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STEADY VORTEX FLOWS OBTAINED FROM
AN INVERSE PROBLEM

B. EMAMIZADEH AND F. BAHRAMI

In this paper we prove the existence of solutions to an inverse semilinear elliptic partial
differential equation. Physically, solutions represent stream functions of steady planar
flows with bounded vortices. The kinetic energy functional is maximised over the set
of rearrangements of a given function.

1. INTRODUCTION

In this paper we prove the existence of a solution to the following inverse semilinear
partial differential equation:

- A u = <j>(u) in Q

(i) { u = o on an
- A u € T,

where T is the set of rearrangements of a given function (see below). The nonlinearity <f>
is not known a priori, hence the problem is classified as an inverse problem. The domain
0 is an unbounded subset of the first quadrant n + .

In order to prove the existence of solutions to the above problem we use variational
methods. However, the unboundedness of Q causes lack of compactness, hence the direct
method of the calculus of variations will not be applicable in our variational analysis.
We shall apply the method suggested by Benjamin [3] complemented with a standard
rescaling ([11, 12]) in order to compensate for the lack of compactness.

Physically, if u represents the stream function of an incompressible planar flow, then
- A u can be interpreted as the vorticity function of the fluid. Thus, from (1) we infer,
formally that,

(2) [u, -Au] = 0,

in Q, where [-, •] denotes the Jacobian. Equation (2) is the stream-vortidty representation
of the two dimensional steady Euler equation. Therefore solving problem (1) proves the
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214 B. Emamizadeh and F. Bahrami [2]

existence of a two dimensional steady flow which is tangential to dCl. Condition -Au € T
states that all possible configurations of the vorticity function are known.

Similar work has been done by Badiani [2], where the author makes extensive use of
the symmetry of the domain (upper half-plane), contrary to the situation to be considered
here. The reader may refer to earlier works of the first author [5, 6, 7], which are the
main references for the present work.

2. NOTATION, DEFINITIONS, AND STATEMENT OF THE MAIN RESULT

We denote by p an arbitrary fixed number in (2, oo). For any number r ^ 1, r*
denotes the conjugate exponent, 1/r + 1/r* — 1. For any measurable set E C R2, we
denote its Lebesgue measure by \E\. By B^x) we denote the ball centred at x 6 R2 with
radius £; if the centre is the origin we write B%.

Let D be an open, bounded, simply connected set containing the origin and assume
~D C By. Let n + denote the open first quadrant; let Q, — U+ \T) such that d£l € C2. For
c > 0 we set

fic = {x € 11+ | cl/2x € fi} ;

and ftc,? = Qc n B f .

By G, with any subscripts, we denote the Green's function for - A with homogeneous
Dirichlet boundary conditions in some domain; in particular, G+, G and G\ denote the
Green's functions in I l + , fi and IT+ \ Bi, respectively. It is well known that

G+(x,y) = —log- J fr, x,yell+,xj:y.
2TT \x — y\\x — y\

Furthermore, it is easy to see that

i(x,y) :=G+{x,y) - ^-log^-r: ^y-A =T, x,y€U+\Bu x^y.
2TT | y | | x - y * | | j / | \x-y'\

Here the overline and the underline mean reflection about the rci-axis and X2-axis respec-
tively, and * indicates inversion with respect to the unit circle.

REMARK. Let us point out that C?i can be written more simply but we prefer this

representation since it is more convenient later.

Note that
Ge(x,y) = G ( c l ' 2 x , c l ' 2 y ) , x , y € Q c , x ^ y .

By applying the Maximum Principle we obtain

where each inequality holds in the positive domain.
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[3] Steady vortex flows 215

For a measurable function C and x € K2 we define

K((x)= f
Jn

IKcC(x)= / Gc(x,y)ay)dy,

whenever the integrals exist.

We let 77 € C2(ft) n Cl{ft) be a function such tha t

A77 = 0 infi
77 = 0 on dft
77 = Xix2+O(\x\~2), a s |rzr| —> 0 0

V77 = (x2,Xi)+ O(\x\~3), as Ixl —> 00.

REMARK. The existence of 77 can be proved using a standard limiting process; in addition
one can use the maximum principle to show that

(3)
X1X2

V ^ a;ia:2,"

Next, for a measurable function £ on f2 we define

= / » ? C,

whenever the integrals exist. Now fix A > 0. For a measurable function £ on f2, we define

= *(0 -

Let us fix Co G i / ( n ) which is a non-negative, non-trivial function with compact support
and assume |supp(Co)| = no?, for some a > 0. Moreover, we suppose that ||Co||i = 1. By
T we denote the set of rearrangements of Co on ft which have compact support. Let us
recall that C is a rearrangement of Co whenever

£ ft I C(z) ^

for every a € K. We now define the variational problem

Px--
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and the corresponding solution set is denoted EA. In order to introduce the second
variational problem which is a rescaled version of P\ we proceed as follows. Let c > 0
and let £ be a measurable function on fi. Then we define

(4)

The mapping C as define in (4) takes measurable functions on fi to measurable functions
on fic. By Tc we denote the set of all rearrangements of C(Co) on Qc with compact
support.

For a measurable function C, on Qc, c > 0, we define

(5)

where r)c(x) := c l r/^^x), whenever the integrals exist. Now we define the rescaled
variational problem. Fix c > 0, then

Pc: sup$c(C),

and Ec denotes the corresponding solution set. Furthermore, for £ > 1 we define

PCti : sup *C(C),

where FCi( is the subset of Tc comprising functions vanishing outside f2Cif. Let us point
out that in order to ensure Tc& ^ 0 it is sufficient to assume that

(6) £ >

The solution set for Pc^ is denoted by EC)j.

The main result of this paper is the following.

THEOREM. There exists Ao > 0 such thatof A € (0,Ao), PA has a solution,
is a solution and ipx '•= -^CA, then tp\ satisfies t ie following semilinear elliptic partial
differential equation

(7) — A ^ A = 4>x ° (^A — A7?), almost everywhere in Q

where <j>\ is an increasing function, unknown a priori.

3. PRELIMINARIES

In this section we derive some properties of the operator K which will enable us to
use a result of Burton [4, Lemma 5], crucial in our analysis. Let us begin by noting that

G+(x,y) = — log - h+ (x, y)
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where h, h+ and h\ are harmonic functions, for fixed y, in their respective domains. In

particular, we have

L. / N ! , \X-V\
h+(x,y) =—log \x-y\\x-y\

J_ lo M lg ~ ̂  lyl I1 ~ ^1
2TT | y | | x - j / * | | j / | | x - ^ | '

Note that

(8) h+(x,y) ^ /i(x, j/) ^ hi(x, y),

where the inequalities are understood to hold in the positive domains. Next we set
h = h- h+ and hi = /ix — h+. Then from (8) we infer 0 ^ h ^ h\. Let us now point out
that _

~ -> i Ml^-!/*! i Ml^-yll

Therefore if we set Pi := |y|2 |x — y^j2 and fa '•= \y\2\x — y^\2, then Pi = Pz — ^xiVi, hence

logPi/p2 < 0. This implies tha t

(9)

provided x,y £ n + \ B\. Similarly, we obtain

TT(|X| Ivl - 1)

provided x, y € U+ \ B\.

Let C, € //(fi) have compact support. Then K+(,(x) is defined at every point x € R2,
see [7]. Thus from

\KC(x)\ ^ K\C\(x) ^ K+\C\(x),

it follows that KQ{x) is defined at every x 6 R. Our first lemma is a standard result, see
for example [6, Lemma 3.3].

LEMMA 1 . Let q 6 [l,oo) and let U be an open, bounded subset ofQ. Then

> L"(U) is compact. Moreover, if(; e LT^l) vanishes outside U, then

(i) -AKQ = C, almost everywhere in Q,

(ii) i^C = 0, on 89,

(iii) K( € W^(Ti), that is, for every open and bounded setO Cf i with O C U

we have KC € W2'>>(0).
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LEMMA 2 . Let C € LP{Cl) have compact support. Then K<^(x) =
VKC(x) = 0(\x\-2), as \x\ -> oo.

PROOF: Let us recall that

for every x € R2. Since A'+lCKz) = O d 1 ! 1 ) as |a;| -> oo, see [7], we deduce that
KC,{x) = O^x]'1) as \x\ ->• oo. Hence if A > 0, then there exists Mi > 0 such that
for \x\ > Mi we have | /fC(x)| ^ ^a : !" 1 . Now let us consider a special extension of KC,,
denoted (KQe, which is denned by

{
where fi_, Q~ denote the reflection of £1 about the lines x\ = 0, X2 = 0, respectively. Let
us note that {KQe is harmonic in f2 U fi~ U Q- \ BM2, for some M^ > 0. Now consider
x such that |x| > M := max{2,2Mi, 2M2}, then by Harnack's inequality [8, Theorem
2.10, p. 23] we obtain

|V(ATC)e(i)| < A sup \(K0e(z)\^8A\x\
\X\ zeB,xn2(x)

Hence we are done. D

The next lemma is a result of Lemma 2 and the method for proving [7, Lemma 4].

LEMMA 3 . Letq and U be as in Lemma 1. Then K : £"(£/) -¥ L"(U) is strictly
positive, that is, for every non-trivial £ G Ufo), vanishing outside U,

f C #C > o.
Jn

The following lemma has been proved in [7].

LEMMA 4 . Let A > 0. Then there exists R(X) > 0 such that

K+<;(x) - \xix2 < 0, C € T, \x\ > R(\).

In fact R(X) = M/X, where M is a positive constant.

REMARK. It is clear that the results of Lemmas 1-4 still hold if we replace K by Kc.

The next lemma has been proved in [4].

LEMMA 5 . Let (X,M,n) be a finite separable nonatomic measure space, let

1 ^ p < oo, let p* be the conjugate exponent of p, let ^ : ^(X) -4 R be convex,

let fo 6 L?(X) and let T denote the set of rearrangements of f0 on X.
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(i) Suppose that <£ is weakly sequentially continuous on LP{X). Then ^ at-
tains a maximum value relative to T.

(ii) Suppose $ is strictly convex, that f* is a maximiser for ^ relative to T and
that g e dy(f'), the subdifferential of * at /*. Tien /* = <j> o g almost
everywhere in X for some increasing <j>.

The following result is elementary.

LEMMA 6 . Let c> 0, let C : T -» Tc be defined as in (4). Tien C is a bijection.
Moreover, if C, € T, then

(i) ||C(C)||P = c1/"* IKtlp
(ii) isupp(C(C))|=c-1|supp(C)|.

In our analysis we make use of the so-called Routh function H(x) = Hi(x) + ^{x),

x s Il+, where

v ' 4TT

H2{x) = Xil2-

Observe that for z € dU+ we have limH(x) = oo. Elementary calculations prove that

H has a unique global minimum at XQ = (l/(2\/27r)), (l/(2\/2w)). Occasionally the first

and the second coordinates of XQ are denoted by xo,i and £0,2-

For more information on the Routh function the reader is referred to the classic
monograph [10].

LEMMA 7 . Let c and £ be positive constants satisfying (6). Let Cc,( € EC)?; then

(11) ^ ^

where C\ is a positive constant, provided c is sufficiently large.

PROOF: Let Q^ denote the Schwarz symmetrisation of CCi{ with respect to x0. By
Lemma 6 (ii) we have supp(Cc%) = Ba/ci/2(x0), hence, for sufficiently large c, we can
ensure supp(Q{) C Clc,(- Thus *c(Cc,{) ^ ^c(C,{)- We now proceed to estimate Vc(Qt()
from below. From the definition of ^ c we have

= L L (ll0*^hv\ - i
- f

We now estimate /1 as follows

(12)
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where we have used HQflli = 1- Now we show the integral in (12), denoted by Jit is o(l)
as c —• oo. First note that for x, y € supp(C*?) we have

- Hx(c
l'2x0)|.

Now by applying (9) we deduce that

27r (c | a : | | y | - l ) 2 2 +{

for sufficiently large c. Next observe that

cx2y2
sup

,ye supp(c;j{) 2TT(C|a; | \y\ - l ) '

asc-> co; also

sup
i,j,6supp(Cc'{)

as c —> co, where

I 1 2 la: — j/l xo.i^o
S U P 7 1 log -

a,»6 supp(Q)l 47T \X - y\ \X - y_\ \XO\
0,

^0(2;, 2/) = T - log 1 !—r=!
2?r |x — 2/1 la: —

Therefore J\ — o(l) as c —» co, whence

(13) A ^ — log -
4TT 2>

as c —>• co.

Now we estimate I2,

*2 — Vc(X) <>c,{\x)
Jnc

= / (Vc(x) - z0)ia;o,2) C{(a;) dx + H2(x0).
Jnc

Note that from (3) we infer that

x^x2 — —jj—rj ^ fJcyX) ^ X\X2, x € f2C'

Hence

sup
i,y6supp(Cc*{)

|r?c(x) - a;o,iio,2| ^ sup (2 \xxx2 - xo,ixo<:
C,4) i,y6suPP(c;{)

v

as c —> co. Therefore

(14) /2 = /

0,
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as c —¥ oo. Now from (13) and (14) we deduce that

£« ^ ^ - H2(x0) + o(l),

as c —»• oo, or
1 c1/2

*c(Q) ^ ^ log -£• ~ H(*o) + o(l),

as c —• oo. This clearly verifies (11). D

Now assume c and £ satisfy (6). From Lemma 1 it follows that * c : L»"(nCi{) -¥ R
is weakly sequentially continuous. Moreover, from Lemma 3, $ c is also strictly positive.
Thus problem Pc^ is solvable by Lemma 5 (i). Since $>c is differentiate, the subdifferential
of \tc at say £ is a singleton, namely the derivative of $ c at £, which is identified with
KcQ-r)c. Therefore if Cc,{ € ECi?, then by Lemma 5 (ii) there exists an increasing function
<f>C£ such that

Cc,{ = <Ac,{ ° (KcCc,( ~ Vc) almost everywhere in flC)f.

Prom this it follows

(15) supp(Cc,«) = {xe nc,t | Kc£cJ:{x) - T)c(x)

for some constant 7Ci{, modulo a set of measure zero. Note that the inequality in (15) can
be changed to strict inequality, since the level sets of KCC,C^ — r\c (sets on which KcC,cfk - r]c

is constant) on supp(CC)j) have measure zero, by [8, Lemma 7.7]. In the next lemma we
derive a lower bound for 7Ci{ when c and £ are sufficiently large.

LEMMA 8 . There exists cx > 0 and & > 0 such that ifc ^ Ci and £ ^ ft, then

1 c1/2

(16) ^ ^ l 0 S - 2 T + C 2W'

where C2{k) is a constant depending on k, the constant depending on the cone determin-
ing the cone property of£lC£.

PROOF: Let dx and £J be positive constants such that if c ^ dx and £ ^ £J satisfy
(6), then B = Bl/{2^;)(x0) C fic,{- Let 7 > 0 be such that B C n + ( 7 ) := {x £U+ \
x\X-i < 7} . We claim that by merely increasing c we can ensure j c ^ ̂  —7. To seek a
contradiction suppose j C i i < - 7 ; then for x € B we have

KCQAX) ~ nc{x) > -ndx) > -xix2 > - 7 > 7Cj{,

since KCQA is non-negative and T?C ^ x-ix2- Therefore B C supp(Cc,{), modulo a set
of measure zero. Hence \B\ ^ |supp(CCif)|, that is, 1/8 $ ira2/c, so c ^ 8na2. To
derive a contradiction it suffices to make c greater than 8?ra2. Henceforth we assume

}. Therefore we obtain

(17) supp(Cc,{) C {x € nc,f I KcQti{x) - T)c(x) > - 7 } ,
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modulo a set of measure zero. Let us now define the adjusted energy functional

(18) F(Q := \ f (KoC ~ Vc - 7ct) C,

for measurable functions C on f2c. Observe that

(" 1 f + " 1

^ 2 Jnc 2

where 70 := —7 and u := KC(,C£ — r)c — ^yc^ + 70 — 1. It is clear that there exists M > £
such that u+ € HQ(QCIM)- NOW by applying the "half Green formula", see [9, p. 24], and
Lemma 1 (ii), applied to KCC,C,( we find

„ „ +1.2 „ „ +,,2 f „ 4. „ + /" „ 4. „ /" 4. -
V t l o n ^ VU o n = / VU - VU = I VU • VU = — I U C, c

II U 2 , S i c ^ ^ II IIJ,WC,M I I I ' c ' t '
•'"cM •'"cM •'^c.f

Hence we can apply Holder's inequality to obtain

(19) \\^u ll2,nCi{ ^ llu ll2,nCt4 ||Cc,f||2,ne,£,

where we have used Lemma 6(i). From the continuous embedding

W1*1^) ^ L2(QCti),

see [1, p. 105], we deduce that

where k is the constant depending on the cone determining the cone property of fiCi?; let
us point out that the cone is independent of c and £, hence, in turn, A; is independent of
c and £. Next we observe that

Note that supp(u+) and supp(Vu+) are both contained in supp(u); and since supp(u) is
essentially contained in supp(Cc,f) we deduce that supp(u+) and supp(Vu+) are essentially
contained in supp(Cc,{)- This implies that

where we have used Holder's inequality and Lemma 6 (ii). Similarly we obtain

Therefore we derive

https://doi.org/10.1017/S0004972700040065 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040065
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This, in turn, implies that

Let d[ be a positive number such that c ^ d[ implies (1 - ky/na/c1/2) > 1/2, then for
c ^ max{c'1,c'j',87ra2} we obtain

(20) \ \ \ u , ( ^ , r

From (19) and (20) we deduce that

l |Vu + |£ n c { < 4A>/JFO||CO||2 l|VU
+||2,nc,(I

hence

(21) l|Vu+||2,nc,£ ^ 4fcv^a||Co||2.

Therefore by applying Holder's inequality, (20) and (21) we obtain

From this we infer that

From (18) we also have

(22) f l2
By Lemma 7 there exists d" > 0 such that for c ^ d" we have

Hence if c ^ max{c'1, d(, d", 87ra2}, then by (22) we have

1 1 c1/2

Since F(Cc,e) ^ P{k) we finally obtain

1

This readily implies (16), for c\ := max.{d1,d(,d",8na2} and £i :=
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4. P R O O F OF THE THEOREM

Let Ci and £i be as in Lemma 8. Let Oi be a positive constant such that for c ^ C2,

(23) ^L tog £ £ - < * ( * ) > ! .

Let us consider c ^ CQ = max{l,Ci,c2}, £ ^ fi and 4 i f 6 £C|f, this set is not empty by
Lemma 5. Prom (15), (23), and Lemma 8 we obtain

(24) supp(CCi{) C supp(/rcCc,e - rjc),

modulo a set of measure zero. Let us observe that for x € fic we have

Moreover, since KC-x{C,cA){cll2x) s$ K+C-l{QA)(cyl2x) we infer that

for x € Clc. Also, if x G Clc is such that \x\ > 1, then by applying (3) we obtain

T]c(x) > -XiX2,

hence, for x € 17C such that |x| > 1, we derive that

K&*{?) ~ Vc(x) = KC-\QA){c^x) - Vc(x)

By Lemma 4 we have

provided \x\ ^ Ac1/2, where A is some universal positive constant. Let us now define
R(c) :- max{l,£i, Ac1'2}. Then from (24) we obtain

(25) supp(Cc,?) C BR(c).

Fixing c, clearly, (25) holds for every £ ^ ft. Hence CC,R(C) S EC. This concludes the
existence part of the theorem.

We now proceed to derive (7). Henceforth we assume c is a fixed number such that
c ^ CQ. Consider Q € Ec. Hence (,\ := C~l((c) £ 72\, where A = 1/c. It is clear that
SUPP(CA) C Bci/2fl(c), modulo a set of zero measure. Applying Lemma 8 and (23) we find

for almost every x e supp(Cc), or equivalently

KC-\Q{cl'2x) - -r,(cl'2x)
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for almost every x e supp(£c), whence K(\(X)-\T)(X) ^ 1, for almost every x €

Let us now observe that limsup(i<'CA(a:) - ^v(x)) ^ 0- Hence there exists M3 ^ cll2R{c)
|z|-K»

such that KQ\(x) — \r)(x)) < 1/2, provided |x| > M3. Since CA is a global maximiser
of ^x relative to T we deduce that, in particular, CA maximises \&A relative to functions
in T which vanish outside QM3 := BM3 D fi. Therefore, by Lemma 5, there exists an
increasing function <j> such that

for almost every x € CIM3 • We modify <f> by <j>\ which is defined as follows

Ms) := ( * W > S * l
V W \ 0, s< 1.

Therefore we derive

CA = 0A o (ffC* " A/?),

for almost every x € fi. Since CA = — A/f£\> for almost everywhere x € fi, we deduce
(7). Note that Ao := 1/co- D
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