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Introduction. Let (X, 2, ju) denote a complete a-finite measure space and T: X —*
X a measurable (T~*A e 2 for each A e2) point transformation from X into itself with
the property that the measure n°T~l is absolutely continuous with respect to ju. Given
any measurable, complex-valued function w(x) on X, and a function / in L2(fi), define
WTf(x) via the equation

WTf(x) = w(x)f(Tx). (1)

Known regularity conditions (given below) are both necessary and sufficient for the
linear transformation/—* WTf to define a bounded operator on L2((i); such operators are
called weighted composition operators. In case w(x) = 1 the operator CT defined via
composition with T is simply a composition operator. In this paper we characterize the
normal, quasi-normal and hermitian weighted composition operators in terms of w, T,
and dn°T~l/dfi. Some known results on seminormal composition operators and weighted
composition operators are obtained as corollaries. We given an example of quasinormal
WT with non-constant weight which is not normal. Campbell and Dibrell [2] give sufficient
conditions for a composition operator CT to be power hyponormal; that is, for (CT)n to be
hyponormal for all natural numbers n. We give a sufficient condition for WT to be power
hyponormal, generalizing in a natural way the corresponding result for weighted shifts on
the integers.

Preliminaries. To avoid semantic complexities we take T'1'!! as the relative
completion of the a-algebra generated by {T~1A :A e2} . If / e U (p > 1) or / is
non-negative and measurable, there exists a unique (a.e.) T'1!. measurable function F
whose integral over T~lH measurable sets agrees with the integral of / over the same
sets, whenever the integral of / over such a set converges. Following Lambert ([4]) we
refer to F as the conditional expectation of / with respect to T^Z, and write
F = E(f | T'1!.), or simply £ ( / ) . Let h=d\i°T~xld\i\ we always assume that h is
finite-valued a.e. An arbitrary function/is T'1!. measurable if and only if there is some
2-measurable function g so that g°T =f a.e. We would like to point out, however, that
this function g need not be unique (a.e.) even if T is surjective. Indeed, if H denotes the
support of h, and k is any measurable function, then k°T = 0 a.e. if and only if k is
supported on X - H. Hence the equation g°T=f a.e. has a unique a.e. solution g for
each r - 1 2 measurable function if if and only if h > 0 a.e. on X. In particular, property
(E4) of [4, p. 396] is false. In fact, we have the following example.

EXAMPLE. Let X = [0, 1] equipped with Lebesgue measure m on the Lebesgue
measurable sets, and let C denote the Cantor set in X. If Q is any measurable
transformation mapping C bijectively onto [1/2,1] and 5 is any measurable transforma-
tion mapping the complement of C onto [0,1/2) so that m°S~l is absolutely continuous
with respect to m, then define T: X -» X by Tx = Qx, x e C, and Tx = Sx, x $ C. This T is
measurable, surjective, satisfies m ° T~x« m, and h = 0 on [1/2,1].
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Such examples are important both here and in [4] because of possible interplay
between the weight and the Radon-Nikodym derivative in the weighted case. However
we note that if we require a solution g of g ° T = / to be supported in H, then g is (a.e.)
uniquely determined. For r^Z-measurable functions/, we define f°T~l as the unique
(a.e.) 2-measurable function g, supported in H, which satisfies g° T = / a . e . (One should
not interpret this as implying the invertibility of T as a transformation.) With this
convention the following change of variables formula holds for measurable functions
p(x):

I pd(i=\
Jx Jx

in the sense that if one of the integrals exists then so does the other, and they have the
same value.

The transformation WT is a bounded operator on L2 if and only if \\hE(w2)° T^'Hc is
finite, and in this case the operator norm of WT is related to this function norm by
||Wr

7-||
2= \\hE(w2)°T~1\\al. In case w(x) = l, CT induces a bounded operator precisely

when h e L°°, and then ||CY|| = \\h\\l?. When this occurs, the closure of the range of CT

consists of those L2 functions which are r - 1 2 measurable, and E:L2—>L2 is the
projection whose range is the closure of the range of CT. One of the reasons weighted
composition operators are interesting is that many natural and apparently innocuous
measurable transformations T do not induce bounded composition operators (for example
x—*x2 on [0,1]), but it us usually easy to weight them to make the resultant weighted
operator bounded. If /and g are arbitrary T~'2-measurable functions then (fg)°T~l =
(f°T~1)(g°T~i). If /and g are 2-measurable functions for which £ ( / ) and E(fg°T) are
defined we have E(fg°T)=g°TE(f). If B e 2 , we define 2 B as {CnB-.CeZ}, and
L2(B) as those 2-measurable functions supported on B whose modulus squared has a
finite integral over B.

Results.

THEOREM 1. Let A be the support of w(x)h(Tx). Then WT is normal if and only if
(i) A = support of w,

(ii) T~1A=A and T~lZA n 2M = ^A, and
(iii) w is r~ '2 measurable and h°T \w\2 = h |vw|2°7""1 a.e.

The statement that w is T~'2 measurable in part (iii) actually follows from (i) and
(ii), but we include it for emphasis.

For ease during calculation, we assume that w(x)>0. The general complex case is
easily deduced from our calculations! The proof in the case when A is all of X is
enlightening so we will present it first. It follows from the following lemma.

LEMMA 1. WT has dense range if and only if fi{w = 0} = 0 and T~'2 = 2.

Proof Suppose that WT has dense range. If B is a measurable set of finite measure
on which w is zero, then L2(B) is orthogonal to the range of WT and hence B must have
zero measure. Since X is a-finite we have /x{tv = 0} =0. Let B e 2 have finite measure.
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Since WT has dense range we may find a sequence {/„} of L2 functions so that
lim WTfn = XB> both in L2 and a.e. Since //{w = 0} = 0, we have fn°T^>w~1xB a.e.
n—»w

Thus on any set B of finite measure W~1
XB is T~l~L measurable; hence w~l is r - 1 2

measurable and therefore so is w. Since %B = lim WTfn a.e., B is also T~ll, measurable so
that T-12 = 2.

Suppose that n{w = 0} = 0 and T'1!! = 2. Let am = {w > 1/w} e 2. Let B e 2 have
finite measure, set Bm = B Dom and iVn = w~x%Bm. We claim there exist sequences {/„,,„}
in L2 so that lim/m „ ° T = Fm in L2. (This would be immediate if CT were bounded.)

Define pm(x) = [ (XBJ° ^"'K*)' and let Pm denote the support of pm, so that (i) Pm c / /
(the support of/i) and (ii) T~lPm = Bm. We have 0 = /i{xflmw<l/m} = /^r- 1{pm<l/m};
since A>0 on Pm) this implies fi{pm<l/m} = 0. Let Pm „ be an increasing
sequence of measurable sets, each of finite measure, whose union is Pm. Then
fm.n = Xpm.nlPm> is a sequence of L2-functions which satisfies

\\fm,n°T-Fm\\2 = \

which converges to 0 as n —* ». Then WTfmn —* %Bm in L2, so that #Bm and hence ^B are in
the closure of the range of WT and WT has dense range.

COROLLARY 1. Suppose that WT has dense range. Then WT is normal if and only if
h°Tw2 = hw2°T~x a.e.

Proof. By calculating WTWrf and WTWTf we see that WT is normal if and only if
wh°TE(wf) = hE(w2)°T~lf a.e., for each / e L2. Since WT has dense range, Lemma 1
implies that E is the identity map on measurable, conditionable functions, and the result
follows by allowing/to vary through the characteristic functions of sets of finite measure.

The idea behind the proof of Theorem 1 is to show that the action of WT may be
localized to L2(A), and then apply Lemma 1 and Corollary 1.

Proof of Theorem 1. Suppose first that WT is normal. For each f e L2 write

W*TWTf = hE{W
2)°T-\XAf + Xx-Af], (2)

WTW*Tf = wh o T[E(wXAf) + E{wXx-Af)]. (3)

The right-hand side of (3) is 0 a.e. on X — A and by normality so is the r.h.s. of (2).
Because we may choose / € L2 which is positive on X — A v/e must have hE(w2) ° T~* = 0
a.e. onX-A, i.e. supp hE(w2)°T~l c A. On the other hand it is elementary to calculate
that supp w c supphE(w2)°T~1. Since A c supp w all these inclusions must be equalities.
This proves (i).
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Now we may rewrite (2) and (3) in their equivalent forms

W*TWTf = hE{W
2)°T-l[XAf], (2)'

WTW*Tf=whoT[E(WXAf)]. (3)'

Observe that L2(A) is reducing for WT; we claim WT has dense range in L\A). This

may be seen by setting J{x) = [hE{w2)° T~l](x) and An = {J> 1/n}. Then A = C\An, for

each / e L2{A), XAJ^f in L2, and gn = XAJU is in L2(A) for every n. But WrWTgn =
WTWrgn

 =
 XAJ> SO that / i s in the closure of the range of WT, and WT has dense range in

L2(A); by applying Lemma 1 we see that T'1!. = HA, so that (ii) holds. It follows that for
each Z-measurable function g supported on A for which E(g) may be defined we have
E(g) = g; and in particular w is T~1H measurable. Thus for each/ e L2

W^WTf = hw2oT-1f, (2)"

WTW$f=w2h°Tf. (3)"

(iii) follows by letting / vary through characteristic functions of measurable subsets of
finite measure. Now suppose that (i) (ii) and (iii) hold, (ii) implies that if a measurable,
conditionable function / is supported in either X — A or A then so is £ ( / ) ; and if/ is
supported in A, £ ( / ) = / . Thus for each / e L2,

W*TWTf = hw2o T~lf = hw2oT~1
XAf,

and
WTW*Tf= wh - TE{wXAf) + E(wXx_Af) = w2h - TXAf.

Normality follows immediately from (iii).

Special Cases: In case w = 1 we are considering a composition operator CT and
Theorem 1 specializes to the following result.

COROLLARY 2. CT is normal if and only if
(i) T-1! = 2, and
(ii) h = h°T>0a.e.

This is the content of Lemma 2 of Whitley [6], although he does not include the
positivity of h in his statement (it follows from the proof).

COROLLARY 3 (BASTIAN [1]). Suppose that T is measure preserving.
(a) If T is ergodic and non-invertible, then WT is not normal for any (non-zero)

choice of w.
(b) / / n(X) < oo and T is invertible, then WT is hyponormal if and only if WT is

normal.

Proof, (a) By Theorem 1, WT is normal iff w is T" 1 ! measurable and (apply CT to
both sides of the equation appearing in condition (iii)) \w\2 is invariant under CT. Since T
is ergodic, |w>|2 must be constant. Since w is nonzero, A must be all of X. But T is
non-invertible and measure-preserving;hence T~ll, cannot be all of 2, so that condition
(ii) of Theorem 1 cannot hold.

(b) From Corollary 2 of (Lambert [4]) we see that when T is invertible, hyponor-
mality is equivalent to \w\2 < |w|2° T~x a.e. Because CT is order preserving and invertible,
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this is equivalent to \w\2°T< \w\2. By the boundedness of WT we have that \w\2 (and
hence |M>|2° T) is in L°°. Hence \w\2 — \w\2° T is a bounded non-negative function. But T is
measure preserving and therefore $x \w\2 ~ \w\2° Td\x = 0, so that |w|2 = |w|2° T a.e.

REMARKS. Part (a) of Corollary 3 is stated in [1] only in the case of finite measure.
Part (b) is not true in the infinite measure case (consider weighted shifts on Z).

COROLLARY 4. WT is hermitian if and only if
(a) T is periodic on A with period at most 2, and
(b) hw° T = w a.e.

Proof. We may suppose that WT is normal; since L2(X -A) = ker WT and L2{A) is
reducing for WT we may assume that A = X.

Suppose that WT is hermitian. For each measurable set B of finite measure we have

WT(XB) = WXT-'B = W^XB) = hw o T-'XB ° I""1.

We claim thatg-^goT"1 is the composition operatorg-*• g°T, i.e., that T2 = I. Because
w is non-zero a.e. we may divide both sides of the equality above by w and obtain

XT-'B=UXB°T~1 a.e.,

where U(x) = (hw ° T~l/w)(x). Composing with T we have

U(x) is positive a.e. and hence so is U°T. Since B is arbitrary we must have T2 = I and
U° T = 1 a.e., so that (7 = 1 a.e. This shows that (a) and (b) must hold. The converse is
immediate.

EXAMPLE. (Deborah Hart) It is not true that T~lI. = 2 implies that T is invertible as
a transformation or that g—*g°T~1 is a composition operator. Consider ^ = {0,1},
2 = {X, 0} and 7(0) = T(l) = 0. T is measurable and T'1!. = 2 but T does not take the
measurable set X to a measurable set.

EXAMPLE. Suppose Thas period 2; then l = dfi° T~2/dfi = h°Th. If w = yfh = w then
a direct calculation shows that this choice of a weight always gives a hermitian WT.

EXAMPLE, W need not be real for WT to be hermitian. Let X = [0, 1) equipped with
Lebesgue measure on the Borel sets, T :x—* (1 — x), and w(x) = (2x — l)i.

Quasinormality. The characterization of quasinormality may be approached in
many ways; the following we found most interesting. Via change of variables we have

V/H2 = jw2 |/|2° T2 dn = jhE(w2) o T~l |/|2 d\i. (4)

Let B = support of J, where / is the function hE(w2)° T~l. Then ker WT = L%X -B) =
L2{BY. For each / in I2 write

f f Xx-Bf, (5)
so that WTf = WrXef We may define a partial isometry V with initial space (ker
L2(B) and final space Ran WT by
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If we write multiplication by $ as M^, then the (unique, canonical) polar form for WT

is given by

WT = V(Mvj). (7)

Since an operator is quasinormal if and only if the factors in its canonical polar from
commute, direct calculation yields the following result.

THEOREM 2. WT is quasinormal if and only if hE(w2) °T~i = h° TE{w2).

It is known that quasinormality is strictly weaker than normality in the non-weighted
case ([6]). An example illustrating this phenomenon in the weighted case, with a
non-constant weight, is given by following the composition x—»2jc(mod 1) on L2(0, 1)
(Lebesgue measure) with the weight w = X(o. \ny

Power Hyponormality. We now state and prove the sufficiency of a condition for
the power hynormality of WT. This theorem says that the general a-finite ease generalizes
the case of a weighted shift on the integers in the natural way.

THEOREM 3. Suppose that WT is hyponormal and r~ '2 = 2. Then WT is power
hyponormal.

Proof. In order to prove Theorem 3 we need the following lemma and its corollary.

LEMMA 2. / / / , g e LT satisfy f°T>g°T a.e., and h = d\i° T~l/dfi, then f >g a.e. on
the support of h.

Proof of Lemma 2. Whenever B c supp h has finite measure we have

0<f f°T-g°Tdn=\ (f-g)hdfi,
JT-'B JB

and the result follows since h > 0 a.e. on every such B.

COROLLARY. Suppose that T~12 = 2, and J = hw2°T~\ Then J>J°T a.e. implies
thatJ°T~x>Ja.e.

Proof. The desired inequality is true a.e. on the support of h by Lemma 2. Off the
support of h the right-hand side is 0 a.e. Since the left-hand side is 2:0 a.e., the desired
inequality holds a.e.

The hyponormality of WT, coupled with the hypothesis that T"X2 = 2 implies that
h°Tw2<hw2°T~l a.e. (Lambert [4]). We will use this fact to complete the proof of
Theorem 3 by inductively establishing the following inequality: for each / e L2 we have

^\hn°TW2" | / p d i i < I K J W U i neN. (8)
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Fix /. For n = 1 we have

= (hoTw2\f\2dn

< J hw2° T~l | / |2 dp (by hyponormality and T~lY. = 2)

= \\WTf\\l

Suppose (8) holds for n = 0, 1, . . . , k - 1. Then for n = k we have

l | / |2

= Uh°T2)k-lw2k-2°Th°Tw2\f\2dn

= Uh o T)k~'w2k~2h o T»v2 |/ |2 dp (by Corollary 3)

On the other hand we have

= \\(wr)
k-lwTf\\l > j

2T-lh \f\2dfi

= ihkw2koT-1\f\2dfi

>lhk°Tw2k\f\2dfi.

This completes the induction and also the proof of Theorem 3.

REMARK. In the unweighted case this is easily proved using Corollary 11 of
(Harrington and Whitley [3]) and Corollary 3 in (Campbell and Dibrell [2]), as follows.
Corollary 11 says that is h is r - 1 2 measurable then CT is hyponormal if and only if
h°T<h a.e. Thus CT hyponormal and r~x2 = 2 implies h°T<h, and the aforemen-
tioned Corollary 3 states that this is sufficient for power hyponormality.
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We note here that the converse to Corollary 3 in Campbell and Dibrell is not true;
Lambert ([5]) has constructed an example of a shift on 12(N, m) (m a non-constant weight
sequence) for which h ° T < h (so that CT is power hyponormal) but (/i2

o T)(n) > h2(n) for
some n. (Here, h2

 = d(i°T~2/d/j.). We also remark that the power hyponormal class
(unweighted) is larger than the subnormal class (see Example 14 in Harrington and
Whitley [3])). It would be interesting to characterize the power hyponormal class.
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