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REPRESENTATIONS OF QUADRATIC FORMS
YOSHIYUKI KITAOKA

0. We have shown in [1]

THEOREM A. Let L be a lattice in a regular quadratic space U over
Q; then L has a submodule M satisfying the following conditions 1),2):

1) dM +0,rank M = rank L — 1, and M is o direct summand of L
as a module.

2) Let L’ be a lattice in some regular quadratic space U’ over Q sat-
isfying dL’ = dL,rank L’ = rank L, t,(L') > t,(L) for any prime p. If
there is an isometry a from M into L’ such that «(M) is a direct sum-
mand of L' as a module, then L’ is isometric to L.

Our aim is to remove such a restriction in 2) that «(M) is a direct
summand of L’ as a module:

THEOREM B. Let L be a lattice in a regular quadratic space U
over Q; then L has a submodule M with rank M = rank L — 1, dM + 0
which is a direct summand of L as a module and satisfies

(*) let L’ be a lattice in some regular quadratic space U’ over Q
satisfying dL/ = dL, rank L/ = rank L, t (L) > t,(L) for any prime p; if
there is an isometry « from M into L', then L’ is isometric to L.

1. Notations and some lemmas

We denote by Q, Z, @, and Z, the rational number field, the ring of
rational integers, the p-adic completion of @, and the p-adic completion
of Z, respectively. For a quadratic space U we denote Q(x), B(x,y) the
quadratic form and the bilinear form associated with U @B(x, v)
=Qx + v) — Q) — Q), and for a lattice L in U dL stands for the
discriminant of L. For two ordered sets (a,, a, «--,a,), (by, by -+-,b,),
we define the order (a,, a,, +--,a,) < (b, b, ---,b,) by either a; = b; for
1<k and a, <b, for some k < n or a; = b; for any 1.
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Let L be a lattice in a regular quadratic space over @,; then L has
a Jordan splitting L=L, | L, | --- | L, where L, is a p%-modular -
lattice and a, <a,< ... <a,. We denote by ¢,(L) the ordered set (a,, - - - a,,
rank Ly
cee, Oy, v, 0). For a lattice L in a regular quadratic space over @ we
e —

rank Ly

abbreviate t,(Z,L) to t,(L).

LEMMA 1. Let L be a lattice in a regular quadratic space U over
Q,; then L has a submodule M satisfying the following conditions:

1) dM # 0, rank M = rank L — 1, and M is o direct summand of L
as a module.

2) Let L' be a lattice in U containing M ; then L' =L if dL’' = dL
and t,(L") > t,(L).

This was proven in [1], and we called M a characteristic submodule
of L.

LEMMA 2. Let L be a lattice with the scale C Z in o regulor quad-
ratic space U over Q with dim U > 3. If a direct summand M of L
satisfies

1) M, is a characteristic submodule of L, if p|2dL,

2) dM = q"m where q is a prime with qf2dL and r >0, and p|2dL
if plm,
then M satisfies the conditions 1), 2) in Theorem A.

This is a remark in §1 in [1].

LEMMA 3. Let L be a lattice in a regular quadratic space U over
Q with dim U > 2, and let S be a finite set of finite primes such that
2eS, and L, is unimodular for peS. For o given u,c L,(peS) there
is a prime qeS and a vector we L such that w and u, are sufficiently
near for pe S, and Qu) e Z; for p+ q,peS, and Q) e qZ).

Proof. We can take a vector v, in L such that », is sufficiently
near to u, for peS and Q@) # 0, and put T'={p;peS, Q) e Z;}.
Then there is a vector v, € L such that Q(v,) € Z) for pe T and +dZ[v,, v,]
is not in @** since L, is unimodular for pe¢S. Put L = Zv, v, c L,
and take a vector v in L such that » and v, (resp. v,) are sufficiently
near for peS (resp. peT). There is a basis {e,e,} of L such that

(B(e;, ey) = d(b(;z béZ) where a,b,ce Z, de @%, and (a,b,c) = 1. Since
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Q(I:p) NZy+¢ for peS, a prime p with de Zy is contained in S.
Noting Q(v) € Z) for pe T, we have only to prove Lemma in case that

L= ( @ béz), by scaling of 1/d, and u, — v for peSUT. Thus we

b/2
may assume that L = Zle,, ¢,], (B(e;, e))) = (b72 béZ) (@,b,¢) =1,D = b?

— 4ac is not a square in @, and ptD if peS. Moreover v e L is given.
By a classical theory we may suppose that ¢ is a prime number ¢S by
scaling of =+1 if necessary. Put k = QWD) and A = Z[a, (b + vD)/2],
A = (a, (b + +/D)/2) (= the ideal generated by a and (b + +/D)/2); then
the norm of A is @ and for « = azx + (b + vD)y/2 (z, ¥ € Q), N(a) =a(az?
+ bay + cy?). Hence Q(xe, + ye,) = N(a)/a. Thus we may consider A,
N(a)/a as L, Q(a) respectively, and are given an element v in A. Put
J = ([[pes P)'; then to complete the proof we need only show that there
is an element % in A and a prime number ¢ ¢ S such that » = v modJ,
and Q) € Z; for any prime pe S, p # ¢, and Q) e qZF. Put (v) = BC
where B,C are integral ideals and for a prime ideal E|J, E|(v) if and
only if E|B. Hence (J,C) =1. Take a prime ideal I with a prime norm
qgeS such that I = %CAY, 4 = 1mod*J. Put v = iv; then (w) = IAB
Cc A. Hence uc A, and u=vmodJ. Moreover Q(u) = N(w)/a = +NI-
NB, where NI = q is a prime ¢S and NBeZ)(p¢S). We must show
uweA. Put D = f*d where d is the discriminant of Q(vD); Since p|J
for p|f,u—v =@ — ve fA. veA and NA)f imply we A. This
completes a proof.

2. Proof of Theorem B

Without loss of generality we may assume that the scale of L is
contained in Z. If rank L = 2, then the proof of Theorem A in [1]
shows that Theorem B is true. Assume rank L > 3. Then take an ele-
ment %, in L, for p|2dL such that u; is a characteristic submodule of
L,. From Lemma 3 follows that there is an element # in L and a
prime qf2dL such that v and u, are sufficiently near in L, for p|2dL
and Q) e Z; for pe S, p + ¢, and Qu) e ¢Z¥. Since w and u, are suffi-
ciently near, there is a unit ¢, ¢ Z, such that Q) = £Q(u,). Hence
there is an isometry g, e O(L,) such that g,(w) = e,u,. Put M = ut in
L; then M, is a characteristic submodule of L, (p|2dL), and dM,c qZ},
and dM,e Z) for peS,p #+ q. Therefore M satisfies the conditions 1),
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2) in Theorem A by Lemma 2. Thus we have only to prove that «(M)
is a direct summand of L’ for an isometry « from M into a lattice L’
in 2) in Theorem B. Extend « to an isometry from U to U’, and put L”
= a '(L/). Since M, is a characteristic submodule of L,, L) = L, for
p|2dL. If p42dL, L7 is unimodular. Hence M, is a direct summand of
L} since dM,e Zy or pZ). Therefore M is a direct summand of a (L)
= L”. This completes a proof of Theorem B.
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