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DIMENSION OF A TOPOLOGICAL
TRANSFORMATION GROUP

HSU-TUNG KU AND MEI-CHIN KU

Throughout this paper, the Alexander-Spanier cohomology with compact
supports will be used. Suppose X is a compact connected topological m-mani-
fold which admits an effective action of a compact connected Lie group G
(m = 19). It is known [3] that X is either homeomorphic to the complex pro-
jective k-space CP* (m = 2k), or

dim G = (@) + (m — a),

for all a such that H*(X; Q) # 0, where (k) denotes k(k + 1)/2 for a non-
negative integer k. In this paper, we prove the corresponding result for the
actions of compact connected Lie groups on the locally compact topological
spaces. In [5], it is proved that if a compact connected (Lie) group G acts
effectively on a connected locally compact m-dimensional space X with w
conjugacy classes of isotropy subgroups, w = 2, then dim G = (w — 1)
(m — 1). We improve the bound on the dimension of G by proving the follow-
ing result.

THEOREM. Let G be a compact connected Lie group acting effectively on a con-
nected locally compact m-dimensional space X with w distinct conjugacy classes of
isotropy subgroups, w = 2, m = 20. Suppose the fixed point set F of G is not
empty, dim F < a = m — 1 for some a and H*(X; Q) # 0. Then precisely one
of the following holds:

(1) There is exactly one type of orbits of the form CP¥(m — 1 = 2k) and

dmG = (w—2)(m — 1)+ dimSU(k + 1).

2)dimG = (w—2)m — 1)+ B)+ (m — B — 1), where 8 = max
(o, m — a).

Proof. Suppose
B) dimG> (w—2)m—1)+ B)+ (m —B8 —1).

We proceed to show that we only have statement (1). Now
B)+ (m—p—1)z (m—1)%/4+ (m —1)/2.
Hence
4) dmG> (w—2)m —1)+ (m — 1)2/4 + (m — 1)/2.
Received July 2, 1975.
594

https://doi.org/10.4153/CJM-1976-058-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-058-2

TOPOLOGICAL GROUPS 595

Let X4, 7 = 1, ..., w, be the point set union of the orbits corresponding to
w conjugacy classes of isotropy subgroups, and let K; be the normal subgroups
of G acting trivially on X, such that G/K; acts effectively on X, with all orbits
of the same type. We may assume that K, = G and X, = F. Obviously,
X =X,U...UX,1UF, and G/K; acts effectively on every orbit in X,
1 =17 =< w— 1, whichisat most (m — 1)-dimensional [5]. Hence

) dimG/K;= (m—1), ¢=1,...,w— 1.

The map
d)G—’G/Kl X ... X G/Kw_l

defined by ¢(g) = (gK,, ..., gK,-1) for g € G is a monomorphism because
the action of G on X is effective and N{7'K, = N{,K, is the identity of G.
It follows from (4) that

w—1

©) 21 dimG/K,> dimG > (@ —2) (m — 1)+ (m — 1)%/4 + (m — 1)/2.

Express the groups G and G/K,, 1 = 1 < w — 1, in the following forms:
(8) G/K{zéi/N1= (Slix---xsviixT“)/Niv

where T (respectively 7%) is a g-torus (g;-torus), each S, (respectively S;?) is
a compact, connected, simply connected simple Lie group, or isomorphic to
Spin (4) = Spin (3) X Spin (3), and there is at most one Spin (3), and N
(respectively N,) is a finite normal subgroup of G (respectively G,).

It is easily seen from (6) that

9) dmG/K;> (m—1)?2/44+ m—1)/2, 1 <iZw—1.

Now for any fixed x; € X, let M, = (G/K,)(x,), the G/K, orbit at x,,
1=1=w-—1 Thendim M; £m — 1.Sincem — 1 = 19, and G/K, satisfy
(9), we may modify the proof of the Main Lemma in [3] to the actions of G/K
on M, to obtain the following. For each 7,1 < 7 < w — 1, exactly one of the
following holds:
(ey) M ;is homeomorphic to CP¥(m — 1 = 2k), and G/K ; is locally isomorphic
to SU(k + 1).
(84) M; is homeomorphic to CP*¥ X S'(m — 2 = 2k), and G/K, is locally
isomorphic to U(k + 1).
(v:) M,is a simple lens space finitely covered by S*+1(m — 1 = 2k + 1), and
G/K ,is locally isomorphic to U(k + 1).
(8,) G/K; contains a normal factor S, = Spin (n,) (see (8)), where

(@) ne> (m +1)/2,

(b:) S, acts almost effectively on the homogeneous space M ; with all orbits
homeomorphic to either S*i—! or RP"i~1,
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Suppose there are 1y, 15, (41 # 12) satisfying (a;), 2 = 71, 7s. Then
dimG=(w—3)(m—1)+2dimSU(k + 1)
<(@w-—=2)m—1)+ (m—1)*/4+ (m — 1)/2.
This contradicts (4). If there is exactly one M, satisfying (a;), we have the
statement (1). We will show that the remaining possibilities (8;), (v:) and

(8;) cannot occur.
In the case that there is an M, satisfying either (8;) or (y,), we have

dim G < Y, dim G/K; + dim U(k + 1)

=1
K@-2)m—1)+ B)+ (m—B8—1),

which contradicts (3). Hence the possibilities (§;) hold for allz,7 =1, ...,
w — 1.

We may lift each S;?in G; to G, and identify S;? as a subgroup of G, 1 £ 7 <
w — 1. The subgroups S;’ of G are all distinct, 1 £ ¢ < w — 1. Otherwise,
there exist 1, , 7 # j, and S;* = Sy%. Let

$:GoGi X ... X Gy

be the homomorphism that covers ¢. Define the homomorphism

V:Gi X ... XGp1—G X...XGi/S1*X ... X Gp

by w(glr ey iy ooy gw—l) = (gly vy g1y gi51i, it1y ooy gw—l)- Then
Ker (y@) is a finite group. Hence

w—1
(10) dim G = dim G < Y, dim G/K; + dim G/K; — dim S;".

k=1

k1

Let ¢.* be the smallest integer such that dim S,* < (¢,*). It follows from [2; 4]
(applied to the action of G/K; on M,) that

V1
an > tt+q <dmM, <m— 1.
c=1

But ttt=n;,— 1> (m — 1)/2 by (a;), hence XY iist,' + q; < (m — 1)/2.
From (8) we have

dim G/K¢ — dim $1' < 25 (') +¢: < <Z>)2 t' + g1>

< Alm — 1)/21)((m — 1)*/4 + (m — 1)/2.

Hence
dmG< (w—2)m — 1)+ (m — 1)2/4 + (m — 1)/2,
by (10). This is a contradiction to (4).
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Denote the subgroup S;* X ... X S;*~! of G by H. The group S;* X ...
X S X S X L. X 51?7 must act trivially on X;, 1 £ 75w — 1.
Otherwise the orbits of H will have dimension at least (n; — 1) + (n; — 1)
forsomej (1 £ jSw—1,7#4),and n;, — 1) + (n; — 1) > m — 1by (a,)
which contradicts the fact that dim M; < m — 1. It follows that X;,/H =
X,/S;% and

X/H = X/Si*U. ..U Xp/S1" U F.

Now the action of S;¢ on X, has all orbits either S*i~! or RP"—1, This follows
from (8;) and the fact that the action of S;*on any two G/K ; orbits in X ; are
equivariant homeomorphic. Hence we have fibrations X ; — X ;/S;* with fibre
SrilorRP*1 1 <¢=w—1.Letn, =min{n;:72=1,...,w — 1}. Then

and

(12) dim X/H =< max {m — n; + 1,dim F}.

Consider the projection 7 : X — X/H. For each ¥ € X/H, = '(&) is S*i1,
RP"~1 or a point, which is acyclic over Q up to n; — 2. It follows from the
Vietoris-Begle mapping theorem that

™ H(X/H;Q) = H(X;Q), jSm—2.
However, H*(X/H; Q) # O sincea = 8 < n;, — 2. But
dim X/H £ max {m — 8 — 1,dim F} < «

We claim that #n, < 8 4+ 1. Suppose, on the contrary, that n, = 8 -+ 2.

from (12). This is, of course, impossible. Hence #, < 8 + 1.

Now we consider the action of G/K; on M,. From () and (11) we have

(13) Si* =< Spin (), n, > (m + 1)/2, and
thk:nk—lgtjk, 2éjévk.

Lett* =8 — u,u = 0. Then

vk
dim G/Ky = dim Gy < (8 —u) + X /) +

where

V&
(14) 22 g —u<<m—g—1,
=

by (11). We consider two cases.
(i) Xt + ¢« < u. Then

dim G/K, < (B —u) + (é t4 )
KB-u)+ w)< B)< B)+ (m—p-—1).
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(ii) Y7ot + qp > u. By repeated use of Lemma 2(b) in [3],

B—uy+ Z=j ¢+ ¢ < BY + ; )+ G

where 0 < ¢ = ¢, 0 =i =¢tf (2 =7 = v), and

vk

vk
Z ijk+qk= z; t,-k—{—qk——u.
=

<,

It follows that

mmW&=mm®<<m+;;@U+%
<o +(% 1+

=B+ t]-"+qk—u>

< (B)+ (m — 8 — 1) (From (14)).

Hence
dimG = w—-2)m—-1)+ B)+ (m —B—1),
a contradiction. This completes the proof of the theorem.

Remarks 1. The theorem is best possible. Let ¥ be the disjoint union of
(w — 2) copies of the (m — 1)-sphere S™ ! and S*=! X §"* (m — a = a).
Take X to be the suspension of V. Let

G=50(m) X...XSO(m) X SO@) X SO(m —a + 1),

with (w — 2) copies of SO(m). Now let each copy of SO(m) in G act non-
trivially and orthogonally on exactly one copy of S™ !, and SO(a) X
SO(m — a + 1) acts transitively and non-trivially just on S*=! X S™= in V.
Extend the action of G to X leaving the two vertices of X fixed. Then there
are w conjugacy classes of isotropy subgroups, H*(X; Q) # 0 and

dmG=(w—2)m —1)+ (m —a)+ (@—1).
For an example that satisfies statement (1) and
dimG = (w—2)(m — 1) +dimSU(k + 1),

we simply replace Se=! X S™ = and the factor SO(a) X SO(m — a + 1) in the
above example by CP*¥ (26 =m — 1) and SU(k + 1) respectively with
SU(k + 1) acting transitively on CP*.

2. From the proof of the theorem, it is not difficult to see that if w = 1, we
have the following result: Let G be a compact connected Lie group acting
effectively on a connected locally compact m-dimensional space X with
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exactly one type of orbits, m = 19. Then X is either homeomorphic to CP*
2k = m), or

dim G = (@) + (m — )

for all a such that H*(X; Q) # 0.
3. The same proof also shows that the theorem is true when the fixed point
set F is empty.
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