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LETTER TO THE EDITOR

RUIN PROBABILITIES EXPRESSED IN TERMS OF STORAGE
PROCESSES

S0REN ASMUSSEN, "Aalborg University
S0REN SCHOCK PETERSEN, **The Danish State Life Insurance Company

Abstract

It is shown by a simple sample path argument that the ruin probabilities
for a risk reserve process with premium rate p(r) depending on the reserve
r and finite or infinite horizon are related in a simple way to the state
probabilities of a compound Poisson dam with the same release rate p (r) at
content r. In the infinite horizon case, this result has been established by
Harrison and Resnick (1978), and in the finite horizon case with constant p
it extends well-known relations to the M/G /1 virtual waiting time.

FINITE HORIZON; SAMPLE PATH COMPARISON

We consider a risk reserve process {Rt}t~O with i.i.d. claims at the epochs of a Poisson
process and a premium rate p(r) which depends on the current reserve R, = r. We are
interested in the probabilities

of ruin before time T, or of ultimate ruin.
By far the most prominent case in the literature is the case of a constant premium rate,

p(r) =p independently of r, for which a considerable body of theory has been developed. The
study was initiated in risk theory, but more recently, the relation to queueing theory
(expressing the ruin probabilities as the state probabilities of an M/ G /1 queue with the same
arrival intensity and service times distributed as the claims; e.g. [8], [9], [11] or [1] XII!.l.l)
has become more generally appreciated and makes a number of known facts about queues
available to risk theory (the converse is also true!). Our purpose here is to establish a similar
result for a general premium rate p, only expressed in terms of the content process of a dam
(with the same input and with release rate p(r) in state r) rather than in terms of queues.

We first make the notation and basic conditions more precise. We assume that the claim
sizes Vt , Vz, ••• are i.i.d., say with distribution B, and independent of the Poisson arrival
process {Nt}t~O' the intensity of which is denoted by a. The premium rate p(r) is assumed to
be in D[O, (0) with info~r~RP(r) > 0 for each R < 00 (this last condition could to some extent be
weakened to include also some cases where p(r)~O, r~O; such a premium policy seems,
however, to lack sense from a practical point of view). It is convenient to assign some
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arbitrary value, say p(O) = 0, to p(r) also if r < 0; this does not affect the definition (1) of the
ruin probabilities and their interpretation. The risk process {R,} ,6;0 may then be described as
moving according to the differential equation

(2) R=p(R)

in between jumps of {N,},~o and to have a downwards jump of size U; at the nth jump of
{N,} ,s:o. Similarly, the corresponding dam content process {V;} ,6;0 moves according to
V = -p(V) in between jumps of {N,},&:o and has an upwards jump of size Un at the nth jump
of {N,},~o (note that p(r) = 0, r ~ 0, ensures V;~ 0). More formal constructions can be found
in [6], [7]. Examples of the sample paths are given in Figure 1, corresponding to the linear
case p(r) = p + f3r which is of particular interest in risk theory since, e.g., one possible
interpretation is the reserve being invested at interest i% p.a. so that f3 = In (1 + i/1(0) is the
continuous force of interest. See for example [4], [5] and references there. Here p is thus
increasing, but decreasing premium rates p could occur, for example, if the insurance
company reduces the premium or pays out dividend once the reserve has grown sufficiently
large.

We define r = inf {t ~ 0: R, < O} and let lPo refer to the initial condition ~) = O. Here is our
main result.

Theorem. 1/J(u, T) = IPO(VT > y) for all U~ o.
Proof. Assuming that the claims of {R'}O~'~T occur at times 0 < 11 < ... < 1N < T and are of

sizes VI' ... , VN' we represent {V;}O~'~T by letting the Poisson arrival process be given by
the epochs 0 < T - tN < ... < T - 1I < T corresponding to the jump sizes VN' ... , VI. By an
obvious reversibility argument, this does not affect the distributions, and since the probability
of a jump at time T is 0, it is sufficient to show that if R o = u, Vo = 0 then the events {T~ T}
and {VT - O > u} coincide. Let x,(u) denote the solution of (2) corresponding to xo(u) = u.
Then xt(u) > xt(v) for all t when u > v. Suppose first VT - O > u (this situation corresponds to
the solid path of R, in Figure 1 with Ri,= u = u l ) . Then

VT-'t- O = VT-'t - VI =X't(VT - O) - VI> X't(u) - VI = R't~O - VI = R,\.

If VT-'t- O > 0, we can repeat the argument and get VT- '2- 0 > R'2 and so on. Hence if k
satisfies VT-'k- O = 0 (such a k exists, if nothing else k = N), we have R'k< 0 so that indeed
T ~ T. Suppose conversely VT - O~ u (this situation corresponds to the broken path of R, in
Figure 1 with Ro = u = uz). Then similarly

VT- tt- O = VT- tt - VI = xt\(VT- O) - VI ~Xt\(u) - VI = R,\-o - VI = R,\, VT-'2~O ~ R'2

and so on. Hence R'k~ VT- tk- O~ 0 for all k, and since ruin can only occur at the times of
claims, we have r > T.
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As is well known ([1], XII.3; see also [7], [3]), the limiting behaviour of {V;}t~O can be
classified into an ergodic case and a non-ergodic (transient or null recurrent) one. In the
non-ergodic case, IPO(VT > u)~ 1 for all u ~ 0, whereas in the ergodic case a limiting random
variable V exists (in the sense of convergence in distribution or total variation convergence).
The distribution of V then has an atom of size :Fro> 0 at 0 and a density g(x) on (0, (0) which
are determined by the equations

(3)

(4)

g(x) = JloQ(x, 0) +f Q(x, y)g(y) dy

1 = Jlo+rg(y) dy

where Q(x, y) = £1'(1 - B(x - y))lp(x). More generally, for each n.;> 0 (3) has a unique
solution g, and ergodicity is equivalent to fg <00 (in which case (4) is just a normalization to
get mass 1). We call the risk process {Rt}t~o terminating if 1jJ(u) = 1 for all u ~ 0, and proper if
1jJ(u) < 1 for all u ~ O. Letting T~ 00 in the theorem above, we obtain the following.

Corollary. The risk process {R t}t~O is either terminating or proper. The proper case arises if
and only if the dam process is ergodic, or equivalently if and only if the solutions of (3) are
integrable. In that case, the probability of ultimate ruin is given by

(5)

where g and :Fro satisfy (3), (4).

'IjJ(u) = fP>(V > u) =rg(y) dy

In the case of a constant p, say p = 1, we may identify {V;}t~O by the MIGII virtual waiting
time, and the theorem is then classical. In the present more general case the corollary is
contained in [7], but we feel that the present approach is substantially easier and more
elegant, not least combined with the approach to ergodic theory for dams which is given in [1]
XIII.3 and which is somewhat different from [6], [3].

From the practical point of view of computing ruin probabilities, one may note that (3) is a
linear Volterra integral equation of the second kind and a variety of standard numerical
methods are therefore available, see for example [2]. Some worked-out examples will be
presented elsewhere [10].
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