
Astin Bulletin 12 (1981) 81-100
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SUMMARY

To some extent, this paper provides theoretical back-up for TAYLOR'S (1980b)
see-saw method of analysis of outstanding claims.

Section 3 deals with the payments per claim finalized (PPCF) method.
This assumes PPCF to be a function of development year only.

Section 4 carries out a theoretical investigation of the validity of this as-
sumption. It is found that the assumption is not justified in general; that PPCF
can (and usually will) be sensitive to changes in speed of finalization of claims ;
and that this sensitivity will depend on the convexity properties of PPCF as a
function of development year. The analysis is made on the basis of the so-
called hypothesis of invariant order.

Section 5 develops the see-saw method from this theoretical basis, although
Section 7 is at pains to point to situations in which that method remains
applicable despite violation of the hypothesis of invariant order.

Section 6 provides a numerical example.

1. INTRODUCTION

Few methods of claims runoff analysis attempt to make due allowance for
speed of finalization.

A survey of a number of simple methods and some more sophisticated ones
is given by SKURNICK (1973). A survey of "reasonably sophisticated" methods
can be obtained by taking SAWKINS (1979b) and TAYLOR (1980b) together.
An examination of these papers will vindicate the previous paragraph.

Of the "reasonably sophisticated" methods which do make allowance for
speed of finalization there are essentially only two. These are:

(i) Sawkins' payments per claim finalized method, or some fairly simple
variant of it;

(ii) Taylor's Reduced Reid method.

The two methods are dealt with in some detail in SAWKINS (i979ab) and
TAYLOR (i98oab). The method of REID (1978) is left out of account here,
being regarded as "highly sophisticated".
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82 G. C. TAYLOR

The basic assumption on which the payments per claim finalized method
rests is that, for a given development year, claim payments (adjusted for
inflation) are proportional to number of claims finalized. The constant of
proportionality is supposed to be independent of year of origin.

The Reduced Reid method shows how this assumption may be upset by
changes in speed of finalization. The method uses the concept of operational
time. It replaces the assumption stated in the preceding paragraph by the
assumption that, for a given operational time period, claim payments (adjusted
for inflation) are proportional to number of claims finalized.

Section 4 of this paper makes a more extensive theoretical investigation
of the way in which claim payments vary with numbers of claims finalized.
As was perhaps to be expected, more subtle forces than those allowed for in
either the payments per claim finalized method or the Reduced Reid method
are found to be at work.

Section 5 then develops a (rather simplified) method for dealing with the
realistic situation.

2. NOTATION

As a general rule, random variables will be represented by upper case Latin
letters; realizations of those random variables by the corresponding lower
case Latin letters; and the expected values of those random variables by the
corresponding lower case Greek letters.

Consider an array of random variables Cy for some given but arbitrary set S
of ordered pairs (i, j). The random variable Cy is the amount of claims paid in
development year j of year of origin i. Here the year of origin of a claim is the
year in which that claim originates; it may be the year in which the claim is
incurred; or the year in which the insurer is notified of it; other definitions
may be used. The year of origin is, by definition, development year 0. Succeeding
years are defined to be development years 1, 2, etc.

Now consider a further array of random variables Ny, also defined for (i, j)
s S. The random variable Ny is the number of claims finalized in development
year j of year of origin i.

Define

(2.1) Pi] = Ctj/Nij,

and call this payments per claim finalized (PPCF) in development year j of
year of origin i.

Define

(2.2) Nt = £ Nih
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which is the total number of claims originating in year of origin i. For the
purpose of this definition, we assume Ny to be defined for all nonnegative real j .

Generally, in this paper, the numbers Nt of claims incurred are treated as
known. As pointed out by the referee of the paper, this is not realistic as regards
the most recent years of origin where there may be significant numbers of
IBNR claims. A proper treatment of this feature would incorporate stochastic
modelling of the N% and in particular modelling of the delay from date of
occurrence to date of notification of claim.

In the class of business considered in the numerical example of Section
6 detailed statistics on this delay suggest that its distribution has been under-
going slow but sure secular change in past years with occasional major dis-
locations. The reasons for these changes are not known. In such circumstances,
the required modelling of number of claims incurred becomes a virtual im-
possibility.

The class of business dealt with in Section 6 is the one involving the longest
notification delays of all classes of direct business in Australia. Even in this
case, experience indicates that serious error in Ni is likely to occur only in
respect of the very latest year of origin.

In these circumstances, we prefer to dodge the problem of modelling claim
numbers, making a mental reservation about the accuracy of N{ for the latest
year of origin.

Define

(2.3) FV =

and call this speed of finalization in development year j of year of origin i.
Define

(2.4) Mv = S Nik,
A--0

which is the number of claims originating in year i and finalized in develop-
ment year j or earlier. It can be regarded as a kind of aggregate measure of
speed of finalization up to the end of development year j . More pertinently,
it may be used as a measure of operational time in the sense of REID (1978).
In particular, the development of year of origin i in real time (development
years) can be dropped, and this development measured instead in operational
time

(2.5) Ttj = Mii/Nt,

which varies from o at the beginning of development year 0 to 1 at develop-
ment year 00. Incidentally, by (2.3) to (2.5),

i

Tij = S
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Let Pi (s, t) denote PPCF during operational time period (s, t), of year of
origin i.

Initially, we shall adopt the hypothesis of invariant order (TAYLOR, 1980a).
That is, it is assumed that the claim payments of year of origin i will be made
in a specific order irrespective of speed of finalization; that changed speed of
finalization will simply compress or extend the time-line on which those claims
are paid without affecting their order of payment or finalization. The effect
of this assumption is to make operational time a variable rather than real time.

In this spirit, we define:

(2.6) aiF{t) = expected size of a claim payment made at operational time t in
finalization of a claim with year of origin i;

(2.7) <Jip(t) = expected size of a claim payment made at operational time t in
respect of a claim which is not finalized by that payment;

(2.8) q>i(t) = expected number of such partial payments between successive
finalizations at operational times t and t + 0 respectively.

It is supposed that all claim payments have been adjusted for inflation, and
are expressed in common dollar values.

For reasons which will become apparent later, we write:

(2.9) li{t) = GiF(t) + <?i(t)<JiP(t).

3. PAYMENTS PER CLAIM FINALIZED METHOD

The PPCF method is described in detail by SAWKINS (i979ab). The major
assumption is as follows:

Assumption (PPCF). For each j = 0, 1, 2 etc. there is a parameter TZJ, depen-
dent only on _;, such that

(3.1) E[Pt]\{Ni,j,}] = n),

where E is the expected value operator, where all claim amounts have been
converted to current values, and {N{,j,} = {NVj,\ (v, 3-,) s S}.

In other words, the magnitude of expected payments per claim finalized
is a function of development year only. More particularly, it is independent of
the speed of finalization of claims in the development year in question; and
independent of the speed of finalization in other development years.

The PPCF method consists essentially of the following steps:

(i) estimation of the parameters nf,
(ii) estimation of the future runoff of numbers of finalizations;

(iii) combination of the estimates in (i) and (ii) to produce a runoff of future
claim payments in current values;

(iv) adjustment from current values to allow for whatever extent of claims
escalation and discounting is required.
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It is not the purpose here to go into the details of how these steps are achieved.
Such details are given by SAWKINS (ig79ab). It is simply intended to point
out the fundamental nature of the assumption described by (3.1). This assump-
tion is in fact implied by Step (i) above. The validity of the assumption is
examined in Section 4.

4. VARIABLES AFFECTING PPCF

Consider year of origin i and operational time period (t, t + d]. The proportion
of claims finalized in this period is d. Therefore,

number of claims finalized in
operational time period (t, t + d] l'

By (2.6) to (2.8), expected claim payments in operational time period

(t, t + d] =

(4.2) Ni Sl+d[GiF(s) + <pi(s)GiP(s)] ds

B y (4.1) a n d (4.2), expec ted P P C F in operat ional t ime per iod (t,t + d]

= EPi (t, t + d)
1

(4.3) = ^ J \*d[aiF{s) + 91 (s) aiP(s)] ds

= -n:(t, t + d), say.

Equation (4.3) shows that, for a given operational time period, PPCF is
indeed a constant. Thus, the basic assumption of the Reduced Reid method
(Section 1) follows from the hypothesis of invariant order.

Note that the basic assumption of the PPCF method (Section 1) does not
follow. For, if development year j of year of origin i corresponds to operational
time period (%, ty + di]], then

1 rt.,->-d..
Ii{s)ds,

1 [t
(4.4) expected PPCF for development year } = ~, ,

dii J 1

which depends on ty and dy, i.e. on speed of finalization. Here and in the
remainder of this section, "expected PPCF for development year j " must be
read as that expectation conditional on the set {Nt,j,}.

Of course, in practice, the form of the data is such that one usually has to
work with development years (real time) rather than operational time. The
starting point in such an investigation will consist of quantities of the type

(44)-
Consider then the effect on PPCF for year of origin i, development year j

of a small change in speed of finalization. After the change, development
year j will correspond to operational time

https://doi.org/10.1017/S0515036100007030 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100007030


86 G. C. TAYLOR

{kj + sij, U} + dtj + nij], where sy, vjy are small. Then

expected PPCF for development year j (after change)

(4-5) = n ( t + e , t + d + n ) = [ /«+
+f+" I(s)ds,

where the subscripts i, j have been temporarily suppressed.
Since s, YJ are small, (4.5) can be written as:

ds + 7) / (* + d)—

+ 0(z) + 0(7)).

Expansion to first order of the terms preceding the braces gives:

+

(4.6) =Tz(t,

o(e)

Thus, an expression of the expected PPCF after the change in speed of
finalization is obtained in terms of the expected PPCF before the change.

Now suppose that e = — yj. That is, the two operational time periods (t, t + d)
and (t + E, t + d + vj) = (t — t], t + d + TJ) have the same midpoints, i.e. relate to
the same average operational time. For this special case, (4.6) becomes:

(4.7) n(t--r\,t + d + vi) = Tz{t,t + d) + ^[I(t + d) + I(t) - 2n{t,t + d)].

Suppose 7] > o, i.e. the change in speed of finalization in development year j
has been an increase.

Then

(4.8) n{t-t), t + d+ti) =n{t, t + d)
<

according as

(4.9) ^

A sufficient condition for (4.9) to hold is that:

i strictly convex to the t-axis
(4.10) I(t) is < linear in t

( strictly concave to the ^-axis.
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If I(t) is twice differentiable, this condition is equivalent to

(4.11) I"{t) = 0.

In the case of I{t) being twice differentiable, and of (4.9) requiring to be
satisfied for all t, d, condition (4.11) is in fact necessary.

Two comments can be made readily. Firstly, it would be highly fortuitous
if Ij(̂ ) should turn out to be linear in t, which is the condition for expected
PPCF to be invariant under changes in speed of finalization. Hence, Assump-
tion (3.1) cannot be expected to hold normally. Consequently, the PPCF
method described in Section 3 will require some modification to allow for this
fact.

Secondly, since, according to (4.4) expected PPCF in development year j

and, since by the mean value theorem,

1
3 yt

+a I(s) ds = I(t + a), for some 0 < a < d,

it follows that:

expected PPCF in development year j of year of origin i

(4.12) = Ii(tij + ay), o < «y < dij,

where subscripts i, j have now been reinstated.
Thus, condition (4.10) can be reformulated as follows: A sufficient condition

to ensure that increased speed of finalization (in development year j)

!

increase in PPCF
no change in PPCF
decrease in PPCF

is that PPCF, as a function of development year k, be a function which

(4-13) is

strictly convex to the &-axis
linear in k
strictly concave to the A-axis,

whatever the correspondence between development years and operational
time periods.

This condition will be considered again briefly in Section 6 in the context
of a numerical example.

It is not difficult to think of circumstances in which the hypothesis of in-
variant order, which underlies all of the reasoning hitherto in this section,
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can be violated. For example, in longtail liability insurance, a certain propor-
tion of notified claims are usually closed at no cost. Such claims could be
settled earlier or later in their lifetimes, in which case nothing would be changed
in the insurer's experience except the order of finalization of claims.

There seems little point in going into algebraic detail in such cases. The
qualitative effects of such changes are clear. Suppose that, entirely through
administrative decision, the finalizations of some zero claims occur earlier.
The distribution of claim payments over development years will be unaffected.
The numbers of finalizations, in respect of a given year of origin, will be higher
in the early development years, and lower in the later development years.
Hence PPCF will decrease in the early development years and increase in the
later development years.

A danger is that, if the change has occurred during the last few years, the
resulting decrease in PPCF may have been observed, but the compensating
increase mentioned above might be still to emerge.

It is impossible to generalize on situations arising when the hypothesis
of invariant order is violated. This latter was adopted as a working hypothesis
for the first part of this section, and results obtained on the basis of it. If one
wishes to consider a situation in which it does not hold, then analytic results
can be obtained only if it is replaced by an alternative hypothesis defining
precisely the rules of the game.

All that can be said in general is that the hypothesis of invariant order,
like most working hypothesis, is an idealization; that it may well approximate
reality in many cases; but that the user of it must be watchful for any evidence
to the contrary and prepared to react accordingly.

5. THE SEE-SAW METHOD

Essentially, the burthen of Section 4 is that PPCF for given development
years will vary with changes in speed of finalization. Hence the assumption
(3.1) on which the PPCF method rests will be invalid, and so that method
will be of unknown reliability. As pointed out in Section 4, the noncumulative
version of the Reduced Reid method (TAYLOR, 1980a) uses PPCF for develop-
ment years as its starting point, interpolating between these quantities to
obtain estimates of PPCF for particular operational time periods. Hence,
this method will also be disrupted by a failure to recognise the dependency
of PPCF for a development year on speed of finalization.

Therefore the question arises as to whether this last-mentioned dependency
can be modelled. That is, it is now desired to recognise (inflation-adjusted)
expected PPCF, conditional on {Np},} and {Fpj,}, as a function of both operational
time and speed of finalization:

{5.1} E[Pu I {Npj,}, {Fpp}] = g({Tik:j<k^j+ l}, Ft]).
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A couple of simplifying assumptions are made in (5.1). Firstly, it is assumed
that the set {Tik: j <k^j + 1} of operational times corresponding to year of
origin i, development year j is adequately represented as an independent
variable by its mid-value:

(5-2) Tti = i (TV, + 7V,,+1).

On this assumption, (5.1) simplifies to:

(5-3) E[Pi} I {NtT}, {i>r}] = g(Tih Ft)).

Now, a priori the form of the function g is not restricted in any way at all.
The most useful approach, therefore, appears to be to consider separate
relatively small ranges of Ty, making linearity assumptions in each.

Suppose the entire range of operational time (0,1] is partitioned into r
subintervals (uk, vjc], k=i, 2, . . ., r, with % = o, vr = i, ur+1 = vr. Suppose
(M*, V/C] to be sufficiently short that g can be taken to be linear. Thus, the
second simplifying assumption is that:

(5.4) g{Tij, Fa) = afc + (3fc Tij + Yj; Fij for uk < Ti} ^ vk,

with OLJC, [Bj;, j!c constants.
The approximation (5.4) with Ty given by (5.2) is reasonable only if the

operational time-intervals (Ty, Ti, j+{] are roughly in correspondence with the
(uic, Vk]- The points u^, vk would therefore usually be chosen so as to force such
a rough correspondence.

Up to this point no relation has been imposed on the a ,̂ fib, yjt associated
with the different ranges (uk, vk]. However, it is desirable, presumably, to
model g as a continuous function.

Continuity in the operational time variable can be obtained, while retaining
the general form (5.4), by writing:

(5-5) g{Tih Fv) = a + Sp* Tf + Sy f
k k

where

a is now a constant independent of interval of operational time under con-
sideration ;

file is different from (3*; in (5.4);
Yfc is the same as in (5.4);

$ = ujc, if fij < uy,
(5.6) = T^, iiuk «S Tij < vk;

= vie, if T^ > Vk)

(5-7) Fffl = FU>if uk < T^ ^ vk;
= o, otherwise.
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Note that continuity in Fy is not obtained by the form (5.5). This results
from the fact that the domains on which g is taken to be linear have been
taken to depend on operational time (through the bounds ujc, v^) but not
speed of finalization.

From a purely mathematical point of view, it might have been more natural
to define:

(5.8) g(Tv, Fy) = a + Zf jty
k I

withF'/j defined not as in (5.7) but in the same form as (5.6). This would indeed
ensure continuity of g (Ty, Fy) in both its variables. It would also produce
linearity on the rectangular domains

{{ft}, Fi}):u
T

k <Ttj < v*. uF
k < Fy < <} ,

for constants « | , v^, uk, vk.

The difference between (5.5) and (5.8) is of course that, for (5.5),

(5-9) tgfiFij = Ykioruk < fy <vk,

whereas for (5.8),

(5-io) lgflFt} = h for ** < Fa < «f-

That is, in the first case the sensitivity of PPCF to changes in speed of
finalization depends on operational time; whereas in the second this sensitivity
depends on speed of finalization. The literature provides no guidance as to
which of these factors is dominant. However, rather extensive experimentation
on the part of the author suggests that, in most cases, the first of these alter-
natives seems nearer to reality. Hence, (5.5), though lacking in symmetry,
is chosen as a better representation of PPCF than (5.8). In this choice, con-
tinuity of g in Fij, though it would have been desirable, has been sacrificed.

As it happened, in the numerical example dealt in Section 6, y# did not vary
greatly from one value of k to another, and so the sacrifice of continuity was
not particularly important in numerical terms.

By (5.3) and (5.5), the adopted form for PPCF is:

(5.11) E[Pi} = a

with Ty, Fij defined by (5.6) and (5.7) respectively.
The parameters a, (3*. yt may be estimated by regression of Py on Ty, Fy.

If any information is available (or can be guessed at) regarding the variances
of the Pij, the regression can be weighted to take account of it. The literature is
virtually silent on the relation between Var Py and Tij. But, as far as the
relation between Var Py and F^ is concerned, one would expect Var [P^ \{Ni,j,},
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{F^y}} to be inversely proportional to iVy. In the absence of further informa-
tion, it might be reasonable to carry out a weighted regression of Py on Ty,
Fij with Py weighted by 2Vy.

Empirically, it appears that the y^ are negative Thus, as speed of finaliza-
tion increases, PPCF decreases. Because of this feature, the method developed
above has been called the see-saw method (Taylor, 1980b).

6. NUMERICAL EXAMPLE

Appendix A contains data from a Compulsory Third Party (1 e Motor—Bodily
Injury) insurer in the Australian Capital Territory.

The PPCF are reproduced in Table 3 below. Operational times and speeds
of fmahzation are given in Table l. These figures are all taken from Taylor
(1980b).
A weighted regression of Py on Tffl and Fffi was carried out in the manner
suggested in Section 5. The results were as follows:

TABLE 1 OPERATIONAL TIMES AND SPEEDS OF FINALIZATION

Accident
year

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

(1)
(2)

(0
(2)

(1)

(2)

(1)

(2)

(0
(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

095
19
035
07

O35
07

O35
07
030
06
020

04

015

°3
015

°3
030
06

015

°3
0 020

0 04

(1:
(2;

) Average operational time
1 Speed

during

0

1

335
0 29

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

220

3°
210

28
190

24
135
15
H5
21

120

18

135
21

140
16

i°5
15

. of fmahzation (b)
development

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

585
21

515
29
490
28

37°
12

365
31
410

32
335
25
33O
18
230

14

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

780
16

73°
H
710
12

565
27
670

30
665
19
57°
22

500
16

year

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

895
07

825

°5
820

H
805
21

870
1O

815
11

75°
14

0

0

0

0

0

0

0

0

0

0

0

0

(a),

5

950
040

884
067

929
077

935
050

935
030

890
040

0

0

0

0

0

0

0

0

6

976
013
941
042

975
015
964
007

O955
0 010

0

0

0

0

0

0

0

0

7

988
010

970
014
984
003

972
009

0

0

0

0

0

0

8

994
004

984
014
988
005

(a) Average of operational times at beginning and end of year, (b) Increase in operational
time, 1 e proportion of claims incurred finalized, during year
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Range of
operational

time k

l

2

3
4
5
6
7

G. C. TAYLOR

TABLE 2. REGRESSION COEFFICIENTS

from
operational

time

o
0.15

o-35
o-55
0-75
0.85

O-95

to
operational

time

0.15

o-35
o.55
o-75
0.85

0.95
1.00

(a)

$
— 2191

+10410

-H94
— 16720

-45-O9
+14660

+ 208100

Y*
(a)

$
-3395°
— 22090
— 30380
-30870
-35260
— 38010
- 145200

a
(a)

$

-188100

(a). Estimated by means of a weighted regression in accordance with (5.11). The weight
associated with Py was iVy. The regression was carried out by means of the GLIM package.

The error terms were assumed to be normally distributed.

TABLE 3. PAYMENTS PER CLAIM FINALIZED

Accident
year

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

0

$

195O
7282
8184
11490

13338
11490
9528
11490
8813
11840
14089
12540
17651
12890
16725
12890

15143
11840
15660
12890
14852
12540

Payments (31/12/79 values) per

(1)
(2)

actually recorded (a);
fitted C

in development

1

$
10288

9131
8246

7713
8268
8051

5847
8726
8601

8552
6799

6493
7401
7566
9165

6515
9216
8201
9636
8618

2

$
10285
8386

9195
6686
6621
7020
12255
12020

5538
6257
5986
59oo
9197
10010
12287

11510
14118

H35O

year

3

$
9273
6469
11602
8123
9419
9O75
5923
6868

3972
4187
5798
7666

7995
8328

5996
10650

4

$
12843
10110
8509
10340
6872
7172

3751
47O5
11297
8598
7818
8230
8872
12110

claim finalized:

5

$
6826

7765
8896
10060

4433
10340
13663
11450

10325
12210
8851
11170

6

f
18373
17100
10003
11840
14780
16600

48599
1547O
21906
13160

7

$
14169
20030
12039
15700
28550
20210

49974
16840

8

f
12539
22150
2570
18620
21610
20750

(a). From Appendices A2 and A5; (b). Calculated from regression equation (5.11); using
parameters of Table 2 and observed operational times and speeds of finalization tabulated

in Table 1.
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Table 2 provides a model for the projection of future claim payments.
This projection is carried through to its conclusion in Appendix B.

The fitted PPCF obtained from this regression appear in Table 3.
To a large extent the fitted PPCF appear in accord with the observed.

There are deviations, however, and the quality of the fit vis-a-vis other methods
is not clear without a good deal more work. Without going into the matter,
it will simply be reported here that a thorough analysis of the fits obtained
by seven different methods of analysis has been made by TAYLOR (1980b).
The fit provided by the see-saw method appears clearly superior to the other
six.

A significant feature of Table 1 is that yt < 0 for each k. That is, at every
operational time, an increase in speed of finalization induces a decrease in
PPCF. A sufficient condition for this to occur was given by (4.13). It is in-
teresting to investigate to what extent (fitted) PPCF, as a function of develop-
ment year k, is strictly concave to the A-axis.

A brief investigation of fitted PPCF reveals that this condition does not
hold whatever the correspondence between development years and operational
time periods, as required by (4.13). However, it is perhaps more pertinent to
examine the fitted PPCF for a typical runoff of claim numbers.

TABLE 4 . PPCF FOR A TYPICAL RUNOFF OF CLAIM NUMBERS

Development Operational time Fitted Second difference
year at end of PPCF of

development year fitted PPCF

0

1

2

3
4
5

6
7
8
9

1 0

0.04
0.30

0.50
0.70

0.86
0.92

0.94
0.96
0.98
0.99
1.00

12,568
8,106

9,587
8,475
6,498

10,442

12,549
12,842
14,860

19,434
21,515

+ 2,981
-2,593

-865
+ 5,921
-1,837

-1,814
+ 1,725
+ 2,556
-2,493

It must be remembered of course that the fitted values of PPCF are subject
to estimation error, and second differences even more so. Nevertheless, it
cannot be said that Table 4 provides compelling evidence that PPCF is a
persistently concave function. The table does perhaps give the impression of a
piecewise concave function with a couple of jumps from one concave piece to
another at a higher level.
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It is interesting that, although PPCF appear to fluctuate between concavity
and convexity, still each yfc < 0. This is rather unexpected in the light of
Section 4. Two remarks can be made. Firstly, the see-saw method may well
still be applicable (see Section 7). Secondly, the negativity of all the yk may be
explicable as follows. TAYLOR (1980b, Section 12 and 13) showed that average
claim sizes may have been increasing with increasing year of origin. But a
glance at Table 1 shows that this would lead to a negative correlation between
PPCF and speed of finalization.

The existence of superimposed inflation would manifest itself in a similar
way.

It is worth recording that, for another CTP insurer (data not reproduced
here), PPCF appeared quite clearly to be a monotone increasing and concave
function of development year.

7. CONCLUDING REMARKS

Section 4 carries out an investigation of the way in which PPCF can be ex-
pected to respond to changes in speed of finalization. The investigation is
based on the hypothesis that such changes merely have the effect of extending
or compressing the time-line. They do not reorder nor change the nature of
the events occurring on this time-line. This hypothesis is consistent with
REID'S (1978) use of operational time which, it appears from subsequent
experience, is producing reasonably good results.

On the basis of this hypothesis it is concluded that whether PPCF increases
or decreases with increasing speed of finalization depends on the convexity
properties of PPCF (over infinitesimal time intervals) as a function of opera-
tional time.

Emphasis is given to the fact that this conclusion may require amendment
should the hypothesis on which it is based be violated. As an example of the
type of violation which can occur, reference is made to the possible situation
in which an increase in speed of finalization is "not real" in the sense that it
is induced merely by a change in administrative practice as to when certain
claims are regarded as finalized.

Another possibility, not mentioned in Section 4, is that a change in speed
of settlement does actually change claim sizes (apart from inflationary effects).
For example, it may be argued that the insurer's earlier achievement of
settlement with the insured produces a decrease, in real terms, in the amount
of the claim.

The likelihood and effect of such distortions of the model deserve some
comment. Firstly, as regards the "administrative change" distortion, Reid
seems to be achieving reasonable results without bringing this possibility
into account. Secondly, as regards the "real reduction in claim size" distortion,
it is difficult to determine to what extent this is taken into account in Reid's

https://doi.org/10.1017/S0515036100007030 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100007030


FINALIZATION OF CLAIMS AND RUNOFF ANALYSIS 95

method. If the suggested phenomenon were present, its effect would presum-
ably be to influence Reid's inflation factors. If the phenomenon were significant,
Reid would observe a bias in these factors in years in which a change in speed
of finalization occurred. I am not aware that such a bias has been observed,
but on the other hand there may not have been any particular reason for
seeking it.

All things considered, it does seem that the evidence for any important
departure from the hypothesis of invariant order is rather slim.

In any event, it should be noted that, although Section 4 depends on the
hypothesis of invariant order, Section 5 in which the see-saw method is worked
out does not. Section 5 is based simply on the assumption that for small changes
in speed of finalization and small ranges of operational time, PPCF is ap-
proximately a linear function of these two variables. Even if the hypothesis
of invariant order were violated in both of the ways described above, this
linearity assumption would still remain appropriate.

In other words, although Section 4 provides some interesting details of the
claim payment mechanism, the see-saw method does not depend on the
intricacies of this mechanism.

APPENDIX A: DATA

Ai.

Numbers of claims incurred («< in the notation of Section 2)

Accident year Number of claims
incurred (a)

1969
1970
1971
1972

1973
1974
1975
1976

1977
1978

1979

523
643
676
673
809
669
513
543
622

7O3
743

(a). These numbers consist of numbers of claims reported to the end-1979 plus estimated
numbers incurred but not reported (IBNR). Because the second of these components has
been estimated, the above numbers are strictly subject to estimation error. However,
the scope for error is quite small. For years other than the very latest it is very small

indeed. Throughout this paper, estimation error in the Ni has been disregarded.
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A2.
Numbers of claims finalized (ny in the notation of Section 2)

Accident

ycsx

1969
1970

1971
1972

1973
1974
1975
1976

1977
1978

1979

Number of

0

99
46
44
45
52
25
16
16

37
23

3°

1

154
193
191
166

115
140

93
114
102

105

claims finalized

2

112

187
193
78

256
216
126

99
84

3

84
89
78
185
240
129

113
88

4

37
34
99
136
78
70

71

in development

5

21

43
49
36
27

31

6

7
27
10

5
9

7

5
9
2

6

year

8

2

9
3

A3.
Claim payments (cy in the notation of Section 2)

Accident
year o

Claim payments in development year

$ % I f % $ $
418034 305728 208822 77754 82811 52596 20405
674860 453750 156919 246291 200516 88166 20440
561523 398485 438079 161268 120262 50451 61742
518479 705550 378684 400212 214705 285566
912775 707685 716962 246320 187767
956866 611637 484568 260301
942889 798263 599887
1074810 502516
1129424

1969
1970

1971
1972

1973
1974
1975
1976

1977
1978

1979

57369
122161
212991
168274
201373
191049
181845
198670
455912
318237
424327

514096

559595
619776
426536

536473
612854
511027
850127

830559
963590
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A4.
Inflation index

Calendar year Claims inflation
index (a)

1969
1970

1971
1972

1973
1974
1975
1976
1977
1978
1979

0.297229

0.324488

O-374397
0392473
0.439437
o.5378i9
0.643884
0.742414

0.813682

0.883572

O.952377

(a). Base value of 1.0 at 31/12/79. The index is proportional to Average Weekly Earnings
for ACT. In years 1973 and earlier, this statistic was not published. It has been taken as
120% of NSW AWE. Inflation of AWE from mid-1979 to end-1979 has been taken as 5%.

A5-
Claim payments in 3iji2Jyg values

Accident
year o

Claim payments (31/12/79 values) (a) in development year

1969
1970

1971
1972
1973
1974
1975
1976
1977
1978
1979

193013

376473
568891
428753
458252

355229
282419
267600
560307
360171

445545

1584331
154195O
1579158
970640
989072
948807
688332
1044790
940002
1011773

1151882
1719509
1277822
955898
1417606
1292900

1158793
1216437
1185899

778980 475203 143352 128612 70845 25077
1032570 289305 382508 270087 108354 23133
734670 680369 217221 147800 57099 64829

1095771 510072 491853 242995 299845
953222 881133 278778 197156
748003 547288 274367

903450 629983

527644

(a). Derived from Appendices A3 and A4.
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APPENDIX B : PROJECTIONS OF FUTURE CLAIM PAYMENTS

B I .

Operational times and speeds of finalization

Accident
vear

(1) Average operational time (a)
(2) Speed of finalization (b) (c);
during development year

1 0

1969 (1) 0.095
(2) 0.19

1970 (1) 0.035
(2) 0.07

1971 (1) 0.035
(2) 0.07

1972 (1) 0.035
(2) 0.07

1973 (1) 0.030
(2) 0.06

1974 (i) O.O2O
(2) 0.04

1975 (1) 0.015
(2) 0.03

1976 (1) 0.015
(2) 0.03

1977 (1) 0.030
(2) 0.06

1978 (1) 0.015

(2) 0.03

1979 (1) O.O2O

(2) 0.04

0.335
0.29

0.220
0.30

0.210
0.28

0.190
0.24

0.135
0.15

0145
O.2I

0.120
0.18

0.135
0.21

0.140
0.16

0.105

0-15

0.110
0.14

0.585
0.21

0515
0.29

0.490
0.28

0.370
0.12

0365
0.31

0.410
0.32

O-335
0.25

O-33O
0.18

0.230
0.14

0.240
0.12

0.240
0.12

0.780
0.16

0.730
0.14

0.710
0.12

0-565
0.27

0.670
0.30

0.665
0.19

0.570
0.22

0.500
0.16

0.420
0.12

O-35O
0.10

O-35O
0.10

0.895
0.07

0.825
0.05

0.820
0.14

0.805
0.21

0.870
0.10

0.815
0.11

0.750
0.14

0.665
0.17

0565
0.17

0.500
0.20

0.500
0.20

0.950
0.040

0.884
0.067

0.929
0.077

O-935
0.050

0-935
0.030

0.890
0.040

0.845
0.050

O-775
0.050

o-7i5
0.130

0.675
0.150

0.675
0.150

0.976
0.013

0.941
0.042

O.975
0.015

0.964
0.007

O.955
0.010

0915
0.010

0.885
0.030

0.840
0.080

0.815
0.070

0.785
0.070

0.785
0.070

0.988
0.010

0.970
0.014

0.984
0.003

0.972
0.009

0.965
0.010

0.940
0.040

0.920
0.040

0.900
0.040

0.880
0.060

0.860
0.080

0.860
0.080

0.994
0.004

0.984
0.014

0.988
0.005

0.983
0.014

0.980
0.020

0-975
0.030

0.960
0.040

0.950
0.060

0-945
0.070

O.935
0.070

O.935
0.070

O.993
0.005

O-993
0.005

O.993
0.005

O-993
0.005

0.985
0.010

0.985
0.010

0.985
0.010

0.980
0.020

0.980
0.020

0.998
0.005

0.998

0.005

0.998

0.005

0.998

0.005

O.995
0.010

O.995
0.010

O.995
0.010

O-995
0.010

O.995
0.010

(a). Average of operational times at beginning and end of year; (b). Increase in operational
time, i.e. proportion of claims incurred finalized, during year; (c). Entries below the
heavy diagonal line are derived from the illustrative predicted operational times given in

Section 9.2. (first table) of TAYLOR (1980a).
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B2.
Projected future numbers of finalizations and payments per claim finalized

Accident
year

1971

1972

1973

1974

1975

1976

1977

1978

1979

(1)
(2)

(1)
(2)

(i)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

(1)
(2)

Projected:
(1) Number of claims finalized (a
(2) Payments per claim finalized

in development year

0 1 2

84
11927

104 89
7618 11927

3

75
11994
70

135H
74

135H

4

92

8314

106
9986

141
9468

149
9468

5

26

1O373

27
1O375

81
8712

105
8764

111

8764

-);
(b);

6

6
12709

16
115O9

43
93i6

44
9669

49
9671

52
9671

7

8

15273

26
11936

21
11643

22

H349

37
10295

56
9242

59
9242

8

9
18438

16
16942

20
14449

21
9876

32
11322

44
10868

49
10721

52
10721

9

4
21824

4
21824

4
21824

3
21824

5
19433

5
19433

6
19433

14
16941

15
16941

10

3
22864

3
22864

4
22864

3
22864

5
215H
5

215H
6

21514

7
21514

8
215H

(a). Derived in accordance with TAYLOR (1980a, first table in Section 9.2). The predicted
numbers of future finalizations are needed for illustrative purposes only. No importance
attaches to them in the context of the principle involved in the see-saw method, (b).
Derived from (5.11) using the parameters displayed in Table 2 and future operational

times and speeds of finalization from Appendix Bi.
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Outstanding claims

Accident year

1971
1972
1973
1974
1975
1976
1977
1978
1979

Total
(1971-1979)

Outstanding claims at 31/12/79
(in 31/12/79 values)

0.156
0.322

0.572
0.810
1.110
2.262

4.194
6.108

7.269

22.803
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