
20 Parsing with OCamllex and Menhir

This chapter includes contributions from Jason Hickey.

Many programming tasks start with the interpretation of some form of structured

textual data. Parsing is the process of converting such data into data structures that are

easy to program against. For simple formats, it's often enough to parse the data in an

ad hoc way, say, by breaking up the data into lines, and then using regular expressions

for breaking those lines down into their component pieces.

But this simplistic approach tends to fall down when parsing more complicated

data, particularly data with the kind of recursive structure you �nd in full-blown

programming languages or �exible data formats like JSON and XML. Parsing such

formats accurately and e�ciently while providing useful error messages is a complex

task.

Often, you can �nd an existing parsing library that handles these issues for you. But

there are tools to simplify the task when you do need to write a parser, in the form of

parser generators. A parser generator creates a parser from a speci�cation of the data

format that you want to parse, and uses that to generate a parser.

Parser generators have a long history, including tools like lex and yacc that date

back to the early 1970s. OCaml has its own alternatives, including ocamllex, which

replaces lex, and ocamlyacc and menhir, which replace yacc. We'll explore these

tools in the course of walking through the implementation of a parser for the JSON

serialization format that we discussed in Chapter 19 (Handling JSON Data).

Parsing is a broad and often intricate topic, and our purpose here is not to teach

all of the theoretical issues, but to provide a pragmatic introduction of how to build a

parser in OCaml.

Menhir Versus ocamlyacc

Menhir is an alternative parser generator that is generally superior to the venerable

ocamlyacc, which dates back quite a few years. Menhir is mostly compatible with

ocamlyacc grammars, and so you can usually just switch to Menhir and expect older

code to work (with some minor di�erences described in the Menhir manual).

The biggest advantage of Menhir is that its error messages are generally more

human-comprehensible, and the parsers that it generates are fully reentrant and can be

parameterized in OCaml modules more easily. We recommend that any new code you

develop should use Menhir instead of ocamlyacc.

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

362 Parsing with OCamllex and Menhir

Menhir isn't distributed directly with OCaml but is available through OPAM by

running opam install menhir.

20.1 Lexing and Parsing

Parsing is traditionally broken down into two parts: lexical analysis, which is a kind of

simpli�ed parsing phase that converts a stream of characters into a stream of logical

tokens; and full-on parsing, which involves converting a stream of tokens into the �nal

representation, which is often in the form of a tree-like data structure called an abstract

syntax tree, or AST.

It's confusing that the termparsing is applied to both the overall process of converting

textual data to structured data, and also more speci�cally to the second phase of

converting a stream of tokens to an AST; so from here on out, we'll use the term

parsing to refer only to this second phase.

Let's consider lexing and parsing in the context of the JSON format. Here's a snippet

of text that represents a JSON object containing a string labeled title and an array

containing two objects, each with a name and array of zip codes:

{
"title": "Cities",
"cities": [
{ "name": "Chicago", "zips": [60601] },
{ "name": "New York", "zips": [10004] }

]
}

At a syntactic level, we can think of a JSON �le as a series of simple logical units,

like curly braces, square brackets, commas, colons, identi�ers, numbers, and quoted

strings. Thus, we could represent our JSON text as a sequence of tokens of the following

type:

type token =
| NULL
| TRUE
| FALSE
| STRING of string
| INT of int
| FLOAT of float
| LEFT_BRACK
| RIGHT_BRACK
| LEFT_BRACE
| RIGHT_BRACE
| COMMA
| COLON
| EOF

Note that this representation loses some information about the original text. For

example, whitespace is not represented. It's common, and indeed useful, for the token

stream to forget some details of the original text that are not required for understanding

its meaning.

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

20.2 De�ning a Parser 363

If we converted the preceding example into a list of these tokens, it would look

something like this:

[LEFT_BRACE; STRING("title"); COLON; STRING("Cities");
COMMA; STRING("cities"); ...]

This kind of representation is easier to work with than the original text, since it

gets rid of some unimportant syntactic details and adds useful structure. But it's still a

good deal more low-level than the simple AST we used for representing JSON data in

Chapter 19 (Handling JSON Data):

type value =
[`Assoc of (string * value) list
| `Bool of bool
| `Float of float
| `Int of int
| `List of value list
| `Null
| `String of string]

This representation is much richer than our token stream, capturing the fact that

JSON values can be nested inside each other and that JSON has a variety of value types,

including numbers, strings, arrays, and objects. The parser we'll write will convert a

token stream into a value of this AST type, as shown below for our earlier JSON

example:

`Assoc
["title", `String "Cities";
"cities", `List
[`Assoc ["name", `String "Chicago"; "zips", `List [`Int 60601]];
`Assoc ["name", `String "New York"; "zips", `List [`Int
10004]]]]

20.2 De�ning a Parser

A parser-speci�cation �le has su�x .mly and contains two sections that are broken

up by separator lines consisting of the characters %% on a line by themselves. The �rst

section of the �le is for declarations, including token and type speci�cations, prece-

dence directives, and other output directives; and the second section is for specifying

the grammar of the language to be parsed.

We'll start by declaring the list of tokens. A token is declared using the syntax

%token <type>uid, where the <type> is optional and uid is a capitalized identi�er. For

JSON, we need tokens for numbers, strings, identi�ers, and punctuation:

%token <int> INT
%token <float> FLOAT
%token <string> ID
%token <string> STRING
%token TRUE
%token FALSE
%token NULL

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

364 Parsing with OCamllex and Menhir

%token LEFT_BRACE
%token RIGHT_BRACE
%token LEFT_BRACK
%token RIGHT_BRACK
%token COLON
%token COMMA
%token EOF

The <type> speci�cations mean that a token carries a value. The INT token carries

an integer value with it, FLOAT has a float value, and STRING carries a string value.

The remaining tokens, such as TRUE, FALSE, or the punctuation, aren't associated with

any value, and so we can omit the <type> speci�cation.

20.2.1 Describing the Grammar

The next thing we need to do is to specify the grammar of a JSON expression. menhir,

like many parser generators, expresses grammars as context-free grammars. (More

precisely, menhir supports LR(1) grammars, but we will ignore that technical distinc-

tion here.) You can think of a context-free grammar as a set of abstract names, called

non-terminal symbols, along with a collection of rules for transforming a nonterminal

symbol into a sequence of tokens and nonterminal symbols. A sequence of tokens

is parsable by a grammar if you can apply the grammar's rules to produce a series

of transformations, starting at a distinguished start symbol that produces the token

sequence in question.

We'll start describing the JSON grammar by declaring the start symbol to be the

non-terminal symbol prog, and by declaring that when parsed, a prog value should

be converted into an OCaml value of type Json.value option. We then end the

declaration section of the parser with a %%:

%start <Json.value option> prog
%%

Once that's in place, we can start specifying the productions. In menhir, productions

are organized into rules, where each rule lists all the possible productions for a given

nonterminal symbol. Here, for example, is the rule for prog:

prog:
| EOF { None }
| v = value { Some v }
;

The syntax for this is reminiscent of an OCaml match expression. The pipes separate

the individual productions, and the curly braces contain a semantic action: OCaml code

that generates the OCaml value corresponding to the production in question. Semantic

actions are arbitrary OCaml expressions that are evaluated during parsing to produce

values that are attached to the non-terminal in the rule.

We have two cases for prog: either there's an EOF, which means the text is empty,

and so there's no JSON value to read, we return the OCaml value None; or we have an

instance of the value nonterminal, which corresponds to a well-formed JSON value,

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

20.2 Parsing Sequences 365

and we wrap the corresponding Json.value in a Some tag. Note that in the value case,

we wrote v = value to bind the OCaml value that corresponds to the variable v, which

we can then use within the curly braces for that production.

Now let's consider a more complex example, the rule for the value symbol:

value:
| LEFT_BRACE; obj = object_fields; RIGHT_BRACE
{ `Assoc obj }

| LEFT_BRACK; vl = array_values; RIGHT_BRACK
{ `List vl }

| s = STRING
{ `String s }

| i = INT
{ `Int i }

| x = FLOAT
{ `Float x }

| TRUE
{ `Bool true }

| FALSE
{ `Bool false }

| NULL
{ `Null }

;

According to these rules, a JSON value is either:

• An object bracketed by curly braces

• An array bracketed by square braces

• A string, integer, �oat, bool, or null value

In each of the productions, the OCaml code in curly braces shows what to transform

the object in question to. Note that we still have two nonterminals whose de�nitions

we depend on here but have not yet de�ned: object_fields and array_values. We'll

look at how these are parsed next.

20.2.2 Parsing Sequences

The rule for object_fields follows, and is really just a thin wrapper that reverses the

list returned by the following rule for rev_object_fields. Note that the �rst production

in rev_object_fields has an empty left-hand side, because what we're matching on

in this case is an empty sequence of tokens. The comment (* empty *) is used to

make this clear:

object_fields: obj = rev_object_fields { List.rev obj };

rev_object_fields:
| (* empty *) { [] }
| obj = rev_object_fields; COMMA; k = ID; COLON; v = value
{ (k, v) :: obj }

;

The rules are structured as they are because menhir generates left-recursive parsers,

which means that the constructed pushdown automaton uses less stack space with

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

366 Parsing with OCamllex and Menhir

left-recursive de�nitions. The following right-recursive rule accepts the same input,

but during parsing, it requires linear stack space to read object �eld de�nitions:

(* Inefficient right-recursive rule *)
object_fields:
| (* empty *) { [] }
| k = STRING; COLON; v = value; COMMA; obj = object_fields
{ (k, v) :: obj }

Alternatively, we could keep the left-recursive de�nition and simply construct the

returned value in left-to-right order. This is even less e�cient, since the complexity of

building the list incrementally in this way is quadratic in the length of the list:

(* Quadratic left-recursive rule *)
object_fields:
| (* empty *) { [] }
| obj = object_fields; COMMA; k = STRING; COLON; v = value
{ obj @ [k, v] }

;

Assembling lists like this is a pretty common requirement inmost realistic grammars,

and the preceding rules (while useful for illustrating how parsing works) are rather

verbose. Menhir features an extended standard library of built-in rules to simplify this

handling. These rules are detailed in the Menhir manual and include optional values,

pairs of values with optional separators, and lists of elements (also with optional

separators).

A version of the JSON grammar using these more succinct Menhir rules follows.

Notice the use of separated_list to parse both JSON objects and lists with one rule:

%token <int> INT
%token <float> FLOAT
%token <string> STRING
%token TRUE
%token FALSE
%token NULL
%token LEFT_BRACE
%token RIGHT_BRACE
%token LEFT_BRACK
%token RIGHT_BRACK
%token COLON
%token COMMA
%token EOF
%start <Json.value option> prog
%%

prog:
| v = value { Some v }
| EOF { None } ;

value:
| LEFT_BRACE; obj = obj_fields; RIGHT_BRACE { `Assoc obj }
| LEFT_BRACK; vl = list_fields; RIGHT_BRACK { `List vl }
| s = STRING { `String s }
| i = INT { `Int i }
| x = FLOAT { `Float x }

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

20.3 Regular Expressions 367

| TRUE { `Bool true }
| FALSE { `Bool false }
| NULL { `Null } ;

obj_fields:
obj = separated_list(COMMA, obj_field) { obj } ;

obj_field:
k = STRING; COLON; v = value { (k, v) } ;

list_fields:
vl = separated_list(COMMA, value) { vl } ;

We can hook in menhir by adding a (menhir) stanza to our dune �le, which tells

the build system to switch to using menhir instead of ocamlyacc to handle �les with

the .mly su�x:

(menhir
(modules parser))

(ocamllex lexer)

(library
(name json_parser)
(modules parser lexer json)
(libraries core))

20.3 De�ning a Lexer

Now we can de�ne a lexer, using ocamllex, to convert our input text into a stream of

tokens. The speci�cation of the lexer is placed in a �le with an .mll su�x.

20.3.1 OCaml Prelude

Let's walk through the de�nition of a lexer section by section. The �rst section is an

optional chunk of OCaml code that is bounded by a pair of curly braces:

{
open Lexing
open Parser

exception SyntaxError of string
}

This code is there to de�ne utility functions used by later snippets of OCaml code

and to set up the environment by opening useful modules and de�ne an exception,

SyntaxError. Any OCaml functions you de�ne here will be subsequently available in

the remainder of the lexer de�nition.

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

368 Parsing with OCamllex and Menhir

20.3.2 Regular Expressions

The next section of the lexing �le is a collection of named regular expressions. These

look syntactically like ordinary OCaml let bindings, but really this is a specialized

syntax for declaring regular expressions. Here's an example:

let int = '-'? ['0'-'9'] ['0'-'9']*

The syntax here is something of a hybrid between OCaml syntax and traditional

regular expression syntax. The int regular expression speci�es an optional leading -,

followed by a digit from 0 to 9, followed by some number of digits from 0 to 9. The

question mark is used to indicate an optional component of a regular expression; the

square brackets are used to specify ranges; and the * operator is used to indicate a

(possibly empty) repetition.

Floating-point numbers are speci�ed similarly, but we deal with decimal points and

exponents. We make the expression easier to read by building up a sequence of named

regular expressions, rather than creating one big and impenetrable expression:

let digit = ['0'-'9']
let frac = '.' digit*
let exp = ['e' 'E'] ['-' '+']? digit+
let float = digit* frac? exp?

Finally, we de�ne whitespace, newlines, and identi�ers:

let white = [' ' '\t']+
let newline = '\r' | '\n' | "\r\n"
let id = ['a'-'z' 'A'-'Z' '_'] ['a'-'z' 'A'-'Z' '0'-'9' '_']*

The newline introduces the | operator, which lets one of several alternative regular

expressions match (in this case, the various carriage-return combinations of CR, LF,

or CRLF).

20.3.3 Lexing Rules

The lexing rules are essentially functions that consume the data, producing OCaml

expressions that evaluate to tokens. TheseOCaml expressions can be quite complicated,

using side e�ects and invoking other rules as part of the body of the rule. Let's look at

the read rule for parsing a JSON expression:

rule read =
parse
| white { read lexbuf }
| newline { next_line lexbuf; read lexbuf }
| int { INT (int_of_string (Lexing.lexeme lexbuf)) }
| float { FLOAT (float_of_string (Lexing.lexeme lexbuf)) }
| "true" { TRUE }
| "false" { FALSE }
| "null" { NULL }
| '"' { read_string (Buffer.create 17) lexbuf }
| '{' { LEFT_BRACE }
| '}' { RIGHT_BRACE }
| '[' { LEFT_BRACK }

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

20.3 Lexing Rules 369

| ']' { RIGHT_BRACK }
| ':' { COLON }
| ',' { COMMA }
| _ { raise (SyntaxError ("Unexpected char: " ^ Lexing.lexeme
lexbuf)) }

| eof { EOF }

The rules are structured very similarly to pattern matches, except that the variants

are replaced by regular expressions on the left-hand side. The right-hand side clause

is the parsed OCaml return value of that rule. The OCaml code for the rules has a

parameter called lexbuf that de�nes the input, including the position in the input �le,

as well as the text that was matched by the regular expression.

The �rst white { read lexbuf } calls the lexer recursively. That is, it skips the

input whitespace and returns the following token. The action newline { next_line

lexbuf; read lexbuf } is similar, but we use it to advance the line number for the

lexer using the utility function that we de�ned at the top of the �le. Let's skip to the

third action:

| int { INT (int_of_string (Lexing.lexeme lexbuf)) }

This action speci�es that when the input matches the int regular expression,

then the lexer should return the expression INT (int_of_string (Lexing.lexeme

lexbuf)). The expression Lexing.lexeme lexbuf returns the complete string matched

by the regular expression. In this case, the string represents a number, so we use the

int_of_string function to convert it to a number.

There are actions for each di�erent kind of token. The string expressions like

"true" { TRUE } are used for keywords, and the special characters have actions, too,

like '{' { LEFT_BRACE }.

Some of these patterns overlap. For example, the regular expression "true" is also

matched by the id pattern. ocamllex used the following disambiguation when a pre�x

of the input is matched by more than one pattern:

• The longest match always wins. For example, the �rst input trueX: 167matches the

regular expression "true" for four characters, and it matches id for �ve characters.

The longer match wins, and the return value is ID "trueX".

• If all matches have the same length, then the �rst action wins. If the input were

true: 167, then both "true" and id match the �rst four characters; "true" is

�rst, so the return value is TRUE.

Unused Lexing Values

In our parser, we have not used all the token regexps that we de�ned in the lexer. For

instance, id is unused since we do not parse unquoted strings for object identi�ers

(something that is allowed by JavaScript, but not the subset of it that is JSON). If

we included a token pattern match for this in the lexer, then we would have to adjust

the parser accordingly to add a %token <string> ID. This would in turn trigger an

�unused� warning since the parser never constructs a value with type ID:

File "parser.mly", line 4, characters 16-18:

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

370 Parsing with OCamllex and Menhir

Warning: the token ID is unused.

It's completely �ne to de�ne unused regexps as we've done, and to hook them into

parsers as required. For example, we might use ID if we add an extension to our parser

for supporting unquoted string identi�ers as a non-standard JSON extension.

20.3.4 Recursive Rules

Unlike many other lexer generators, ocamllex allows the de�nition of multiple lexers

in the same �le, and the de�nitions can be recursive. In this case, we use recursion to

match string literals using the following rule de�nition:

and read_string buf =
parse
| '"' { STRING (Buffer.contents buf) }
| '\\' '/' { Buffer.add_char buf '/'; read_string buf lexbuf }
| '\\' '\\' { Buffer.add_char buf '\\'; read_string buf lexbuf }
| '\\' 'b' { Buffer.add_char buf '\b'; read_string buf lexbuf }
| '\\' 'f' { Buffer.add_char buf '\012'; read_string buf lexbuf }
| '\\' 'n' { Buffer.add_char buf '\n'; read_string buf lexbuf }
| '\\' 'r' { Buffer.add_char buf '\r'; read_string buf lexbuf }
| '\\' 't' { Buffer.add_char buf '\t'; read_string buf lexbuf }
| [^ '"' '\\']+
{ Buffer.add_string buf (Lexing.lexeme lexbuf);
read_string buf lexbuf

}
| _ { raise (SyntaxError ("Illegal string character: " ^
Lexing.lexeme lexbuf)) }

| eof { raise (SyntaxError ("String is not terminated")) }

This rule takes a buf : Buffer.t as an argument. If we reach the terminating double

quote ", then we return the contents of the bu�er as a STRING.

The other cases are for handling the string contents. The action [^ '"' '\\']+ {

... } matches normal input that does not contain a double quote or backslash. The

actions beginning with a backslash \ de�ne what to do for escape sequences. In each

of these cases, the �nal step includes a recursive call to the lexer.

That covers the lexer. Next, we need to combine the lexer with the parser to bring it

all together.

Handling Unicode

We've glossed over an important detail here: parsing Unicode characters to handle the

full spectrum of the world's writing systems. OCaml has several third-party solutions

to handling Unicode, with varying degrees of �exibility and complexity:

• Uutfa is a nonblocking streamingUnicode codec forOCaml, available as a standalone

library. It is accompanied by the Uunfb text normalization and Uucdc Unicode

character database libraries. There is also a robust parser for JSONd available

that illustrates the use of Uutf in your own libraries.

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

20.4 Bringing It All Together 371

• Camomilee supports the full spectrum of Unicode character types, conversion from

around 200 encodings, and collation and locale-sensitive case mappings.

• sedlexf is a lexer generator forUnicode that can serve as aUnicode-aware replacement

for ocamllex.

All of these libraries are available via opam under their respective names.

a http://erratique.ch/software/uutf
b http://erratique.ch/software/uunf
c http://erratique.ch/software/uucd
d http://erratique.ch/software/jsonm
e https://github.com/yoriyuki/Camomile
f https://github.com/ocaml-community/sedlex

20.4 Bringing It All Together

For the �nal part, we need to compose the lexer and parser. As we saw in the type

de�nition in parser.mli, the parsing function expects a lexer of type Lexing.lexbuf

-> token, and a lexbuf:

val prog : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> Json.value
option

Before we start with the lexing, let's �rst de�ne some functions to handle parsing er-

rors. There are currently two errors: Parser.Error and Lexer.SyntaxError. A simple

solution when encountering an error is to print the error and give up:

open Core
open Lexer
open Lexing

let print_position outx lexbuf =
let pos = lexbuf.lex_curr_p in
fprintf outx "%s:%d:%d" pos.pos_fname
pos.pos_lnum (pos.pos_cnum - pos.pos_bol + 1)

let parse_with_error lexbuf =
try Parser.prog Lexer.read lexbuf with
| SyntaxError msg ->
fprintf stderr "%a: %s\n" print_position lexbuf msg;
None

| Parser.Error ->
fprintf stderr "%a: syntax error\n" print_position lexbuf;
exit (-1)

The �give up on the �rst error� approach is easy to implement but isn't very friendly.

In general, error handling can be pretty intricate, and we won't discuss it here. However,

the Menhir parser de�nes additional mechanisms you can use to try and recover from

errors. These are described in detail in its reference manual1 .

The standard lexing library Lexing provides a function from_channel to read

1 http://gallium.inria.fr/~fpottier/menhir/

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

http://erratique.ch/software/uutf
http://erratique.ch/software/uunf
http://erratique.ch/software/uucd
http://erratique.ch/software/jsonm
https://github.com/yoriyuki/Camomile
https://github.com/ocaml-community/sedlex
http://gallium.inria.fr/~fpottier/menhir/
https://doi.org/10.1017/9781009129220.023

372 Parsing with OCamllex and Menhir

the input from a channel. The following function describes the structure, where the

Lexing.from_channel function is used to construct a lexbuf, which is passed with the

lexing function Lexer.read to the Parser.prog function. Parsing.prog returns None

when it reaches end of �le. We de�ne a function Json.output_value, not shown here,

to print a Json.value:

let rec parse_and_print lexbuf =
match parse_with_error lexbuf with
| Some value ->
printf "%a\n" Json.output_value value;
parse_and_print lexbuf

| None -> ()

let loop filename () =
let inx = In_channel.create filename in
let lexbuf = Lexing.from_channel inx in
lexbuf.lex_curr_p <- { lexbuf.lex_curr_p with pos_fname = filename
};

parse_and_print lexbuf;
In_channel.close inx

let () =
Command.basic_spec ~summary:"Parse and display JSON"
Command.Spec.(empty +> anon ("filename" %: string))
loop

|> Command.run

Here's a test input �le we can use to test the code we just wrote:

true
false
null
[1, 2, 3., 4.0, .5, 5.5e5, 6.3]
"Hello World"
{ "field1": "Hello",
"field2": 17e13,
"field3": [1, 2, 3],
"field4": { "fieldA": 1, "fieldB": "Hello" }

}

Now build and run the example using this �le, and you can see the full parser in

action:

$ dune exec ./test.exe test1.json
true
false
null
[1, 2, 3.000000, 4.000000, 0.500000, 550000.000000, 6.300000]
"Hello World"
{ "field1": "Hello",
"field2": 170000000000000.000000,
"field3": [1, 2, 3],
"field4": { "fieldA": 1,
"fieldB": "Hello" } }

With our simple error handling scheme, errors are fatal and cause the program to

terminate with a nonzero exit code:

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

20.4 Bringing It All Together 373

$ cat test2.json
{ "name": "Chicago",
"zips": [12345,

}
{ "name": "New York",
"zips": [10004]

}
$ dune exec ./test.exe test2.json
test2.json:3:2: syntax error
[255]

That wraps up our parsing tutorial. As an aside, notice that the JSON polymorphic

variant type that we de�ned in this chapter is actually structurally compatible with the

Yojson representation explained in Chapter 19 (Handling JSONData). That means that

you can take this parser and use it with the helper functions in Yojson to build more

sophisticated applications.

https://doi.org/10.1017/9781009129220.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.023

