*, which is 
metrizable for the weak* topology. If {an\n = 1, 2 . . . } is a dense subset 
oi A, then <p0 is a continuity point if and only if it is a continuity point for 
each of the maps <p I—> y(xany). Since xany G i?0 + i<%0, each of these 
maps has a dense G8 set of continuity points. 

It should be noted that if A is non-unital, £(-4) is a dense G8 in à(A), so 
that it is unimportant whether the conclusions of 4.11 and 4.12 are stated 
in terms of S (A) or A(^4). Also for every Borel function F, there is a dense 
G8 set A0 such that FjA is continuous. Any application of 4.11 or 4.12 
would have to hinge on the distinction between " i 7 ^ is continuous" and 
"F is continuous at each point of A0". 

4.C. Density theorems, mainly for stable algebras. Supposed is stable and 
a-unital, hx, h2 e A\, and hx ^ h2. If B = A ® c, define k ^ B\ by 
kn = hx, n = 1, 2 , . . . , k^ = h2. By 4.4 there is T G RM(B) such that 
T*T = k, and this means there are Tn G RM (A ), n = oo, 1 , 2 , . . . , such 
that T^T„ = hx, n < oo, T^T^ = h2, and rw —> 7 ^ right strictly. This 
observation is the basis for 4.C. It turned out that most of the theorems 
could be proved ab ovo, but 4.25 and 4.26 seem to depend non-trivially on 
4.2, 4.4, and 3.41 (b). 

4.13. LEMMA. Let A be a stable C*-algebra. 
(a) {U G M(A):U*U = 1} is right strictly dense in 

{T G M(,4):||71| ^ 1}. 

(b) {U e M(A):U*U = UU* = 1} is quasi-strictly dense in 

{T G MG4):||71| ^ 1}. 

Proo/. We can find Vn, Wn G M (A) such that J ^ = W*Wn = 1, 
j/*W; = 0, VnV* + WnW? =l,Vn-+ I right strictly. To do this, write 
,4 = 5 ® JÇSO that 1 ® £ ( # ) embeds in M (A) by [7]. On bounded subsets 
of B(H) this embedding is continuous from the strong topology to the left 
strict topology. 

(a). Now if T G M(A), \\T\\ ^ 1, let 

un = vnT + wn{\ - r*r)1/2. 
It is routine to check that U*Un = 1 and Un —> T right strictly, 

(b). For T G M(^) , | | r | | ^ 1, let 
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Un = VnTV* + Vn(\ - TT*)l/2W* 

+ Wn{\ - T*T)U2V* - WnT*W*. 

Since A c M (A), LM(A), RM(A), QM(A) c A**, A* can be isometri-
cally embedded in the Banach space duals M(A)*, LM(A)*, RM(A)*, 
QM(A)*. The following lemma is probably not new. 

4.14. LEMMA, (a) Every strictly continuous linear functional on M (A) is 
in A*. 

(b) Every left strictly continuous linear functional on LM(A) is in A*. 
(c) Every right strictly continuous linear functional on RM (A) is in A*. 
(d) Every quasi-strictly continuous linear functional on QM(A) is in A*. 

Proof Since all parts are similar, we prove only (c). Let / be right 
strictly continuous on RM (A ). Since the right strict topology is generated 
by the semi-norms x I—» \\ax\\, a G A, there must be al9 . . . , an G A such 
that 

n 

l/(*)l ^ 2 IMLVx G RM(A). 
l 

Since atRM(A) a A, & standard use of the Hahn-Banach theorem yields 
gx,. . . ,g„ G A* such that 

n 

fix) = 2 f t ( ^ ) , V j c G RM(A). 
l 

If h = 2 " tf/gz e i * , then /* maps to / under the embedding yl* —> 

For /* G yl^* let 

S?(h) = {T G RM(A):T*T = /z}, 

jT(/z) = {T e RM(A):T*T ^ A}, 

^ ' (A) = { r G QM(A):T*T = h}, and 

^"'(A) = {^ G QM(A):T*T ^ A}. 

4.15. THEOREM. Létf A be a stable C*-algebra. 
(a) / / r G #M(,4) Û/IJ h = T*T, then 

{UT.U G M(^4), !/*[/ = 1} 

w ng/tf strictly dense in ^(h). 
(b) IfT G g M ( ^ ) W h = T*T, then 

{UT.U G Af(>4), [/*!/ = 1} 

w quasi-strictly dense in ZT'(h). 
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(c) IfT G LM(A) and h = T*T, then 

{UT.U G M(A\ U*U = UU* = 1} 

is quasi-strictly dense in 3~'(K). 

Proof, (a). Let 

^ = {xT.x G M(^4), ||x|| ^ 1}. 

Since J7a —» x right strictly implies UaT -^ xT right strictly, it is enough, by 
4.13 (a), to show that SÇis right strictly dense m3~(h). But ^and^"(A) are 
both convex subsets of RM(A). By 4.14 (c) it is enough to show 

sup Re / w = sup Re fa(h)9 Vf <E A*; 

i.e., it is enough to show 3Q a-weakly dense in 3~(h). Since 

f(h) c {yT:y G A**, \\y\\ ^ 1} and 

^ D {ir:x e,4,||jc|| ^ i}, 
this follows from the Kaplansky density theorem. 

(b) Ua -> x right strictly =*UaT -> JC7 right strictly =*UaT ^ xT 
quasi-strictly. This and the use of 4.14 (d) instead of 4.14 (c) are the only 
differences from the proof of (a). 

(c) Since T G LM(A), Ua —> x quasi-strictly =>UaT —» xT quasi-
strictly. Thus we can use 4.13 (b) instead of 4.13 (a). Otherwise (c) is the 
same as (b). 

4.16. COROLLARY. Let A be a stable C*-algebra. IfS?(h) (S?'(h) ) is non­
empty, then S?(h) (Sf'(h)) is right strictly (quasi-strictly) dense in 3~(h) 
(3"'(h)). Also if SP(h) is non-empty, then £?(h) is quasi-strictly dense in 
3T>(h). 

4.17. COROLLARY (strengthening of 4.13). Let A be a stable C*-
algebra. 

(a) {U G M(A):U*U = 1} is right strictly dense in 

{S G RM(A):\\S\\ ^ 1}. 

(b) {U G M(A):U*U = UU* = 1} is quasi-strictly dense in 

{S G QM(A):\\S\\ ^ 1}. 

Proof. Put T = 1 in 4.15 (a) or (c). 

It is equally interesting to consider the strict or left strict topologies of 
course, but note that the map I H T*T is left strict to quasi-strict 
continuous. Also, by [5], for S G QM(A), S G LM(A) if and only if 
S*S G QM(A). With the help of 4.18 below results about other types of 
multipliers or other types of strict convergence can be derived from the 
above. 4.19 below is also a complement to the above; it sometimes allows 
{UT.U G M (A), U*U = 1} to be replaced by {UT.U G M (A), U*U = 
UU* = 1} in 4.15 (a)or (b) . 
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4.18. PROPOSITION. If T G A**, (Ta) is a net in A**, Ta —» T quasi-
strictly, T*Ta —> T*T quasi-strictly, and T G LM(A) (or more generally if 
TAT* c hei>*(,4) ), fAe/i Ta ^ T left strictly. 

Proof Let « G A. It is sufficient to show | (Ta — T)a\2 —> 0 in norm. 
Since 

| (Ta - T)a\2 = a*T*Taa + a*T*Ta - 2Re a*T*Ta and 

a*T*Taa -> a*T*Ta 

in norm, it is enough to show a*T£Ta —» a*T*Ta in norm. This last is 
obvious if 7# G ^4; and with the help of Theorem 1.2 of [3], it is enough to 
have Taa*T* G hei>*01). 

4.19. PROPOSITION. 7/"^ w .stoWe, T G A**, and TT* G her^**^), then 
{UT.U G M(yl), £/*£/ - {/[/* = 1} w ng/if strictly dense in 

{xT.x G M(A\ \\x\\ ^ 1}. 

Proo/. If x G M(^) , ||JC|| g 1, then by 4.13 (b) there is a net (f/J 
of unitary multipliers such that Ua —> x quasi-strictly. Fix a ^ A. Since 
\/b G A, aUab —» axè in norm, AE^S —* oxS in norm, VS G 4̂ • y4**. 
Since ||f/a|| is bounded, aUaS —> ox£ in norm for all S in the norm closed 
right ideal of A** generated by A. TT* G herA**(A) is equivalent to mem­
bership of T in this right ideal. 

4.20. COROLLARY. If A is a stable C*-algebra, then 

{U G M(A):U*U = UU* = 1} 

is left strictly dense in 

{U G LM(A):U*U = 1}. 

Proof Combine 4.15 (c) for T = 1 with 4.18. 

Similarly, 

4.21. COROLLARY. If A is a stable C*-algebra and h G M(A) + , then 
{S G M (A): S* S = h} is left strictly dense in 

{S G LM(A):S*S = h). 

4.22. COROLLARY. If A is a stable C*-algebra and a G A, then 

{Ua:U G M(A\ U*U = UU* = 1} 

is norm dense in 

{b G A:b*b = a*a}. 

Proof Let b G A such that b*b = a*a. By 4.15 (c) and 4.18 there is a net 
(Ua) of unitary multipliers such that Uaa —> b left strictly. Let € > 0 and 
choose e G A such that 0 ^ e ^ 1 and 
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\\a(l - e)\\ < £ , ||6(1 - e)\\ < e. 

Then 

\\Uaa - b\\ ^ \\Uaa - Uaae\\ + \\(Uaa - b)e\\ + \\b - be\\ 

^ 2e + ||(£/aA - b)e\\, Va. 

Since || (t/aa - 6>HI -> 0, 

Bmlll/^ - b\\ ^ 2c; 

and the result follows. 

The next density result will make use of a version of the stabilization 
theorem (Theorem 3.1 of [9] ). We have been advised that many people do 
not realize that there is a relation between the stabilization theorems of [9] 
and those of Kasparov, Theorem 2 of [23] for example, and that we ought 
to clarify it. Since [25] has appeared, perhaps not much comment is 
necessary. [9] uses the setting of hereditary subalgebras and [23] the setting 
of right Hilbert modules. It was of course a significant advance when 
Kasparov introduced right Hilbert modules into .OT-theory. Theorem 2 of 
[23] is more general than Theorem 3.1 of [9] in that it allows a group to 
operate and allows the real and "real" cases. (Also there is a minor 
difference in the a-unitality hypotheses.) Otherwise they are equivalent. 
The most elementary way to see this is to note that an isomorphism 
between right Hilbert modules X and Y is the same as a suitable partial 
isometry in L(X® Y). L(X® Y) is M(Jf(Xe Y) ) and Theorem 3.1 of [9] 
(as well as Corollary 2.6, the other stabilization theorem of [9] ) is an 
existence theorem for a partial isometry in a multiplier algebra. [12] and 
Theorem 2.5 of [10] may also help the reader understand the relation 
between different approaches to the stabilization theorems. Of course the 
results of Dixmier and Douady [19] are the basic theorems, and the others 
are generalizations. 4.23 below is a simple corollary of Theorem 3.1 of [9] 
and is proved in detail in order to show what we had in mind by 
formulating 3.1 of [9] in what may seem to be a special case. 

4.23. THEOREM. If C is a o-unital C*-algebra, p is a projection in M(C) 
such that A = her(p) generates C as an ideal, and A is stable, then C is 
stable and 3u e M(C) such that u*u = 1 and uu* = p. 

Proof. It is enough to prove the existence of u. By 2.6 of [9], 3v e 
M(C ® J f ) such that v*v = 1 and vv* = p ® 1. Let q G J f b e a rank one 
projection, and identify C with C ® q. Since A is stable, ] W E M(C) such 
that w*w = p ® q and ww* = p ® 1. Then 

x = w*v[ (1 — p) ® q] 

is a partial isometry such that 

x*x = (1 — p) ® q and xx* ^ p ® q. 
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Thus if B = her(xx*), then B is a corner of A isomorphic to her(l — p). 
Let 

D = hevc0Jf(xx* + p ® (1 - 9 ) ). 

Then D is the C*-algebra denoted by the same symbol in 3.1 of [9]. Hence 
by 3.1 of [9], 3y G M(D) C M(C ® Jf ) such that 

>>*>> = xx* + /? 0 (1 - #) and ĵ>* = /? ® (1 — q). 

Since 4̂ is stable, 3z G M(C ® Jf) such that z*z = p ® q and zz* = 
p ® (1 — #). Let w = Z*J^(JC + z). Then w*w = 1 ® q and ww* = p ® q, as 
desired, given the identification of C with C ® q. 

4.24. THEOREM. Let A and B be o-unital C*-algebras, A stable, and X 
an A — B Hilbert bimodule such that span( (X, X)B) is dense in B. Then 
{V G M(X):V*V = 1} is left strictly dense in 

{V G LM(X):V*V = 1}. 

Remarks, (i) This is related to 4.20 and we have in mind the following 
potential application. Suppose A is as above and S, T G A** such that 
S*S = T*T. Then S = UT where U*U = r, the range projection of T If r 
is open, let B = her(r) and X = (AB)~. Then £/ G X** c A**, and in 
some situations it may be possible to prove U G LM(X). (By 4.4 of [5], 
U G QM(X) =* £/ G LM(X).) 

(ii) The a-unitality hypothesis is a little too strong. It would be sufficient 
in 4.24 to have only B a-unital and in 4.23 to have only (1 — p)C(l — p), 
instead of C, a-unital. One way to see this is to use Lemma 1.7 of [25]. 

Proof. Let 

L = (x* B) 

be the linking algebra of X. (This is a slight generalization, found in 
[31], of the linking algebra of [12].) Let 

P = (J o) G M^-
By 4.23 L is stable and 3u G M(L) such that w*w = 1 and ww* = p. Let 
V G LM(1) such that V*V = 1. Since 

LM(X) = pLM(L)(l - p), 

we can regard V as an element of LM(L) such that V*V = 1 — /?, 
FF* ^ /?. By 4.17 (b) there is a net (P^) of unitaries in M(L) such that 
J^ —» w*F quasi-strictly. Then 
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Va = uWa(\ - p) -> V 

quasi-strictly. Since V*Va = (1 - p) = V*V, 4.18 implies Va -> V 
left strictly. Since Va = pVa(\ — p), we can regard J^ as an element 
of M(X). 

4.25. THEOREM. If A is a stable and o-unital C*-algebra and h G 

QM{A)\ (cf. 4.2), then ST'(h) is right strictly dense in f(h). 

Remark. This seems unnatural since we are using the right strict 
topology on sets of quasi-mulitipliers, but it does make sense. The right 
strict topology can be regarded as a topology on all of A**. 

Proof. Let T G ^~'(h) and (en) an approximate identity of A. Then 
enT G LM(A) n ST'Qi) and enT —> T right strictly. Therefore we may 
assume T G LM(A). Thus T*T G ÔM(^), T*T ^ h, and 4.2 imply 
h - T*T (= QM(A)\. By 4.4, 3S0 G g M ( ^ ) such that S$SQ = h -
T*T. Let Vn, Wn be as in the proof of 4.13 and Sn = VnT + WnS0. Then 
Sn G ^ ' (A) and Sw -» T right strictly. 

4.26. THEOREM. 7/"V4 w a« arbitrary C*-algebra and h G yï™ f/zerc {a G 

yl:tf*<z ^ A} is left strictly dense in 

{T G LM(A):T*T ^ A}. 

Proof Since both sets are convex subsets of LM(A), by 4.14 (b) it is 
enough to show the first is a-weakly dense in the second. This follows from 
3.41 (b). 

5. Examples. 

5. A. X It is well known that for A = X A** = M (A) = B(H). Let 
7r:B(H) -> B(H)/Jf be the quotient map. Clearly 

h G X™a =» 3Jf 3 K ^ A => *r(A) ^ 0. 

Therefore A G pf™)_ (A strongly lsc) implies TT(/Z) i^ 0. Conversely, 
A ^ 0 =* A G J f+ , since hxnPnh

x/1 / A, where the Pw's are suitable finite 
rank projections. It follows that TT(/I) i? 0 => A G j f ™. Conclusions: 
A G B(H)sa is strongly lsc if and only if 77(A) = 0. Every element of 
B(H)sa is middle lsc. Since there is only one interesting type of 
semicontinuity for this example, we will write "lsc" for "strongly lsc". 

The interpolation result 3.16 becomes: 

5.1. If hx ^ A2, 3KX G JT with Kx S hx, and 3K2 G j f with K2 ^ A2, 
then 3 ^ G j f with hx ^ K ^ h2. 

5.2. Exercise. Give a direct proof of 5.1. 

We will have occasion, even for A = 3% to use something usually proved 
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in abstract situations by Dini's theorem. It seems unaesthetic to rely on 
such methods for what should be a concrete example. 

5.3. Exercise. Prove the following without Dini's theorem: If ha / h, 
where ha and h are lsc, K <E J Ç K ^ h, and c > 0, then K ^ ha 4- e for a 
sufficiently large. 

Solutions for these exercises are given at the end of 5.A. 

5.4. LEMMA. Assume P is a finite rank projection, K e 3% and 0 ^ K ^ 
P + (1 - P) /2 . 77ié?7i 3 ^ G JT such that 0 ^ K' ^ (\ - P)/2 and 
K ^ P + K'. 

Proof. Represent operators as 2 X 2 matrices relative to H = 
PH®(\ - P)H. Let 

Then from 

la rt^/1 0 \ 
\b* c) - \0 1/2/ 

follows 

6 = (1 - a ) 1 / 2 ^ - c)1 /2 , ||/ | ^ 1. 

If q is the (finite rank) range projection of 1 — a, then b = qb and we may 
assume t = qt. Write (1 — a)~~l for the inverse of 1 — a in qB(H)q. (The 
key point in this whole proof is that 1 — a has closed range.) Then 

(1 - a)~V2b = t(- - c) =» i*(l - a) - 1 /? ^ - - c. 

TakeiT = c + ft*(l - a)~xb. 

5.5. THEOREM. If K, L ^ X 0 ^ K, L ^ \, then 3S e j f SWC/J f/raf 

*:, L ë s ë i. 
Proof K t== 1 implies there is a finite rank projection P ' such that 

K ^ P ' + (1 - P')/2. Similarly, there is P" such that L ^ P" + 
(1 - P")/2. Choose a finite rank projection Px ^ P', P". By 5.4, 
3KX, Lx <Ejf such that 0 ^ ATl9 L, ^ (1 - P^ /2 , K ^ Px + Kx, and L ^ 
Px + Lj. Continue this procedure. (The next step is tofind a finite rank 
projection P2 ^ 1 - Px such that Kl9 Lx ^ P2/2 4- (1 - Px -P 2 ) /4 . ) W e 

obtain a sequence (Pn) of mutually orthogonal finite rank projections, and 
compact operators Kn, Ln such that 

https://doi.org/10.4153/CJM-1988-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-038-5


C*-ALGEBRAS 967 

0 ^ *„, L„ Si 2-"(l - P x - . . . - P n \ 

K^PX + l p 2 + . . . + 2 1 - ^ + ^ ,and 

Then take S = 2^° 2l~nPn. 

5.6. THEOREM. Le/ A G B(H)sa be lsc. 
(a) J ^ = {̂ f G ĵ f̂ T ^i A } « directed upward if and only if h ^ Jf or h is 

Fredholm. 
(b) Ifh^O, then SÏ? = {K <E Jf.O ^ K ^ h} is directed upward if 

and only if Ph is either compact or invertible as an element ofB(PH), where 
P = E(0po)(h). 

Proof (a). If h G J^s/ has a largest element. Assume h is Fredholm and 
K, L G se. We need to find S G Jf such that K, L ^ S ^ h. Since the 
problem is unchanged if we add the same compact operator to each of K, 
L, A, we may assume K, L ^ 0 and h ^ c > 0. Then with 

*' = /r , /2Jor1/2, i/ = /r1/2L/r1/2, 
we have 0 ^ A 7 , 1 / ^ 1. By 5.5, 3S" e J f such that A"', L' ê 5' ë 1. Let 

S = ^ ' W 2 . 
If h is neither Fredholm nor compact, then some compact perturbation 

of h has infinite dimensional kernel (Weyl-von Neumann theorem). By a 
further compact perturbation, we may assume h = hx © h2 = 0, relative to 
H = Hx® H2, A- positive and one-one, A! £ JÇ A2 G X and # b i / 2 both 
infinite dimensional. Now just as in 3.23 (i) and (ii), we can find 
projections P = 0 0 1 and Q such that g - P e j f a n d P V Ô = l . (Here 
"V" refers to the lattice of projections, but it follows that P, Q ^ S" ^ 
1 =» S" = 1.) If # = A1/2PA1/2 and L = A1/2gA1/2, then tf, L G J ^ If 
K,L^S^h, then S = A1/2S"A1/2 for some S" with 0 g S' ë 1. Since A is 
one-one, 

A1/2S'A1/2 ^ A1/2PA1/2, 

hl/2Qhl/2 => S" ^ P, 

g =* s? = i =* s = A. 

Thus 5 £ X 
(b). By replacing # with PH, we may assume A one-one. 
The fact that s/ is directed upward if A is compact or invertible is proved 

as in part (a). 
If A is not compact or invertible, choose C G X such that A + C = 

A! © A2 as in the proof of (a), and choose P, Q as above. Then as 
above, A1/2PA1/2, hvlQhvl G J ^ and there does not exist S G J ^ such 
that A1/2PA1/2, hxnQhx/1 ^ 5. 
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5.7. LEMMA. Assume a <E J%hx is lsc, h2 is use, hx — h2 is Fredholm, and 
a, h2 = hx. Then 3x e Jf such that a, h2 = x = hx. 

Proof. Since ir(hx — h2) ^ 0, tn(hx — h2) è e > 0, for some e. Let P be 
the kernel projection of hx — h2, so that P has finite rank, and represent 
operators by 2 X 2 matrices relative to H = (1 - P)H 0 PH. Write 

'A B\ < tu 0 
B* C = \0 0 « - *2 = L * ^ = n n) = h\~ h* 

where the above and hx — /z2 = 0 imply u positive and invertible. Then 

B = (u - A)l/2t(-C)l/2 with ||;|| ^ 1. 

If Q is the (finite rank) range projection of C, then B = BQ and we may 
assume t = tQ. As in the proof of 5.4, write ( — C ) - 1 for the inverse of 
( - C ) in QB(H)Q and deduce £ ( - C ) _ 1 £ * ^ u - A. Let 

V = A + B(-C) lB* ^ u. 

Then if 

y 
/v 0\ 

\o or 
y ^ a 
Since 

— h2 and 77( j ) = m(a — h2) --= -^(/z2). . Let s' = = u -]/2vu -1/2 < 

A (o o)) = -*(*, - h2y
l/Mh2Mhl - h2y 1/2 

5 

which is positive, (V)_ is compact. [ Let s = (i 0 + and 

X 
. ^(uu2suV2 0\ , 

= *2 + (o oj = h> + (A, - «"2(o 3 (*i " A2)' /2 

s ^ 1 =* x â A, and j ^ 0 = ? i ^ /z2. Also, 

s g j ' = * M 1 / 2 V / 2 â V => X â ; A2 + y \ ̂ /z2 + (a - A 2 ) = «. 

^ 1. 

Finally, since s — s' is compact, TT(X) = 7r(h2) + 7r(y) = 0. 

5.8. THEOREM. 7/^2 , /Z3 «re use, /zj w lsc, and hx i^ /z2, /z3, //ie/7 3 i e J f 
such that hx è x = h2, h3 provided either hx — h2 or hx — h3 is 
Fredholm. 

Proof. If hx — h2 is Fredholm, choose a e JT such that /zj ^ a ^ h3 

(5.1), and apply 5.7. 

5.9. LEMMA, (a) If x e X, h ^ 0, k is lsc, h + k is Fredholm and 
x ^ h + k, then 3Û G J f swe/z that 0 ^ a ^ h and x ^ a + k. 

(b) If x ^ X h, k ^ 0, h + k is Fredholm, and x ^ h + k, then 
3a, b <= Jf such that O^a^h, O^b^k, and x ^ a + b. 
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(c) If x G J{Ç hn i^ 0 for n = 1, 2, . . . , 2 i ° hn converges strongly to 
a bounded Fredholm operator, and x ^ 2 ^ hn, then 3an e j f such that 
0 ^ an^ hnandx ^ 2 f *„. 

iVtftf/. (a). Use 5.7 to find û G J f such that 0, x - k ^ a ^ h. 
(b) Use (a) to find a0, b0 e J f such that 0 ^ a0 ^ /i, 0 ^ Z>0 g À:, 

x = a0 + /c, and x ^ /Î + Z>0. Then 

x ^ - (û 0 + b0) + -(A 4- A:), and 

xx= x - -(a0 + fc0) = ~h + -k. 

Repeat this construction recursively: We obtain an, bn e J f such that 

O â û ^ 2~% 0 ^ bn^ 2~nk, and 

1 n~x 

xn = x - - 2 at: + ^, ^ 2"nA + 2"wifc. 
2 o 

Then take 

2 o 2 o 

(c). Choose tn > 0, « = 1, 2 . . . , such that 

OO OO 

2 /„ = 1 and2 'JIM < °°-
l l 

(To see that this is possible consider 

t'n = min(2-",2-"||^ir1).) 

By a method similar to the proof of (b), we can find anm e Jf" such that 

0 =1 anm 7k (1 - tn)
mhn, m ^ 0, and 

m—\ oo oo 

x - 2 2 ^ s 2(i - o"V 
i=0 n=\ 1 

(Note that 2^Lj fntfm- converges in norm to a compact operator.) Then 
take 

an = 2 ^m-
i = 0 

(norm convergent sum). The double sum 
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(00,00) 

2 tnani 
i,« = (0,l) 

converges strongly (to 2 ^ an), since 

and 2^° /*„ converges strongly. Also for v e 77, the dominated 
convergence theorem shows that 

00 

lim 2 (1 - t„)m(hnv, v) = 0. 
m—»oo n = 1 

Thus we may take strong limits on both sides of the basic inequality to 
deduce 

CO 

X — 2 an â 0. 

Remark. If 2 ^ ||A„|| < 00, then necessarily 2 ^ an converges in norm to 
a compact operator. Otherwise it may not be possible to achieve 21° an e 
J#f For example let {en:n = 1, 2, . . . } be an orthonormal basis for 77, let 
hn be the projection on span (en), and let x be an appropriate rank one 
projection. 

5.10. COROLLARY. Ifxlàh + e, x G J ( c > 0 , and h is positive, then 
la G JT SWC/J r/*0/ 0 ^ 0 ^ / * and x ^ a + e. 

Proof. Take & = e in 5.9 (a). 

Solutions to exercises. 5.2. There are positive cx, c2 e J f such that 
hx + cx ^ 0, h2 — c2 = 0. Since 0 ^ c2 — /z2 ^ /*! — /*2 4- cx + c2, there 
is t e £(77) such that 0 ^ / ^ 1 and 

(c2 - A2) = (hx - h2 + cx + c2)
l/2t(hx - h2 + cx + c2)1/2. 

Take 

K = h2 + (hx - h2)
l/2t(hx - h2)

vl 

and compute (̂.ST) = 0. 

5.3. By adding the same compact operator to K, h, and ha, we reduce 
to the case K, ha ^ 0 (a ^ a0). There is a finite rank operator L such that 
O ^ L ^ T ^ ^ L - f c/2. 0 ^ L ^ h => 3t such that 0 ^ t ^ 1 and 
L = h / th /2. Also / may be assumed finite rank. 

hm _+h\/2 s t r o n g l y 

=> * i / 2 r t i / 2 -> /*1/2r/*1/2 in norm 
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5.B. Jf. If A = Jf, then ,4** = Jf ** 0 C = 5(H) 0 C. We will denote 
a typical element of Jf5*a* by (/Ï, X), A G P( i / ) ^ , X G R. Since J f is unital, 
there is only one kind of semicontinuity, and J f ™ is closed under trans­
lation by scalars. Thus (A, X) is lsc <=> (A — X, 0) is lsc <t$> A — X is lsc in 
B(H), by 2.14. The criterion is: (A, X) is lsc <=> TT(A - X) ^ 0. 

Referring to 3.23, we observe that since (Dl) fails for J f it must fail for 
j f . (If A G 5(#) J f l

 i s l s c and J f 3 je, y ^ A, then « e f , (*, 0), (>>, 0) ^ 
A S (/i, 0) ^ a G X ) Since J f is unital, (D3) also must fail for Jf, though 
5.10 showed (D3) is true for J f The next result makes the facts about (Dl) 
fairly clear. 

5.11. THEOREM. Assume (xx, Xj) #«d (JC2, X2) G Jf, (A, X) w lsc, and 
(xl9 \x), (JC2, X2) ^ (A, X). TTzen 3a G J f swcA /AU/ (X1? X^, (JC2, X2) ^ a ^ 
(A, X) unless X = Xj = X2. 

Proof. We may assume X! < X. We seek a solution in the form 
a = (y + X, X), y G J f The problem becomes: .x̂  — X, x2 — X ^ y ^ 
A — X. By 5.1 we can find b G J f such that x2 — X ^ b ^ h — X. (Recall 
JC2 — X2 G J f ) Then the problem JK̂  — X, b ^ y ^ h — X is a special case 
of 5.7. 

5.C. 2^. Let A = Ex and recall that elements of A** can be identified 
with bounded collections {A„:l ^ n ^ oo, hn G P ( # ) }. The discussion in 
5.A applies to each hn. 

5.12. THEOREM. Let A G 4**. 

(a) ^.si/me that for every finite rank projection P G P( i / ) #«d c > 0, 
37V such that h^ Ph^ ^ hn + c, V« ^ JV. TAert /Aere w « sequence (Un) of 
isometries such that hn U* —» Aœ strongly. 

(b) v4^wm^ that for every finite rank projection P G 5 (i/) ^«Jc > 0, 37V 
such that Ph^P ^ ^ n ^ + €, V« ^ JV. TA «̂ /Aere w a sequence (Un) 
of unitaries such that Unhn —> A^ weakly. 

Proof, (a). Choose finite rank projections Pk and €̂  > 0 such that Pk / 1 
and ek \ 0. Choose Nx < N2 < . . . so that for « ^ A ,̂ 

, 1/2 D » 1/2 < i , 

Then for Nk ^ n < Nk+X write 

/ y ^ 2 = ^ ( c * + A„)1/2, \\An\\ ^ 1, P^4„ = ^ 

There is an isometry Un such that P^L^ = An. Choose Un = 1 for n < Nx. 
Then 

\\Pkh^2 - PkUnhl/2\\ â 4 / 2 for Nk^n< Nk+i, 
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since || (ek + hn)
U2 - h]

n
/2\\ ë ik'

2. Since 

\\Pkh^2 - PkU„hl/2W ^ \\Pk'h^2 - Pk.UJ,l/2\\ for k < k', 

we have that 

pku/J2 -» pkh^2 

in norm for each fixed k. 
(b). Let Pk and ek be as in (a), and choose N} < N2 < . . . such that 

P ^ P , ^ PA(A„ + ek)Pk, V/i è ty. 

For Nk ^ n < Nk+] write 

/ ^ = ^ ( / i , + £,)1/2P„ |H„|| ^ 1. 

Let Qn be the range projection of hn Pk, and choose a unitary £/„ such 
that PkU„Q„ = ^ B 0 „ . Then 

w * y 2 ^ = p>AA/2Pk => n^(f/x /2 - *~v*n ^ 4/2> 
Nk£n<Nk+l. 

This implies 
PkUnhn Pk ~^ Pkhoo Pk 

in norm for each fixed k. 

5.13. CRITERION FOR STRONG SEMICONTINUITY. If h e yl*/, r/ze« 
/z G 4̂™ if and only if 

(i) £ac/z hn is lsc, 1 ^ n ^ oo. 
(ii) If K <E X K ^ h^, and e > 0, then 3N such that K ^ hn + e, 

Proof. First assume /* G yï™. Then it is obvious that each hn e (Jf ™)~, 
1 ^ « ^ oo. Let J^ and e be as in (ii). Choose a net (aa) in A such that 
aa / h + e/3. Then ( a j ^ /» / i^ + c/3. By 5.3, Â' ^ ( Û Q ^ + c/3 for a 
sufficiently large. Fix such an a. Since aa Œ A, 3N such that 

Then for n ^ N, 

K =i (aa)„ + | ^ A|| + £ + | . 

Now assume (i) and (ii). We need to prove /z G A™a, and it is obvious­
ly permissible to replace hby h + aîor a ^ A. Thus, choosing an = a^ = 
(h00)_ G JÇwe can reduce to the case h^ ^ 0. Now by taking K = 0 in 
(ii), we see that 
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| | ( / i n ) _ | | - ^ O a s f i - > o o . 

Thus, by replacing h by h + b, bn = (hn)_,bOQ = 0, we reduce to the case 
/z â 0. Now (ii) implies the hypothesis of 5.12 (a). Take Un as in 5.12 (a), 
and let 

Rn= Unh
l
n
/2,n = 1,2,. . . , JR0 0 = A^2. 

Then R e RM (A) and R*R = h. By the (trivial) Proposition 4.1, 
h^ AI c AZ 

Remarks, (i) By 5.3 it is sufficient to verify 5.13 (ii) only for each 
element of a sequence (Kn) such that Kn / h^. 

(ii) Since for a G A, an-> a^ in norm, one might have guessed that the 
criterion for h to be strongly lsc would be h^ ^ hn + e, n ^ N. This is 
correct whenever ^ G J ( but in general it is too strong a requirement. 
For example, it is not always true for h an open projection. 

5.14. CRITERION FOR WEAK SEMICONTINUITY. If h G A**, then 
h G (A™a)~ if and only if for every finite rank projection P and e > 0, 3N 
such that Ph^P ^ PhnP + 6, Vn ^ iV. 

Proof First assume /z G 04™)~ and let P be given. Define a G A 
by ûyi = P, n = oo, 1, 2, . . . . By 2.4, a*/za G 2 ^ . Since (a^ha)^ = 
Ph^P G X 5.13 (ii) implies that Ve > 0, 3N as desired. 

Now assume h satisfies the criterion. It is clearly permissible to replace 
h by h + X, X G R, and therefore we may assume /z ^ 0. Then 5.12 (b) 
applies, and we define T G A** by 7 ^ = /z^2, r„ = Unh

l
n
/2, n = 1, 

2, . . . , ! / „ as in 5.12 (b). Then T G gM(^) , r * P = h, and 4.1 implies 

5.15. Remarks, (i) The following alternative criterion follows from 5.14: 
/z G (A™a)~ if and only if h^ ^ /c for every weak cluster point k of (hn). 

(ii) The fact that the Un's in 5.12 (b) are unitary gives a positive answer 
to the questions in 4.9 for this example. 

5.16. CRITERION FOR MIDDLE SEMICONTINUITY. If h G Af*, then the 
following are equivalent: 

(i) h G Jï£. 
(ii) TTzere w a sequence (Qn) in B(H)+ such that Qn —> 0 strongly and 

A*, S A„ + Qn9 Vn. 
(iii) 3x G M(v4 )sa such that h + x is q-\sc. 

Proof, (i) =» (ii) : Let X > 0 be such that h + X â 0 and h + X G Âfa. Let (Pfc ) 
be a sequence of finite rank projections in B(H) such that Pk /» 1. Choose 
TVj < Â 2 < . . . such that for « è A ,̂ 

(*«, + X ) 1 7 ^ ^ + X)172 ^ /z„ + X + \. 
k 
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Therefore, 

h00^h„ + j + ih00 + X)1/2(l - P*X*oo + A)1/2, n è ty. 

Let 

ft, = 7 + (*oo + ^)1/2(1 ~ W o o + * ) 1 / 2 for TV, ^ « < ty+1. 

Choose <2„ to be a large scalar for n < Nv 

(ii) =» (iii): Define x e M ( ^ ) M by x ^ = - / ^ and x„ = -h^ + ft,, 
« = 1, 2 , . . . . If h' = /* + x, then ^ = 0 and /^ i^ 0 for n < oo. It is easy 
to see that this implies h' is #-lsc. 

(iii) => (i): This is trivial, since 

x G M ( ^ ) M = ^ - J C G Â™a and 

A + x q-lsc => A + JC G ,4™. 

5.D. ^ and £4. ^2 is a corner of 2^. Thus by 2.13, for h e (^2)^* ^ *s 

lsc relative to E2 if and only if h is lsc relative to Ex. Since E2 is unital, 
there is only one type of semicontinuity in E%*. 

E4 is a unital C*-sub algebra of E2. Thus by 2.14, for h e (E4)f*, h is 
lsc relative to E4 if and only if h is lsc relative to E2. The criterion is: 
For h e yï*a*, A = E2 or 2s4, A is lsc if and only if Ve > 0, 37V such that 
h^ ^ hn + €, V/i ^ N. 

Remarks, (i) This criterion is also valid for A = c ® Mn, n > 2. 
(ii) It was asserted in 2.D that for these algebras every lsc element is the 

sum of a multiplier and a #-lsc element. (Of course multipliers are 
^-continuous.) The proof of this is similar to, and easier than, that of 5.16 
and will be left to the reader. 

5.E. E6. Recall that E6 = Jf -f Cp where p G. B(H) is a projection of 
infinite rank and co-rank. Since X is an ideal of E6 and EJX = C, 
El* = B(H) © C. As in 5.B, we will represent elements of E%* by pairs 
(A, X); and (h, X) is strongly lsc if and only if h — Xp is lsc in B(H), 
since A™a is invariant under translation by multiples of p. 

To study middle and weak semicontinuity, we use the 2 X 2 matrix 
representation of A = E6. Thus 

* = (J 0)' 
and x e A is given by 

r b\, a e j?,b,c,d e X 
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If 

then h is middle lsc if and only if 

is strongly lsc for t sufficiently large. This is equivalent to 

for t sufficiently large. Since 

-lldl + t£c + t^ ||c|| + t, 

we may as well just write 

and this is equivalent to 

7r(bt~lb*) ^ 7r(a - X). 

In other words, the criterion is: 

is middle lsc if and only if *n(bb*) ^ tir{a — X) for t sufficiently large. Since 
this last is automatic if ir{a — X) ^ e > 0, we conclude also: 

Or M 
is weakly lsc if and only if 7r(a — X) ^ 0. 

From the above or otherwise we see that 

((°. Jj.xj.illM). 
if and only if 7r(a) = X and ir(b) = 0. Now suppose 

*-(te*c)4*-((§^4_ 
h is middle lsc, k is middle use, and h — k e A^. We will show that this 
does not imply the existence of x e M(A)sa such that h ^ x ^ k, as 
promised after 3.40. To show this, it is sufficient to consider the special 
case Xx = X2 = 0. Then we are given: 
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(1) 
•ïï(bxb*{) â t<n(ax) ' 

(1) 
•n(b2b%) ^ -tir{a1)i 

(2) 
iax - a2 b x - b2 

\b\ - b\ c, - c2, 

, f > 0, 

^ 0. 

(2) does imply h — k e A^, since Xx = À2- Also ^ ^(^î)» ~miai) = 
e > 0, which we will assume, (1) is automatic. We require x e M(v4)5a 

such that 

h ^ X ^ k=> 7T(h) ^ 7T(X) ^ <ïï(k). 

Since À = 0, this yields 

(3) 
h(a2) -n(b2)\ (0 0 \ /w(fll) wtf,) 

(3) ^ ( f t * ) ^ ) - V(6,) ^ 77(ct - c) and 

*{b2)M-a2V\{b2) ë 77(C - C2) 

=>*(6fwairy&i) + «(w-fl2)"y*2) = ^ i - c2>-
Since the only obvious consequence of (2) is 

ir(bx - b2)*w(ax - a2f
X<n(bx - b2) ^ TT(CX - c2\ 

it is obvious that there are counterexamples. Perhaps the easiest occurs if 
ax = 1, a2 = — 1, bx = b2 = 1, and q = c2 = 0. 

We have included a fair amount of detail, despite the fact that the 
conjecture demolished by this example may seem foolish, because we are 
hoping it will lead someone to discover a new theorem (a general theorem, 
not one just for E6). 

5.F. E3 and similar algebras. Let d = k + /, /c, / > 0, and let A be the 
C*-algebra of convergent sequences in Md with limit of the form 

k(* 0 
/\0 0 

A** can be identified with the algebra of bounded collections 

{h„:\ ^ n â oo, h^ e Mk, hn e Md, n = 1, 2 . . . }. 

For k = 1, A is analogous to is6. 
4̂ is, in an obvious way, a subalgebra of Ex. By 2.14 the criterion for 

strong semicontinuity follows from that for Ex:h e Af* is strongly lsc if 
and only if Vc > 0, 3N such that 

(o°° § = h* + <>Vn = N-
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One could get the criterion for weak semicontinuity by embedding A 
explicitly as a corner of Ex, but it is easier to work directly: h e Af* is 
weakly lsc if and only if Ve > 0, 3N such that h^ ^ an + c, Vw ^ N, 
where 

*• - (s y-
Proof. Define e G i by 

<?«, = 1 e JMJfe, <?„ = (0 l/nj é Md. 

Then e is strictly positive, and 2.4 implies that /i is weakly lsc if and only if 
ehe is strongly lsc. By the above, ehe is strongly lsc if and only if Vc > 0, 
IN such that 

/ \ \an ~bn\ 

\o o; ~ i j ^ ^ € > v " - i V -

\« n I 

It is easy to see that this is equivalent to the criterion stated. 

5.17. LEMMA. Vc > 0, 38 > 0 such that: If M is any finite W* -algebra, 
h, t <= M, 0 ^ h ^ 1, and h - 8 ^ t*t ^ h, then 3? e M w/fA ||f - ;|| < c 
and t'*t' = h. 

Proof Write t = shxn, \\s\\ ^ 1. If 0 < 8 < 1, let 

0 = E(8m,oo)(h). 

Then 

A17VsA1/2 ^ A ~ 8 => qhV2s*shl/2q ^ qh - q8 

=» #y*^ ^ 4 - «(A')"1 ^ (1 - ô1 / 2)^ 

where A' = #A and the inverse is taken in qMq. From the polar decomposi­
tion of sq, we see that there is vx e M with v*Vj = # and 

||v, - sq\\ ^ 5, = 1 - (1 - 8V2)m. 

Let v e M be a unitary such that vq = v1; and let t' = vh}12. Then 

||/' - t\\ â || {f - t)q\\ + \\(t' - 0(1 - 9)11 

^ ||v, - sq\\ + 2||fc1/2(l - 9 ) | | S « , + 2 Ô 1 M 

Choose 8 small enough that 8X + 281 /4 < €. 
For x e (Mm)sa denote the eigenvalues of x (with multiplicity) by 

{\x(x\ . . . , Xm(x) ), where X^x) ^ X2(x) ^ . . . Xm(x). 
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5.18. THEOREM. Let h e A\*. 

(a) h = T*Tfor some T e RM (A) if and only if 

h e Am+ and A / + 1 L - (Q°° Q) 1 —> 0 as n -> oo. 

(b) A = T*T for some T e gAf(^4) i/ÛTK/ 6w/y / /A e (2™)~ and 
A/+ !(«„ — Aœ) —» 0 «5 « —» oo, wAere 

ft* c 
Af, 

Remarks. The condition on A /+1 in (b) is vacuous if / = k. The 
semicontinuity conditions in (a) and (b) already imply Ay ^ — en with 
en —» 0 for all y (in particular j = / 4- 1). Thus the condition on 
A /+1 is one-sided and automatically carries over to A-, j > / + 1. 

Proo/. (a). Assume A = T*T, T e PM(.4). By 4.1 A e ,4™. If 

n \u v r 

then T e RM {A ) is equivalent to r„ —> 7^, sn —» 0. Therefore 

h _ /^oo 0\ _ (T^T^ 0) 
n \o o; * * \o o/ 

implies 

L _ ( * « , o\| _ ( o o\*/o o\ 0 as n —> oo. 

Since 

rank r/o o\7o o' 
^ / , 

Note: 

A / + 1(JC) = Min Max (x0, 6). 
dimF=/ ^ G F 1 

11*11 = 1 

Now assume A satisfies the criterion in (a). Choose cn > 0 such that 

lime„ = 0 and ( J » J) ^ A„ + e„. 

Write 

(/&2 0) = W„(€„ + ^„)1 /2 , 
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where wn e Mkd and ||w„|| ^ 1 and 

Note that (rn sn) -» (h^2 0) as « -» oo, since 

Now let h'n = hn — (rn sn)*(rn sn). Then h!n i^ 0 and, since 

h, - L _(^oo o\i o, 

X/_!_ \(h'n) —> 0 as « —» oo. Thus we can find (w„v«) such that 

(un V J * K O = *n ^nd 

H ^ K 0 * K v„) II -> 0 as w -> oo. 

Then if 

we can apply 5.17 to (fw, hn) to obtain JT„ such that \\Tn — tn\\ —> 0 as 
^1/2 « -> oo and 7;*7; = A„. If 7 ^ = / ^ z , then r e RM(A) and 7*7 = A. 

(b) can be deduced from (a) by using 2.4, 4.3, and the strictly positive 
element e introduced above. 

(ehe)n 
_ Kehe)0 

\0 

M 
\0 0' ~ \0 (V 

\« - Ï 2 C « / 

for w large. Therefore 

V+i (ehe)n \0 

(HereX /+1(a„ - * « , ) = 0 if / 

~~ h+l(an ~ «oo) 0 as n —•> oo. 

Remark. A positive answer to 4.6 for this example follows from 5.18: 
{T*T:T <E RM (A) } and {T*T:T e gM(,4) } are norm closed. 

5.G. C0(X) 0 X In 5.G ^ denotes C0(X) ® J f where X is a second 
countable, locally compact Hausdorff space. Of course A = Ex is a special 
case. Let z G i * * be the central projection corresponding to the atomic 
representation of A ( [29, 4.3.7] ). Then zA** can be identified with the 

https://doi.org/10.4153/CJM-1988-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-038-5


980 LAWRENCE G. BROWN 

space of bounded functions from X to B(H). Since every semicontinuous 
element of A** is universally measureable, each of the classes of semi-
continuous elements can be identified with its projection onto zA** ( [29], 
Theorem 4.3.15). It is desirable to be a little more careful about this 
identification. If h e A**is universally measureable, then h, regarded as a 
functional on A(A ), satisfies the barycenter formula. This means that 

*(/*) = / 0(h)dti(O) 

whenever JU, is a probability measure on A(>4 ) with resultant 

<p L(a) = J e(a)dii{0\ Va e A). 

From direct integral theory we can easily conclude that if h e zA** is 
given by a Borel function from X to B(H), then there is a unique h e Af* 
such that zh = h and h satisfies the barycenter formula. (So far we have 
used the fact that A is separable and GCR.) We will say that h e zA f* is 
lsc (in some sense) if h = zh for some (unique) lsc h e A *fl*. It will turn out 
that h has to be given by a Borel function, so that la is as above. 

5.19. CRITERION FOR STRONG SEMICONTINUITY. h e zAf* is strongly lsc 
if and only if 

(i) h(x) is lsc in B(H), Vx e X, 
(ii) Vc > 0, 3 compact F c X such that h(x) ^ — e, Vx £ F, and 

(iii) 7^x0 G X, J f 3 ^ â /*(•%)> a , 2 ^ € >.0> ^ w //zere w a neighborhood 
U of x0 such that K ^ h(x) + €, Vx G £/. 

Proof. First assume /z is strongly lsc. By 3.22, 3a e Asa such that a % h 
(we should write za ^ h). (i) and (ii) follow from this, (iii) follows from the 
same proof as for 5.13 (ii). (Actually (iii) follows from 5.13 by Remark 
5.22 (ii) below.) 

Now assume (i), (ii), and (iii). Since A is continuous trace, 

<p e P(A)~W* =*<p = t0 

for some 0 & P(A) and 0 ^ t ^ 1. In particular supp <p ^ z and it makes 
sense to write <p(/z). We claim that h is an lsc function on P(A)~W . In 
proving this, we will represent non-zero elements of P(A)~W by pairs 
(JC, v), x G l , v E / / , 0 < ||v|| ^ 1. 

(a, (x, v) ) = (a(x)v, v), a ^ A, and 

(x, v) = (y, w) <=> x = y and 

v = Xw, |X| = 1. 

Given any net (xa, va), by passing to a subnet, we may assume xa —> JC e JV 
or x a —> oo and va —> v G # weakly. If xa —> oo, then 
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and 0 â lim(/z, (xa, va) > follows from (ii). If xa —> x9 then (xa, va) —> (JC, v) 
in P(A)~W* (or (jca, va) -> 0 if v = 0). If e > 0, by (i) there is K G X 
such that 

K ^ h(x) and (h(x)v, v) ^ (Av, v) + e. 

By (iii) AT ^ /*(•*«) + € for a sufficiently large. Also 

(Kv, V) ^ (*Va , Va) + € 

for a sufficiently large. Therefore 

(h(x)v, v) ^ (Kv, v) + € 

^ (*V va) + 2e ^ (A(jca)va, va) + 3c. 

Hence 

<A, (x, v) > ^ lim</*, (xa, v j > 

and the claim is proved. If we fix v G // , it follows that the function 

x i-> (h, (JC, v) > = (h(x)v, v) 

is lsc, and in particular Borel, on X. Thus h is a Borel function from X to 
B(H) and there is /i G 4̂*a* such that ^ satisfies the barycenter formula 
and zh = /z. 

Now let Aj be the space of probability measures on P(A)~W with the 
usual (weak*) topology. Then the map JU, h-> resultant ju, is continuous from 
At onto A(^4), and A(̂ 4) may be regarded as a topological quotient space of 
Aj. To show that 7i is an lsc function on A(^4), it is sufficient to show that 
the pull-back of h to A! is lsc. Since Ti satisfies the barycenter formula, this 
pull-back is the function 

/A h-> J (h, <p)dii(<p) = J (h, q>)d^q>). 

Finally, it is a fact of functional analysis that if h is a bounded lsc function 
on a compact space, then the map 

[i h-> J h(t)dii(t) 

is lsc. 

Remarks. It follows from the above proof that h G zA** is strongly lsc if 
and only if h is an lsc function on P(A)~W . Also h G A£* is strongly lsc 
if and only if h satisfies the barycenter formula and h is an lsc function on 
P(A)~W . The second sentence is true for arbitrary C*-algebras. The first 
is true at least for separable type I C*-algebras perfect in the sense of 
[8]. 

5.19 is actually true even if X is not second countable and even if Jt is 
replaced by Jf(H) for H non-separable. This can be proved by Michael's 
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selection theorem. A key point is to prove that if al9 . . . , an G A, 
ah . . . , an â h, and e > 0, then 3a G A such that a ^ h and a ^ at — e, 
z = 1,. . . , n. Although the proof via Michael's selection theorem is in 
some sense more elementary than the one given, it would use more 
space. 

5.20. CRITERION FOR MIDDLE SEMICONTINUITY. If h G zAf*, then h is 
middle lsc if and only if for every x0 G X there is Px : X —> B(H)± such that 
Px (x) —> 0 strongly as x —> JC0, h(x0) ^ h(x) + Px (x), \/x G X, and 3X G 
R°such that \\PXQ(X) || g X, VJC, X0 G X. 

Proof If h is middle lsc choose Xx > 0 such that /* + Aj is positive and 
strongly lsc. Let (Pk) be a sequence of finite rank projections in B(H) such 
that Pk / 1. Fix x0 and choose [/j D î/2 ^ . . . such that {£4} is a neigh­
borhood basis at x0 and 

(h(x0) + X,)1 '2^/^) + ^i)'/2 35 *(*) + X, + -J-, Vx e 14 
A: 

(5.19 (iii)). Define i ^ by 

p,o(x) = (h(x0) + x,)1/2(i - W ( * o ) + x,)1/2 + i 

* G tf*V*+i. ^0(*o) = 0, and 

PXa{x) = 2\\h\\, x € Ux. 

If X and {i^o:x0 e X} are given, choose X0 such that /i' = h + X0 ^ 0. 
We claim that h' + X is strongly lsc. 5.19 (i) and (ii) are automatic, since 
h! + X =£ 0. If JC0 is given, then 

Lk = A'(^o)1/2^A'(*o)1/2 + ^ ^ A'(*o) + X-

By 5.3, it is sufficient to verify 5.19 (iii) with Kreplaced by one of the Lks. 
Fix k and e > 0 and note that since X — Px (x) —> X strongly a s x ^ x0, 
there is a neighborhood U of x0 such that 

XPk ^ (X - PXo(x))mPk(X - PXo(x))l/2 + c, V* G £/. 

Then for x G U, 

Lk ^ h\x,) + (X - PXo(x))1/2P,(X - P,o(x))1 / 2 + c 

^ A'(*) + PXQ(X) + X - P^(x) + c 

= /*'(*) + X + €. 

Thus 5.19 implies the claim. 

Remark. Px seems to be analogous to a modulus of continuity. The 
criterion of 5.z0 is fairly easy to state, at least for A = El9 but we think its 
simplicity is an illusion. Middle semicontinuity is the most difficult to 
work with. 
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5.21. CRITERION FOR WEAK SEMICONTINUITY. If h €E z^**, then h is 
weakly lsc if and only if VJC0 £ X, Ve > 0, V finite rank projection P, there 
is a neighborhood U of x0 such that 

Ph(x0)P ^ Ph(x)P + 6 , V J C G U. 

Proof Assume h is weakly lsc and x0, P, e are given. Choose / e C0(X) 
such that / = 1 in a neighborhood of x0, and let a = / ® P e A By 2.4 
tf*/m is strongly lsc, and the existence of the required U follows from 
5.19 (iii) for a*ha. 

Assume h satisfies the criterion and let a e A. By 2.4 it is enough to 
show a*ha is strongly lsc. 5.19 (i) and (ii) are obvious for a*ha. To verify 
5.19 (iii), let x0 e X and e > 0 be given. Choose 8 > 0 such that 

saiWI • I N ^ c, 

a finite rank projection P such that || (1 — P)a\\ < 8, and a neighborhood 
U of x0 such that 

\\a(x) — a(x0) || < 8 and 

4|M| 

Then for JC G (/, 

fl(x0)*A(*oM*o) â a(x0)*Ph(x0)Pa(x0) + -

^ a(x0yPh(x)Pa(x0) + ^ 

= *(*o)**(*M*o) + — 

^ a(jc)*A(*M*) + e. 

5.22. Remarks, (i) As in 5.15 (i), /z is weakly lsc if and only if h(x) ^ k, 
for every weak cluster point k of h at JC. 

(ii) Suppose xn —> x in X where x and the JC„'S are all distinct. Then we 
have a surjective 0:A —> 2^. /* lsc (in any of the three senses) implies 0**(h) 
lsc. If 0**(h) is weakly lsc for all choices of x and (xn), then h is weakly lsc. 
The same holds in the strong case for h ^ 0. 

5.H. General separable continuous trace algebras and their subalgebras. 
Let X be as in 5.G, 3tiP a separable continuous field of Hilbert spaces over 
X such that Jf(x) ^ 0 VJC G I , and A the associated C*-algebra. Then 
A ®Jf ^ C0(X) 0 X and,4 is a corner of ,4 ® X B y 2.13, h €E z^*fl*is lsc 
(in any sense) if and only if its image in z(A ® X)f* is lsc. In order to 
derive criteria from those in 5.G, it is only necessary to express the results 
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of 5.G in language that is independent of the choice of the isomorphism of 
A ® X with C0(X) 0 X The following is easily verified: 

5.23. h G zA ** is strongly lsc if and only if 
(i) Each h(x0) is an lsc element of B(X(x0) ) (vacuous if dim X(x0) < 

oo), 
(ii) Ve > 0, 3 compact F c X such that h(x) ^ — 6, Vx £ F, <z«d 

(iii) Jf/*/w a continuous section ofX(X), f(x0) ^ h(x0)9 and e > 0, //i£« 
f/zere w tf neighborhood U of x0 such that f(x) = h(x) + 6, Vx G [/. 

5.24. /z G ẑ 4*a* w middle lsc if and only if 3X > 0 and functions Px , 
X0 G X, £«c/z zTztf/ 

( i ) P ( * ) e f l ( . * % 0 ) + , 
(ii) 7/ v w tf continuous section of X, then 

lim | | P (x )v (x ) | | = 0 , 
x->x0 

(iii) /z(*0) â h(x) + PXo(x), Vx0, x G X, 

(iv) \\PXQ(X) || ^ X, Vx0, x G X. 

5.25. h G Zv4*a* w weakly lsc / /««J ow/y z/owe of the following equivalent 
conditions is satisfied: 

(i) For tf/iy continuous sections f and g of X(X) such that f(x0) = 
g(x0)*h(xQ)g(x0) and any e > 0, zTzere is a neighborhood U of x0 such that 

f{x) S g(x)*h(x)g(x) + 6, Vx G I/. 

(ii) Suppose xn -» x and h(xn) -* k G 2?(^(.x) ) /« z7ze sewse f/zdtf 

(*K)v(x„) , w(x„) ) -» (fcv(*), w(x) ) 

/or a// continuous sections v, w of X Then h(x) ^ k. 

If 4̂ is a general separable continuous trace algebra, then locally A 
comes from continuous fields of Hilbert spaces on open subsets of 
X = A. 2.24, 2.25, and 2.27 (iii) show that 5.23-5.25 are still correct when 
interpreted properly. 5.23 (iii), 5.24 (ii), and 5.25 are local properties, and 
if we just replace "section" with "local section" and realized that X is 
only locally defined, we can make sense of them. For 5.23 the following 
remark is needed: If — e ^ h G A™a, then by 3.16, 3a G A such that 
—c ^ a ^ h. Using this and a partition of unity, one can show that 5.23 
(i)-(iii) imply the existence of a G A such that a ^ h. The proof of 5.24 
showed that the X of 5.24 (iv) is closely related to the X' such that h + X' is 
strongly lsc. This eliminates the "hitch" discussed in 2.27 (iii). 

Finally, if A is a C*-subalgebra of a separable continuous trace algebra 
2?, then her(^4) is still continuous trace. By 2.14, h G Af* is lsc (in any 
sense) if and only if its image in her(A)** is lsc. 
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5.1. C*-algebra extensions. In this example we assume 

0 

and that semicontinuity in I and A is understood. For example, I might be 
X and A commutative (cf. 5.B, 5.E). We will derive a description of B™a 

in terms of I™a and A™a. In principle there is no need to consider weak and 
middle semicontinuity, since by [5] and 2.4, h is middle lsc if and only if 
h + X is strongly lsc for some X > 0 and h is weakly lsc if and only if b*hb 
is strongly lsc Vb e B. 

Note that B** = I** ® A**. Let p:B** -> /** be the projection. 

5.26. LEMMA. If h e Bfa and 0**(h) ^ 0 in A**, then p(h) e 7fa. 

Proof. Let e > 0. By [5] there is a net (ba) in Bsa such that ba /* h + c. 
Then 0(fta) /» 0**(/z) + €. Dini's theorem implies 0(ba) ^ - c for a 
sufficiently large. For such a, ba = b'a + za, ^ ^ — c, /a e Isa. Since 

M(/)+ c / « c C 

it follows that 

e + p(6a) = p(c + i£) + ia e C 

a large. Since p(ba) / p(/i) + e, this shows 

p(A) + 2c e C V c > 0, 

which is sufficient. 

_5 .27 . THEOREM. Ifih e J**, rtoi h <E B?a if and only if 0**(h) e 
4 £ and p(h - b) e J £ /or a// ft e ^ JUC/I /Art 0(ft) ^ 0**(h). 

Proof The necessity follows from 5.26. 
Assume the conditions. Then by 3.22, 3b G Bsa such that 0(Z>) ^ 0**(h). 

Changing notation (replace h by h — b), we may assume 6**(h) ^ 0 so 
that p(h) e I™a. Now by 3.24 and 3.25 there are bounded nets (aa) inA + 
and (ifi) in Isa such that aa ^ 0**(/i), i^ ^ p(h\ aa -> 0* *(/*), and 
/£ —> p(/i). We claim there is bap e 2?^ such that bap ^ /*, 0(bap) = aa, 
and p(bag) ^ /^. To see this, choose b' e 2?+ such that 0(2/) = aa and 
solve (by 3.16) 

ifi - p{V) ^x^pQi- V\ x e 7Jfl. 

(p(/z - *') e 7fa by hypothesis, and ^ - p(ft') e (/Jfl)" since p(ft') e 
M( / ) + . ) Let 6a£ = x + b'. bag â /* follows from p(bap) ^ p(/i) and 
0(bajù = aa = 0**(h). Since ip ^ P ^ ) = p(h) and /^ -> p(/z) a-weakly, 
it is clear that p(bap) —> p(/j) a-weakly (and hence a-strongly). Since also 
0(Pa,fd

 = aa~* 0**(h)9 we conclude that bap —> h on A(2?); and hence /* is 
lsc on A(B). 
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Remarks, (i) It is not necessary to verify p(h — b)lsc for all b such that 
0(b) S 0**(h). Suppose for example that aa / 0**(h) and that for each 
a, p(h - ba) G 7™ for one (and hence all) ba G Bsa such that 0(ba) = aa. 
If 0(b) g 0**(h) for some b G Bsa, then Ve > 0, 0(b) ^ aa + € for 
a sufficiently large (Dini). Then 3Z>a G 2?5a such that 0(ba) = aa and 
b ^ ba + e. Therefore 

c + p(h - b) 

= p(A - y + p(£ + è a - è ) E Î : + M ( / ) + c C V O 0, 

which is sufficient. 
(ii) If I = J^ then, as is well known ( [13] ), IT O p|5 gives rise to 

T:A —> B(H)/3#\ and T determines the extension completely. Then the 
condition 

P(h - b) G /; 
sa 

becomes 7rp(h) i^ r(a) (for all a G ^45fl such that a ^ 0**(h) ). 
The simplest non-trivial example is the case where A = c0 and I = Jf. 

Thus let (Prt) be a sequence of mutually orthogonal, infinite rank 
projections in B(H) such that S P„ = 1. Let B be the C*-algebra 
generated by JT and the Pn's. An element of B** is represented by a pair 
h = (A1? A2), Aj G £ ( # ) , A2 e /°°. 0**(h) G ^ if and only if (A2)_ 
vanishes at oo. If this is so define #„ by 

th2(k\ k^n 

\0, otherwise. 

Then a„ /» 0**(A) = A2, and A G ^ if and only if 

n 

<hx) ^ 2 h2(k)nr(Pk) + 2 A2(W*)> V«. 
1 &>n 

/i2(A:)<0 

The infinite sum is norm convergent, since (h2)- G C0. TO check whether h 
is weakly lsc, it is not necessary to consider b*hb for all b G B. It is enough 
to take 

6 = 2 P*. n = 1, 2 , . . . . 
l 

In this example 6**(b*hb) e ^ . Then h = (hx,h2) ^ (B™a)~ if and only 
if 

*( (2 ^ , ( 2 ^) ) ^ 2 W(^X V«. 
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