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Abstract

The allometric hypothesis which relates the shape (y) of biological organs to the size of
the plant or animal (x), as a function of the relative growth rates, is ubiquitous in biology.
This concept has been especially useful in studies of carcass composition of farm animals,
and is the basis for the definition of maintenance requirements in animal nutrition.

When the size variable is random the differential equation describing the relative growth
rates of organs becomes a stochastic differential equation, with a solution different from
that of the deterministic equation normally used to describe allometry. This is important in
studies of carcass composition where animals are slaughtered in different sizes and ages,
introducing variance between animals into the size variable.

This paper derives an equation that relates values of the shape variable to the expected
values of the size variable at any point. This is the most easily interpreted relationship
in many applications of the allometric hypothesis such as the study of the development of
carcass composition in domestic animals by serial slaughter. The change in the estimates
of the coefficients of the allometric equation found through the usual deterministc equation
is demonstrated under additive and multiplicative errors. The inclusion of a factor based
on the reciprocal of the size variable to the usual log - log regression equation is shown
to produce unbiased estimates of the parameters when the errors can be assumed to be
multiplicative.

The consequences of stochastic size variables in the study of carcass composition are
discussed.

1. Introduction

The relationships between the structural components of plants and animals are con-
strained by their physical environment. For example, the legs of an animal must have
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a certain minimum bone diameter if they are to support the animal of a given weight.
In effect this means that the relative proportions of the structural components must
change as an organism grows if functionality is to be preserved. Other examples
relate the surface area of animals to their volume, the relationship being constrained
by the physical problems of heat loss. This is the principle of allometry formulated
by Huxley [7], and elaborated upon by Gould [6], and Sprent [15].

The allometric hypothesis in its simplest form implies that the relative growth of
an organ or a part is in constant proportion to the relative growth of the organism or
the whole. That is,

1 ^ = -— m
y d t x d t K '

where k is the dimensionless constant of proportionality called the maturity.
The part variable (v) is usually called the shape variable, and the whole variable

O) is called the size variable. Allometry was first used to study the way the shape of
organs changed as the size of the organism increased when the relationship between
the relative growth rates described by equation (1) held.

Recently the allometric hypothesis has been used to study changes in the carcass
composition of farm animals for the meat production (Murray and Slezacek [13]; Jury
et al. [8]; Kirton et al. [10]). There are commercial advantages to the manipulation
of carcass components to emphasise the production of lean meat and reduce the
production of fat.

To assist this study, changes in carcass composition which result from nutritional or
environmental effects need to be distinguished from changes due to differences in the
relative growth rate of carcass components as the animal ages and grows larger. The
allometric hypothesis describes a suitable model for changes in the relative weight
of different carcass components as the size of animal increases. For example, if the
weight of fat in carcass was of interest fat weight would increase in proportion to
the increase in carcass weight according to the allometric relationship expressed in
equation (1). That is, in terms of the original allometric formulation fat weight acts
as a shape variable and carcass weight is the size variable.

Measurement of carcass components which deviate from the relationship between
component weight and animal size expressed by the allometric hypothesis can be
investigated for the influence of nutritional or environmental effects. This makes
the allometric hypothesis an attractive basis for statistical models to study carcass
composition.

The allometric relationship between carcass components and carcass size may not
be constant over the life of the animal, but depend on the maturity of the animal
(Butterfield et al. [3]). Bone matures early and fat tissue matures late. Thus Lohse
et al. [12] showed that piecewise log - log regressions provided better fits for some
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tissues than a single log - log regression, since the allometric coefficients changed as
the maturity of the tissue changed.

However carcass studies involving slaughter of the animal have measurements that
can only be made at one point in time. So changes in shape due to changes in size
are inferred on the basis of comparisons between different animals at different sizes
(size allometry), rather than comparisons between the same animal at different sizes
(growth allometry). Size allometry reqires consideration of between animal variance
as well as within animal variance in the allometric hypothesis.

If the independent size variable (x) is random then equation (1) is a stochastic
differential equation There are additional considerations in the solution of stochastic
differential equations not present in the deterministic case.

The Ito and Stratonovich calculus considers the evolution at a random value of the
independent variable. In this problem we address the issue of finding the expected
value of y at the expected value of x.

The problem is illustrated in Figure 1. Here it can be seen that equivalent fluctu-
ations about a given value of the independent variable x = x* do not produce identical
fluctuations about the value of the response variable y = y* mapped by x*. That is in
general E[f(x)] does not equal f(E[x]). For example if x is a normally distributed
random variable, and y = ln(x), then ln(£[x]) corresponds to the median of y, not
the expected value of y.

FIGURE 1. The asymmetry in the response (y) to equal changes in the independent variable (x) x + Ax
x — Ax.

Stochastic differential equations may be handled using the Ito or Stratonovich
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calculus (Gard [5]). These methods consider the evolution of the state equation under
random perturbations, and could be applied to the stochastic allometric equation
we have defined. However, many biological applications are interpreted through
estimates of the shape variable (y) at the expected value of the size variable (x). For
example in studies of the evolution of carcass composition by serial slaughter animals
slaughtered at different values of the size variable are randomly chosen to represent
the mean of the population of interest. In this paper we address this problem of finding
an equation for the evolution of shape (y) as the expected value of the size variable
(x) changes while the allometric relationship defined by equation (1) holds.

When the relationship between the random variables is a differential equation the
asymmetry in the response variable due to symmetric fluctuations in the independent
variable (as in Figure 1) will lead to an expected evolution of the stochastic equation
which is different to the evolution of the deterministic form. It is important to
emphasise that the random elements of x affect the evolution of the equation.

The goal of most serial slaughter experiments is to estimate the evolution of the
response (y) as the population mean of the size variable (x) evolves through time.
However, as noted the deterministic solution of equation (1) will not give this relation-
ship when the size variable is random due to the symmetry of the response to random
fluctuations in the size variable. Similar problems arise in many aspects of biology
where the allometric hypothesis (and alternative formulations) have been used.

We emphasise that we are considering estimates of the parameters of the allometric
equation as they are defined by the differential equation (1) when the size variable
is random. In this case the uncertainty associated with the size variable (x) interacts
with the evolution of the equation in an asymmetric way as illustrated in Figure 1.
Therefore the estimates of the parameters found by adding random error to the solution
of the deterministic differential equation (1) are not the estimates of the parameters
of equation when this equation is stochastic, that is, a different statistical model is
involved.

This paper considers the estimation of the parameters of the allometric equation (1)
when the size variable is random. We derive a solution of the stochastic allometric
equation which gives the value of the part variable (y) at the expected value of the
size variable (x).

2. The stochastic allometric equation and its solution

The independent variable time can be eliminated from the relative growth rate
equation (1) to relate the change in the shape and size variables, that is,

"i = ̂  (2)
dx x
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This equation is easily solved by separation of variables to give

y = Cx\ (3)

where C is the constant of integration. This expresses the well-known power law of
allometry. In fitting this relationship to data it is usual to use the logarithm of both
variables and fit the linear equation

Iny = \nC + klnx, (4)

with appropriate errors at the data points (Xj, yt), i = 1 ,2 , . . . , n.
To derive the solution of equation (2) when the size variable is stochastic we

proceed as follows.
We expand equation (2) in a series about the expected value fj. of x. We write

li= j xdFix), (5)
xeR

where R is a feasible region of the size variable.
The equation (2) becomes

where

g(x) =

So

using the original equation (2).
Then

g"(x) = k(k -

Substitution of this in the above, taking moments, and assuming that the moments
higher than two are negligible, we obtain for the expected values on the right-hand
side (RHS)
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and cr2 is the variance of the size variable x.
We can evaluate the expected value on the left-hand side as follows:

fy= / li

and so

dF(x)

= lim -E (y(fi) + (x+h- n)y\n) + ...- v(/i) - (x -

dx

where we have neglected the next term (which involves d3y/d(i3) and those that
follow. Using-this in equation (6) we obtain the modified allometric differential
equation

dy ,, , J 1 , o\k - i)(fc - 2))
— = kyiti) - + — } (7)
d/x [fi 2/x3 J

with solution (obtained again by separation of variables)

k (-k(k - l)(k - 2)a2\
y(ji) = cix" exp I — 1. (8)

It is clear from equation (8) that the degree of bias associated with treating the
differential equation (2) as deterministic, when however the size variable is random,
depends on the size of the maturity coefficient k, and the square of the coefficient
of variation (cx/fi) of the size variable. When the coefficient of variation is small
then there will be little bias and the deterministic allometric equation will usually
be an adequate description. However, as noted, when size allometry is used, the
variance between animals will increase the coefficient of variation, and the bias in the
estimation may be substantial.

3. Estimates of the parameters in the allometric equation from data

We will consider the least squares estimation of the parameters in the allometric
equation. These are the coefficients of the maturity (k) and the constant of propor-
tionality (c), from data.
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3.1. Additive Errors The statistical model for the allometric hypothesis under ad-
ditive errors when the size variable is not stochastic is

yt = cxk + e, (9)

and when the size variable is stochastic

v, = cxk exp ["-*(*- 1)(* - 2)a2/4x2l + e,. (10)

The estimate of c form equation (10) will be biased by amount exp[—k(k — \)(k —
2)a2/4x2].

To estimate the maturity coefficient k by least squares when the size variable is not
stochastic we have

When the size variable is stochastic we get

q = a2/Ax2,

with

^ ^ - c2(3*2 -6k + 2)qe-k(k-m-2)'< ^ y,xf - ce-^-^-^i ^ y,xf tax,-c
3A: ( (

+ c2(3A:2 -6k + 2)qe-2k(k-m-2)< Y,XT + ce-2**"'**-2* J ^ x * lnx,

= 0 for a minimum.

Hence

ce-kik-m-2)q L (3jfe2 _6k + 2)q Y^xf + cY, x?" In *,
L

- (3A:2 - 6k + 2)q £ y,xf - J^ y>xi l n *' = °-
' ' J

To show the estimates of k from equation (9) equal the estimates of k from this
equation we need to show that the expression

- 6* + 2)9 Y x? ~ (3jfc2 ~ 6k
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This last statement is clearly true.
Hence k = k' and the estimate of the maturity k, ignoring the stochastic nature of

the size variable will be unbiased.

3.2. Multiplicative errors Estimation of the parameters of the allometric equation
(3) when the errors are assumed to be multiplicative, is usually carried out by taking
logs of the shape and size variables, then estimating the coefficient by ordinary linear
regression.

Thus

In y, = Inc + k In*,• - k(k - l)(k - T)q + e,

and

'L = 2^\\nyi -lnac-k\nXi + k(k- l)(k-2)q\ (-) = 0

for a minimum.
Hence

Inc = \ny - k\ny + ]Tk(k - l)(ifc - 2)q/n,

and so

where y, x are the geometric means of y, and xt(i = 1 , . . . , n) respectively.
Thus the bias in the coefficient of proportionality (c) is the same under both

multiplicative and additive models.
The least squares estimate of the maturity k under the multiplicative model remains

biased by an amount

Clearly fitting the traditional allometric equation (7) will give unbiased estimates of c
and k whenever k equals zero, one or two.

3.3. Obtaining unbiased estimates for the stochastic allometric equation Un-
biased estimates of the integration constant c and the maturity k can be found by
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fitting equation (10) in the case of additive errors, or for multiplicative errors the
equation

In y, = In c + k In x, — b/xf + e,, (12)

where b = k(k- \){k - 2)cr2.
Difficulties in estimation may result if the range of x is restricted causing a high

correlation between lnx, and l/(xf). In this case principle components regression
may be employed to obtain stable regression coefficients. Transformation of the prin-
ciple component regression coefficients back to the original scale will give unbiased
estimates of c and it (Wonnacott and Wonnacott [17]).

TABLE 1. Simulated values for weight of fat (kg) and corresponding weight of carcass (kg) for an
allometric relationship based on a constant of proportionality a = 0.05 and maturity k = 1.5.

y
fatwt
0J616
0.8164
0.8366
0.8849
0.9312
0.9700
0.9997
1.0318
1.1025
1.1570
1.1665
1.2335
1.2605
1.2998
1.3535
1.4005
1.4255
1.4875
1.5277
1.5753
1.6323
1.6701
1.7253
1.7815
1.8242

X

carcasswt
6.3939
5.1591
7.4612
6.1437
6.2790
6.4997
6.4705
7.1284
6.7268
8.1245
9.2445
9.9586
7.9496
7.7626
10.8612
9.9600
11.0240
9.7317
11.5991
11.1954
9.2611
10.3982
10.1323
10.4528
12.2392

y
fatwt
1.8783
1.9211
1.9732
2.0231
2.0697
2.1358
2.1782
2.2479
2.2919
2.3358
2.3995
2.4505
2.5031
2.5611
2.6316
2.6592
2.7513
2.7840
2.8561
2.9053
2.9566
3.0102
3.0856
3.1415
3.2031

X

carcass wt
11.2407
12.5111
10.6565
12.8770
14.1175
13.2353
12.2180
13.4181
12.9622
13.6628
14.2555
13.6355
14.3318
14.7429
11.5878
11.6541
11.1668
13.3119
13.6626
13.2678
16.4991
16.1972
17.7749
14.2400
16.8683
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Example The data in Table 1 are simulations of fat and carcass weight measure-
ments of lambs from an investigation by Butler-Hogg [2]. The simulation was for
an allometric relationship between fat and carcass weight with integration constant
c = 0.05kg and maturity k = 1.5. Carcass weights were simulated from a normal
distribution with a standard derivation of 1.5kg, thought to model the variance asso-
ciated with size allometry. The error structure was additive. Using least squares to
estimate the coefficients of equation (3) using log - log regression yields estimates of
c = 0.09 and k = 1.27. Failure to account for the random nature of the size variable
has biased the estimate of c by 60%. The bias in the parameter k is mild.

Fitting the regression equation (9) produced estimates of c = 0.04 and k = 1.52,
very close to the figures used to construct the simulation, suggesting that unbiased
estimates of the parameters of the allometric equation when the size variable is random
can indeed be obtained from equation (9).

4. Discussion

The relationship between the shape variable (y) and the expected value of the size
variable (x) in the allometric equation (1) is different from the deterministic case
when the size variable is uncertain. The difference depends on the magnitude of the
maturity (k) and the magnitude of the coefficient of variation (<r2/4/i2) of the size
variable. However unbiased estimates of parameters can be found by fitting equation
(10) when errors are additive, or equation (12) if errors are multiplicative.

In many studies the allometric equation is used as an empirical model to test
statistical hypotheses, that is, the log-log model is fitted to data. Interpretation may not
depend on the allometric hypothesis as defined by equation (1). In such circumstances
there is no problem with this procedure. However, if the interpretation of the analysis
does depend on the relationship expressed in equation (1) and (2) the issues raised in
this paper should be considered. For example, biological inferences may be drawn
from estimates of maturity (k) which are less than or greater than 1. This infers that
the part is changing slower than, or faster than, the size. Incorrect conclusions may
follow if the wrong model is used to settle such a question.

The allometric principle has become the basis for describing changes in carcass
composition (fat, bone, lean), as carcass weight increases (Butler-Hogg [2]; Seebeck
[14]; Korver et al. [11] and Blaxter [1]). When this description is extended to
computer models then the predictive value of allometry becomes important. In this
respect the changes of the allometric state equation due to a random size variable
will have an influence, especially if extrapolation occurs. For example, a coefficient
of variation of 30% in the size variable will result in the fat content of the carcass
being underestimated by 10%. When parameters are determined on the basis of the
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size allometry, and predictions are made from the mean of the data estimating the
coefficient, then the errors of prediction will be large and bias in the model predictions
will increase.

The allometric hypothesis, or its derivatives are the basis for carcass composition
models discussed by Emmans [4], Keele et al. [9] and Williams et al. [16]. This
work shows that a correction needs to be made to account for the stochastic nature of
the size variables if predictions from such models are to be accurate, especially at the
extremes. Derivatives of the allometric hypothesis such as the model discussed by
Emmans [4] need to be examined to find the consequences of stochastic size vairables
on the predictions that they make.

When an estimate of the variance of the size variable is not available, including an
independent variable in the regression based on the reciprocal of the square of the size
variable will allow unbiased estimation of the parameters of the allometric equation.
However care should be taken because problems of multicollinearity may arise if the
range of the size variable in an experiment is small. Use of principle component
regression may be advised if this occurs.

The allometric hypothesis is a valuable concept for studies of carcass composition
in farm animals. This paper has developed modifications to the allometric state
equation when the size variable is random. This should assist the accuracy of theories
of carcass composition based on the allometric hypothesis.
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