THE NUCLEUS OF A SET
Gilbert Strang (%)

(received July 28, 1967)

Consider the subset}(gc [0,1] containing those functions
for which

(1) f(0) = 0, ’f(x)- f(y)’ < ’x- y] for 0<x,y< 1

One never attempts to visualize )(; it is just a compact blur in
the infinite-dimensional space C. Nevertheless, we want to
establish that it shares with several other sets an odd but
rather remarkable '"geometric' property: it is overwhelmingly
concentrated around a single element. This element we call the
nucleus of X .

To give a precise definition of the nucleus, we adopt
Kolmogorov's measure N () of the size of an arbitrary
€

compact set in a metric space. N is the minimal number of
€
subsets of diameter < 2 € required to cover (; its logarithm

is called the e-entropy of @. For p to be the nucleus of &,
we require that every closed sphere S(p,r) around p, of
arbitrarily small radius r, should contain more than half the
set . Thus we make the following

DEFINITION: The elemeunt p is the nucleus of a compact
set @ if for every r > 0 there exists an ¢(r) > 0 such that

(2) N (@ NS(p, ) > 5 N (&) for < e(x).
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Obviously there cannot be two nuclei p and p': if r is small
enough to make the spheres S(p,r) and S(p',r) disjoint, then
(2) cannot hold for both spheres.

A simple example of a set of reals having a nucleus is a
convergent sequence together with its limit, say the set

a= {0, 1, 1/2, 1/3, ...}.

The limit point p = 0 is the nucleus, since for any sphere
(interval) S(0,r) we have

Ne(a,ﬂS)—' )

as e = 0.

N (a-8)<1/r

The nucleus is not, however, just an arbitrary limit point in
disguise; every point of Kis a limit point, but there is a
unique nucleus. The nucleus may well depend on the choice of
norm; if @ is made up of two convergent sequences, the
nucleus can become either (or neither) of the corresponding
limit points, by an alteration in the norm.

Our definition may be of value in certain improperly posed
problems, such as the problem of interpolation:

Find feC[0, 1], given f(xi) = v, 1<i< N.

Of course this problem has a unique solution in case f is known

to be a polynomial of degree N - 1, or to belong to some other
manifold of a suitable dimension. If one is given only qualitative
information, such as the condition f ¢ ﬂ( , there may be

infinitely many candidates f. When this set of candidates has

a nucleus, that seems to us a reasonable choice for the interpolating
f. Itis interesting that under certain natural assumptions - a

(n)

bound on some derivative ', for example - the nucleus appears
to be one of the spline functions now in fashion.

Naturally there are interesting compact sets which do not
possess a nucleus, such as the Hilbert cube. Furthermore, there
are sets which almost certainly have a nucleus, but for which the
computations of N are forbidding; alternative definitions which
require less countieng would be happily entertained. Estimates of

N have been carried out for a variety of function classes, with
¢ —2%
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sufficient accuracy to distinguish the smoothness or the number
of variables involved in the construction of . Most of these
estimates are Russian, ingenious, and asymptotic; they provide
the leading term in N€ as € -+ 0, which is often insufficient

to verify the condition (2) for a nucleus.

We conjecture, for example, that 0 is the nucleus of the
ellipse in Hilbert space defined by

2
i 2
2 = i

1

=~ M8
> X

For this particular compact set a decent proof should be possible

In this note we are concerned first of all with the nucleus
of }{ At the same time, however, we calculate by heuristic
arguments the nucleus of every subset of }( which is defined by
imposing a finite number of linear constraints. The constraints
in the interpolation problem are the simplest possible; a more
exciting constraint is

1 1
f f(x)dx = @, a<~—.
A 2

In this case the nucleus is almost certainly the function

cosh )
fx) = € cosh A1-x)’

where )\ is chosen to satisfy the constraint.

The problem of nuclei in subsets of/{ has links with the
theory of random walk, and with Brownian motion. It might
be appropriate to call it "Bernoulli walk', since it corresponds
to steps of size Af = i’ Ax, rather than the steps of order

Axi/ 2 in Brownian motion. (This explains why the walk has to
be conditioned by constraints such as ff = @, in order to
make something non-trivial happen in the limiting walk,

Ax =+ 0). This question will be developed at greater length by
Dr. Jay Israel, who is able to replace our heuristic arguments
by rigorous ones, at least for certain subsets.
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There remain many interesting classes - of Hblder
continuous functions, analytic functions, functions of several
variables, and so on - for which the existence of nuclei remains
to be examined.

2. Kolmogorov [1] has pointed out the simple structure of
the setk; our first step towards finding the nucleus is to

reproduce his calculation of N . Recall that the metric in C
€

(andk) is the sup norm

[1f-gl] = sup [f(x)- g(x)].
O<x<1

Let the integer M be defined by M < 1/e <M + 1. Then the

M

result we want is N (k) = 27,
€

Set ¢ = 41/(M+1), and consider those functions g which
are linear between the nodes je' and satisfy

(3) g(0) = 0 = g(e"), gl(j+t)e') = g(je') T e

for 1< j< M. Itis not hard to verify that every element f
ofklies within ¢'< e¢ of one of these piecewise-linear functions
g. Briefly, if [f(x) - go(x)fg ¢' for x< je', then this

inequality continues to hold up to the next node (j+1)e' for at
least one of the two extensions of go. Thus N( (*) < ZM,
since k is covered by the ¢-spheres around the

ZM functions g. (Corollary: /{ is compact).

Now let €' = 1/M, and consider another collection of 2
piecewise-linear functions, this time satisfying

(4) h(0) = 0, h((+1)e™ = h(je") L e, 0<j<M-1,

Each pair of these functions is separated by 2¢' > 2¢ at the
node of first divergence. They all belong to , and must be
in different subsets whenever k is covered by sets of diameter

M
2¢. Therefore N is not less than 2 , and must be exactly
ZM E
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Now we claim that the function f = 0 is the nucleus of k
For this we need a second device due to Kolmogorov, in order to
count those of the functions h which lie outside the sphere
S(0, r). For such an h, let je'" be the last node at which
|h(je")|>r. Then for x> je", reflect the graph of h across
the horizontal line through h(je'); the result h' is still one
of the piecewise-linear functions constructed by (4), and it has
the property that ]h'(i)] >r. Furthermore, this map is never
more than two to one; h' is the image of itself and at most one
other h. Therefore

M
Ne(kﬂS(O,r)) >2" - 2L,

where L is the number of our functions h for which |h(1)|> r.

This number L is easily estimated. If h(1) = se¢'', then
h must ascend (M+s)/2 times and descend (M-s)/2 times.

The number of such functions is given by the binomial coefficient
t M

&(M + s)/Z). Therefore

M
L = =
|S|>M1‘ ((M‘I-S)/Z) .

M+s even

Detailed estimates of such sums are well-known; we use only

M
the fact that L =o0(2 ') as M -+ o. Thus
N S(0,
KNS, )

NG(}<)

and the zero function is indeed the nucleus of}( .

1 as ¢ = 0,

3. In this section we consider the subsets of}l(formed by
imposing linear constraints on the elements f. The zero
function will violate the constraints, in general; the questionis
whether these subsets have a nucleus, and how to find it.

We start by dividing the interval [0,1] into n equal
sub-intervals. We retain the convention ¢'" = 41/M, and assume
that M/n = p 1is an integer. Then those h-functions for which
h(1/n) = se'" must ascend (p+s)/2 times and descend (p-s)/2
times in the first subinterval 0< x< 1/n. Let us introduce
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w = s/p for the slope of the chord between the initial point (0, 0)
and the common point (1/n, se'), and apply Stirling's formula

to
(6) P p!

B2 )7 "pts), b5

2 | &

~ ~N2mp pp e P

T \/pZ_SZ s (pts)/2 p-s (p-s)/2 “p
( > ) (2 ) e
) , B CE Ve N CE T
= (—)  [5) (=) ]
mp(1-w)
= Q(w, p), say

Now consider all the h-functions for which
1 1l v
- = < j< n:
(M) hL=)-n(g) = L 1sicn

that is, the chords over successive sub-intervals have slopes

w W Since (6) counts the number of distinct possibilities

R
in a sub-interval, the total number of h-functions satisfying (7)
is approximately

n
C =1 Qw.,p).
1 J

Note that the leading term in log C is proportional to

(8) n  1+w. 14w, 1-w, 1-w.

Z[Z 1og2J+2Jlog2J].

As n —-w, the corresponding functional approaches

1
1+f! 1+’ 1-f' 1-f"
! =
I(f") {(2 1og2 + 21og2)dx.
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Now come the heuristics. Let { be a (non-empty) subset
ofk , defined by a finite number of continuous linear constraints

1
(9) off(x)dpi(x) = a .

We conjecture that there is a unique fefd which minimizes I(f!),
and that this minimizing function is the nucleus of & . In

short, we believe I(f') to be decisive in estimating the density

of the sets & near the element f.

Let us illustrate the computation of this element by,
considering the constraint

1

ff(x)dx = o, o< 1/2 .
0

An integration by parts converts this into
1

(10) [ (1-x)f'(x)dx = a.
0

Introducing a Lagrange multiplier )\, we want the minimum of
I(f') - ([ (1-%)f'(x)dx - a).

Differentiating formally with respect to f'(x),

1
u_(ﬁ_)\(,l_x) - 0.

1 lo
2 °8 4. f'(x)

(11)
This leads directly to
f'(x) = tanh \(1-x),
and thus to the result stated in the introduction.
For the general set of constraints (9), the calculation goes
in the same way, and it would not be hard to prove uniqueness
for the minimizing f. The proof that this f is the nucleus is

another matter; even in the simplest cases one needs the
technique of steepest descent for the sums which arise in
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estimating N (& N S(f, r)). Roughly speaking, it is I(f')
€

which controls these estimates, and the precise values of «

and r play a minor role. We spare the reader the details, at
least for the present.
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