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Quantum Multiple Construction of
Subfactors

Marta Asaeda

Abstract. We construct the quantum s-tuple subfactors for an AFD II1 subfactor with finite index and

depth, for an arbitrary natural number s. This is a generalization of the quantum multiple subfactors

by Erlijman and Wenzl, which in turn generalized the quantum double construction of a subfactor

for the case that the original subfactor gives rise to a braided tensor category. In this paper we give

a multiple construction for a subfactor with a weaker condition than braidedness of the bimodule

system.

1 Introduction

The asymptotic subfactors of AFD II1 subfactors with finite index and depth were

constructed by Ocneanu [10,11] and Popa [12], and are regarded as Drinfel’d’s quan-
tum double construction in the language of subfactor theory. J. Erlijman gave a mul-
tiple construction for subfactors arising from braid group representations that gen-
eralizes the double construction for a certain class of subfactors [1–4]. Furthermore,

she and H. Wenzl gave the multiple construction for braided categories, which in-
cludes the cases for subfactors that give rise to braided categories, and obtained the
dual principal graphs for several cases [5]. In this paper we construct the quantum
multiple subfactors for subfactors whose paragroup satisfies the generalized Yang–

Baxter equation [7]. The class of subfactors with this condition includes the ones
with non-braided bimodule systems, such as type E6, E8 subfactors. It also includes
subfactors with non-commutative bimodule systems, such as M ⊂ M ⋊ S3. It is
expected that the quantum multiple subfactors constructed in this paper are of finite

depth. It is easily observed that the subfactors constructed in this paper include the
ones given in [5].

Throughout this paper all the von Neumann algebras are of type AFD, and all the
subfactors are assumed to be of finite index and finite depth, except the ones that
we are about to construct, for which these properties need to be proved. For the

definitions of terms such as paragroups, connections, flatness, string algebras, see
[6, Ch. 9–11].

2 The Commuting Square and Biunitary Connection

Let N ⊂ M be a subfactor and (G, H, β,W ) be its paragroup, as in the following

picture, where G (resp. H) is the (dual) principal graph, and β2 is the index of the
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322 M. Asaeda

subfactor. Note that the notation here is upside down from the usual notation. When
a graph is laid out so that the even vertices are on the bottom (resp. left) and the odd

vertices are on the top (resp. right), we consider it to be in the “right position”, and if
it is the other way around, we consider it to be a renormalized one and call them W1,
W2, W3 for horizontal renormalization, vertical renormalization, and the sequence
of the two, respectively.
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Let ω be its global index. We construct the s-dimensional nested graphs in the first
2s-ant of R

s as follows.
First we construct an enlarged biunitary connection obtained as a product of W

and its renormalizations.
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Let K = G · Gt , i.e., a bipartite graph whose even and odd vertices are both V :=
V0, and whose edges are given by concatenation of the edges in G and those in Gt .
We define a new biunitary connection Y as follows:
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Quantum Multiple Construction of Subfactors 323

By construction Y is a flat connection, and its renormalizations are identical to itself.
This connection produces N ⊂ M1, where M1 is the basic construction of N ⊂ M

and thus the asymptotic inclusion is the same.

2.1 Nested Algebras on Higher Dimensional Lattices

Now we construct the high-dimensional nested algebras using the connection Y . For
the two dimensional case, see [6, §11.3].

For n := (n0 · · · ns−1) ∈ Z
s
≥0, let vn be the lattice point located at n. Sometimes

vn may be simply denoted by n, abusing the notation. Let En,i be the lattice edge

connecting n and n + ei , where ei is the unit i-th vector. (Note that we number the
coordinates from zero.) We define a nested graph K as follows: let Vn be equal to V

as a set, located at n. Let Kn,i be identical to the graph K, lying along the lattice edge
En,i . The vertices of Kn,i are identified with Vn ∪ Vn+ei

in an obvious manner. We

define a nested graph by K =

⋃

n,i Kn,i . A path of K is a concatenation of edges in K.
We call a path consisting of lattice edges a lattice path in order to distinguish it from a
path of the graph. For a path ξ we denote its length by |ξ|, the origin and the end by
s(ξ), r(ξ) respectively. The same notions for a lattice path are denoted similarly. For

a path ξ, we denote by [ξ] the lattice path that ξ lies along. For n ∈ Z
s
≥0 we denote

|n| := n0 + n1 + · · · + ns−1.

Let n, m ∈ Z
s
≥0 be so that n − m ∈ Z

s
≥0, and L be a lattice path with s(L) = m,

r(L) = n, |L| = |n−m|. Let p ∈ Vm, q ∈ Vn. We define

Pathp,q;L := span
C
{ξ | ξ ∈ K, s(ξ) = p, r(ξ) = q, [ξ] = L}.

Note that given another lattice path L ′ with the same condition, we have

Pathp,q;L
∼
= Pathp,q;L ′

∼
= Path|n−m|

p,q K

:= span
C
{ξ | ξ is a path in K, s(ξ) = p, r(ξ) = q, |ξ| = |n−m|}.

We give an isomorphism Pathp,q;L
∼
= Pathp,q;L ′ by identifying the basis, using the flat

connection Y as follows.

Definition 2.1 Let ξ ∈ Pathp,q;L, η ∈ Pathp,q;L ′ . For simplicity we assume that
L ∩ L ′

= {vm, vn}. Let S be a union of squares with the edges in
⋃

n,i En,i , so that

∂S = L ∪ L ′. Assume that S is taken so that the area is minimum. We define a
conjugate-linear form by

〈ξ, η〉 =
∑

σ

∏

k

Y (σk),

where σ =

⋃

k σk is a surface that lies along with S so that ∂σ = ξ ∪ η, and σk’s are

distinct squares with edges in K, Y (σk) is the evaluation of the flat connection Y on
σk. Namely, 〈ξ, η〉 is given as a state sum of Y taken over all possible surfaces that lie
along S with the boundary ξ ∪ η.
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Definition 2.2 If 〈 , 〉 as above is well defined (i.e., if it does not depend on the
choice of S) and non-degenerate, we define an isomorphism of Pathp,q;L → Pathp,q;L ′

by

ξ →
∑

η∈Pathp,q;L ′

〈ξ, η〉η.

We define a path space by Pathp,q := Pathp,q;L, where the space does not depend on
the choice of L under the given isomorphism. We define an algebra at n by

An := Path∗,n⊗ Path∗
∗,n,

where we consider ∗ ∈ V0, Path∗,n :=
⊕

q∈Vn
Path∗,q, and that the dual space is

given with respect to 〈 , 〉. We denote an element in An by (ξ, η) = ξ ⊗ η∗. Note
that (cξ, η) = c(ξ, η) = (ξ, c̄η) for c ∈ C. The ∗-algebra structure is given by
(ξ, η) · (ξ ′, η ′) := δη,ξ ′(ξ, η ′) and c(ξ, η) := c̄(η, ξ) for c ∈ C

As it is, the conjugate-linear form is ill defined since it depends on the choice of
S. And it is not obvious if 〈,〉 is indeed non-degenerate. In the following we address
those issues.

In order to have well-definedness, the flat connection Y needs to satisfy an addi-

tional condition.

Assumption (Generalized Yang–Baxter equation) A biunitary connection is said
to satisfy the generalized Yang–Baxter equation (GYBE) if the following equality is
satisfied:
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We assume that our flat connection Y satisfies GYBE. We call the geometric move in
the equation a “GYBE move”.

The paragroups that correspond to subfactors with braided bimodule systems sat-
isfy GYBE, using the translation of the language of flat connection into rational con-
formal field theory as in [13, §2], and applying Reidemeister move III. One needs
to construct 2 × 2 connections with braided system for the vertices. Note that the

biunitary connections for ADE Dynkin diagrams, including non-flat ones, satisfy
the relation [6, §11.9]. It is also a straightforward arithmetic computation of cells
to check that the flat connection for S3 group subfactor with the bimodule system
corresponding to the group elements also satisfy GYBE. The data for the cells are ob-

tained from matrix entries of representations of the group, see [6, §10.6]. Note that
the choice of the basis of a representation only amounts to gauge equivalence of the
connections (checked by the author using Mathematica). So it does not have to be
braided nor even flat, though (sub)equivalent to the braided ones.)
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In the following we prove that GYBE is indeed a sufficient condition for well-defi-
nedness of the conjugate-linear form 〈ξ, η〉. For future use we restate the axiom of

biunitarity, and define a geometric move associated to it.

Definition 2.3 Recall the biunitarity of a connection implies

∑

νi r r

r r

ν2

ξ0

ξ1 ν1Y
r r

r r

ν2

ξ ′
0

ν1 ξ ′
1Y

= δξ1,ξ
′

1
δξ0,ξ

′

0
.

The corresponding geometric move is as follows:

r r

r r

←→ @
@@

r

r

r

ξ1

ξ0

ξ1 ξ0

We call this a unitary move.

For the time being our focus is on spacial geometry. We do not think about the
actual graph K lying in the space. We omit the word ”lattice” when we discuss paths,

edges, vertices, etc.

Definition 2.4 Let vn, En,i be as before. We abuse notation and sometimes consider
ei to be also an edge parallel to ei , located possibly anywhere, i.e., En,i for any n.
Consider paths ξ and η in

⋃

n,i En,i with s(ξ), s(η) = vn, r(ξ), r(η) = vn+e1, and

|ξ| = |η| = s, where e = (e0, . . . , es−1) and 1 = (1)i (i.e., e1 = e0 + · · · + es−1).
Notice that any such path has one-to-one correspondence with the elements of the
symmetric group Ss by σ ∈ Ss ↔ eσ(0) · eσ(1) · eσ(2) · · · eσ(s−1) up to the initial point.

We consider an embedded surface in R
s
≥ to be always a union of squares with

the edges in
⋃

n,i En,i . We call a surface a minimal surface if there is no surface with a
smaller area with a given boundary loop. Note that the area is the same as the number
of squares that make up the surface.

We define a surface S to be spanned by ξ and η if ∂S = ξ ∪ η − ξ ∩ η and the
boundary of each component of S is connected. We denote the set of the surfaces
spanned by ξ, η by Fξ,η , and the minimal surfaces by MFξ,η . Note that the set Fξ,η

is not empty for ξ 6= η. An element is given by the union of squares corresponding

to transpositions needed to transform ξ to η, as described in the proof of Proposi-
tion 2.6.

Lemma 2.5 Any minimal surface with one boundary component is contractible.

Proof Any minimal surface with area 1 is contractible. Let n be the minimum of the
area for which there exists a minimal surface S with a non-zero genus, with respect to

its boundary ρ. Let A be a square in S so that A∩∂S has only one component. Such a
square should exist: if all the squares with non-trivial intersection with ∂S have more
than one component, i.e., two opposite edges, then S must be an annulus. Consider
S\A =: S ′. The area of S ′ is smaller than that of S, and has the same genus. And
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S ′ is a minimal surface with respect to its boundary: if there is a surface S ′ ′ with the
same boundary with smaller area, then S ′ ′ ∪ A ( or S ′′ \ A, if S ′ ′ ⊂ A) would have a

smaller area than S, which is contradiction. Since S ′ has a smaller area than n, it leads
to contradiction.

From now on we only consider the contractible surfaces and restrict the elements
of Fξ,η to be contractible.

Proposition 2.6 Any two minimal surfaces spanned by ξ and η are deformed to each

other by GYBE and unitary moves.

Proof For simplicity assume that n = 0, ξ = e0 · e1 · e2 · · · es−1. and that ξ and η

do not intersect except at the beginning and the end. Let S ∈ Fξ,η. In this case S is
homeomorphic to a disk. We label all the edges in S parallel to ei by i. Then S is a
union of squares looking like this:

r r

r r

i i

j

j

We draw a crossing on the square like this:

i i

j

j

We label the strand across ei also by i. The picture of S with these decorations, for
s = 4, η = e3 · e2 · e4 · e1, appears as follows:

1

1

2 3

4

3

2
4

From now on we consider any surface as so decorated. We observe that each S ∈ Fξ,η

gives rise to a degenerate tangle:

TS ∈ Tσ = { tangles with s input and output,
sending i to σ(i) without a self-crossing }.
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We introduce the following moves.

Reidemeister II (R-II)

j

i

j

i

j

i

i j

j

i
i

j

Reidemeister III (R-III)

i

i
i

i i

i

j

j

j j

j

j

k k

k

k

k k

Note that those moves correspond to the Reidemeister moves in knot theory. (For
the definitions of Reidemiser moves as well as elementary knowledge of knot theory,
see [9].) The middle picture in an R-II move actually does not appear in our situation

but is drawn just to have an association with knot theory. It immediately degenerates
into the right-most picture. Note also that the Reidemeister I move does not appear
in our situation since it requires a square with all four edges labeled by the same
name.

Lemma 2.7 For T ∈ Tσ , let c(T) be the number of crossings, and

c(Tσ) := min
T∈Tσ

c(T).

Then c(Tσ) = w(σ) equals the length of σ as a word written in transpositions fσi =

(i, i + 1)g. Any T ∈ Tσ is deformed to some T ′ ∈ Tσ , so that c(T ′) = c(Tσ) by

performing R-II and R-III moves finitely many times.

Proof The first statement is clear, as a transposition corresponds to a crossing. The
second statement follows from the fact that Ss is generated by σi ’s with relations

σ2
i = 1, σiσi±1σi = σi±1σiσi±1, and any element σ ∈ Ss is reduced to minimum

word length expression by applying those relations finitely many times.

The next lemma follows in a similar manner.

Lemma 2.8 Let T, T ′ ∈ Tσ so that c(T) = c(T ′) = c(Tσ). Then T is deformed to T ′

by a sequence of R-II and R-III moves.

https://doi.org/10.4153/CMB-2008-032-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-032-1


328 M. Asaeda

This lemma implies Proposition 2.6.

We now come back to Definition 2.1. For paths ξ ∈ Pathp,q;L and η ∈ Pathp,q;L ′ ,
consider two minimal surfaces S1 and S2 spanned by [ξ] and [η]. Let 〈ξ, η〉Si

be the

conjugate-linear form given in Definition 2.1, using Si . By the above discussion, there
is a sequence of intermediate surfaces {Sπ} that connect S1 and S2 where adjacent
surfaces differ by R-II and R-III moves. By the assumption of GYBE and biunitarity
of the connection, 〈ξ, η〉Sπ

is constant. Thus we proved that 〈ξ, η〉S1
= 〈ξ, η〉S2

, i.e.,

〈ξ, η〉 is well defined.

We prove the non-degeneracy of 〈ξ, η〉 as follows: by Lemma 2.5, a minimal sur-
face S spanned by L, L ′ is a disk. For simplicity let us assume that s(L) = s(L ′) = 0,

r(L) = r(L ′) = e1, and that L = e0 · e1 · · · es−1, L ′
= eτ (0) · eτ (1) · · · eτ (s−1) for

τ ∈ Ss. The surface S determines a minimal expression τ = τk+1τk · · · τ1, where
τ j ’s are transpositions. For 1 ≤ j ≤ k, let L j = eτ j (0) · eτ j (1) · · · eτ j (s−1), where
τ j

= τ jτ j−1 · · · τ1. Let L0 = L, Lk+1 = L ′. Then we have a conjugate linear form on

Pathp,q,L j
× Pathp,q,L j+1

:

〈ξ j , ξ j+1〉 =

{

0 if ξ j and ξ j+1 disagree on L j ∩ L j+1,

Y (σ) otherwise,

where ξ j , ξ j+1 are paths in Pathp,q,L j
and Pathp,q,L j+1

respectively, and σ is a square
bounded by ξ j , ξ j+1 (which corresponds to τ j+1). Since Y is a biunitary connection,

this linear form is non-degenerate. Noticing that the state sum given in Definition 2.2
implies

〈ξ, η〉 =
∑

ξ1,...,ξk

〈ξ, ξ1〉〈ξ1, ξ2〉 · · · 〈ξk, η〉,

we conclude that 〈ξ, η〉 is non-degenerate. Note that we did not need flatness of Y

nor GYBE for this proof.

Hence we have well-defined path spaces Pathp,q and algebras An.

2.2 Construction of the Commuting Square for the Multiple Subfactor

Now we give a nested structure of algebras {An} and commuting squares arising from
it.

We define the embedding An ⊂ An+ei
by (ξ, η) 7→

∑

γ∈Kn,i
(ξ · γ, η · γ) (i.e., γ is

parallel to ei). We define a trace on An by tr(ξ, η) := δξ,ηβ
−2|n|µ(r(ξ)), where µ is the

Perron–Frobenius eigenvector of the original connection W . This is compatible with
the embedding. One can check that the conditional expectation En,i : An+ei

→ An

will be given by

(ξ · ξ ′, η · η ′) 7→ δξ ′,η ′

µ(r(ξ ′))

β2µ(r(ξ))
(ξ, η),

see [6, Lemma 11.7].
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Proposition 2.9 Consider the following diagram.

An+e j

� � // An+ei +e j

An

?�

OO

� � // An+ei

?�

OO

where i 6= j. The identification of the bases of An+ei +e j
via An+ei

and via An+e j
is given

by the connection Y . Then this is a commuting square, with conditional expectations

defined as above.

Proof It is proved by straightforward computation: take x = (ξ · γ, η · γ) ∈ An+ei
,

where (ξ, η) ∈ An. En(x) =
µ(r(γ))

β2µ(r(ξ))
(ξ, η). Embed x into An+ei +e j

, change basis using
Y and apply En+e j

; the result is equal to En(x), using the unitarity of the connection.

The coefficients are adjusted by the constant coming from renormalization.

Corollary 2.10 The following diagram is a commuting square.

An+m j e j

� � // An+mi ei +m j e j

An
� � //

?�

OO

An+mi ei

?�

OO

where i 6= j, and mi, m j ∈ Z.

Theorem 2.11 The following is a commuting square:

Ane1
� � // A(n+1)e1

∨

i Anei

� � //
?�

OO

∨

i A(n+1)ei

?�

OO

where the trace is defined as before, and conditional expectation is determined uniquely

by the trace.

The proof is given by successive applications of the lemma below.

Lemma 2.12 The following is a commuting square for all j:

An
� �

En

// An+e j

∨

i Ani ei

?�

OO

� �
E j

//
∨

i 6= j Ani ei
∨ A(n j +1)e j

?�

OO
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Proof Using Proposition 2.9 we have

(∗∗) An
� �

En

// An+e j

An j e j

?�

OO

� �
E j

// A(n j +1)e j

?�

OO

Take a ∈ An j e j
and b ∈ A(n j +1)e j

. Then Ẽ j(ab) = aẼ j(b). Thus by the uniqueness of
the conditional expectation we have Ẽ j |A(n j +1)e j

= E j . Now the elements in
∨

i 6= j Ani ei

and those in A(n j +1)e j
commute each other since Y is a flat connection. So it suffies to

show that Ẽ j(ab) = En(ab) for a ∈
∨

i 6= j Ani ei
, b ∈ A(n j +1)e j

. Observe that

Ẽ j(ab) = aẼ j(b) = aEn(b) by (∗∗)

= En(ab) because a ∈ An.

We obtain the quantum multiple inclusion P ⊂ Q of the subfactor N ⊂ M using
the periodic commuting square as in Theorem 2.11, where

P :=
⋃

n

∨

i

Anei

w
, Q :=

⋃

n

Ane1

w
,

with the inclusion given by
∨

i Anei
⊂ Ane1 which is compatible with the union due to

the commuting square condition. Note that when s = 2, it coincides with the asymp-
totic inclusion N ∨ (N ′ ∩M∞) ⊂ M∞. By comparing the commuting square given
in Theorem 2.11 and the one in [5, §3.2], one may observe that our result here gives
a generalization of [5]. The correspondence is given by translation of the notions

such as string algebras and endomorphism algebras on bimodules, embedding of an
element of a string algebra and tensor product of an endomorphism with an identity
map, etc. We do not discuss the details here, but note that X in [5] is given by N MN

in this paper, and the relation between the embedding Ane1

i
⊂ A(n+1)e1 in this paper

and Ans

j
⊂ A(n+1)s in [5] is i = un+1 jun

∗, where un is as defined in [5, §3.2]. Thus
the embedding

∨

i Anei
⊂ Ane1 in this paper does not need a unitary conjugation un

as seen in [5]. Therefore the commuting squares in both settings are equivalent. For
the correspondence between two languages, see [6, Ch. 11-12].

3 Intermediate Subfactors and the Bratteli Digarams of the
Commuting Square

The Bratteli diagram L of the inclusion
∨

i Anei
⊂ Ane1 is determined by the fusion

structure of N-N bimodules {Xk}. We show it by constructing intermediate subfac-

tors.
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Proposition 3.1 Consider the following commuting squares:

Ane0
∨ Ane1

· · · ∨ Anes−1
� _

��

� � // A(n+1)e0
∨ A(n+1)e1

· · · ∨ A(n+1)es−1
� _

��
An(e0+e1) ∨ Ane2

∨ · · · ∨ Anes−1
� _

��

� � // A(n+1)(e0+e1) ∨ · · · ∨ A(n+1)es−1
� _

��
An(e0+e1+e2) ∨ Ane3

∨ · · · ∨ Anes−1
� _

��

� � // A(n+1)(e0+e1+e2) ∨ · · · ∨ A(n+1)es−1
� _

��

...
� _

��

...
� _

��
An(e0+···+es−2) ∨ Anes−1

� _

��

� � // A(n+1)(e0+···+es−2) ∨ A(n+1)es−1
� _

��

An1·e
� � // A(n+1)1·e

The commuting square on the j-th floor (in the European way) gives the subfactor

N ∨ (N ′ ∩M∞)⊗ N ⊗ · · · ⊗ N
︸ ︷︷ ︸

j times

⊂ M∞ ⊗ N ⊗ · · · ⊗ N
︸ ︷︷ ︸

j times

,

where the embedding is given by the asymptotic inclusion of N ⊂ M tensored with the

identities of N.

This follows from the next lemma.

Lemma 3.2 For each j, the commuting square

An(e0+···+e j−1) ∨ Ane j

� � //
� _

��

A(n+1)(e0+....+e j−1)
� _

��
An(e0+···+e j )

� � // A(n+1)(e0+···+e j )

gives the asymptotic inclusion.

Proof Let Bm,n := Am(e0+...+e j−1),ne j
Then the above commuting square is written as

follows.

Bn,0 ∨ B0,n
� � //

� _

��

Bn,0 ∨ B0,n
� _

��
Bn,n

� � // Bn+1,n+1
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This commuting square gives the asymptotic subfactor of B0,∞ ⊂ B1,∞. Since the
commuting net of algebras {Bn,m} is given by the biunitary connection

YYY · · ·Y
︸ ︷︷ ︸

m times

(composed horizontally) which gives the same subfactor N ⊂ M1 as Y does, we
obtain the asymptotic inclusion.

Thus the Bratteli diagram in each step of the left column of the diagram in Propo-

sition 3.1 is given by {fusion graph × (× j trivial graph)}. Connecting all of this, the
Bratteli diagram L of the inclusion

∨

i Anei
⊂ Ane1 is given by the s-fusion graph of

N-N bimodules {Xk}, that is, the set of vertices corresponding to the simple compo-
nents in

∨

i Anei
is given by {(X0, . . . , Xs−1)}X j∈XN−N

, the set of vertices correspond-

ing to the simple components in An1·e is given by XN-N , and the number of edges be-
tween (X0, . . . , Xs−1) and Y is given by NY

X0,...,Xs−1
:= dim Hom(X0⊗N · · ·⊗N Xs−1,Y ).

In particular this implies that P ⊂ Q is irreducible if N ⊂ M is irreducible.
The following proposition is obtained directly from the construction.

Proposition 3.3 The Perron–Frobenius eigenvalue βL of L is given by ω
s−1

2 , and the

Perron–Frobenius eigenvector µL is given by

µL(i0, i1, . . . , is−1) = µ(0)µ(1) · · ·µ(s− 1), µL( j) = βLµ( j),

where each number is an index of V0 thus corresponds to each vertex. Recall that µ was

the Perron–Frobenius eigenvector of the original connection, and that ω = [[M : N]].

The above proposition implies that [Q : P] = ωs−1.
The following lemma is not necessary but noteworthy. For simplicity, we omit⊗N

as long as there is no confusion.

Lemma 3.4 For the set of N-N bimodules X := {Xk} and any Y ∈ X, s ∈ N, the

following equality holds:

∑

Xi∈X

NY
X1,...,Xs

µ1 · · ·µs = ωs−1µY ,

where NY
X1,...,Xn

:= dim Hom(X1 · · ·Xn,Y ), and µi = µ(Xi).

Proof We proceed by induction. The case s = 2 is shown in [6, Lemma 12.10].
Suppose it holds for s− 1. Note that NY

X1,...,Xs
=

∑

Z NZ
X1,...,Xs−1

NY
Z,Xs

. Thus

∑

Xi∈X

NY
X1,...,Xs

µ1 · · ·µs =

∑

Xs,Z∈X

NY
Z,Xs

µs

∑

Xi∈X

NZ
X1,...,Xs−1

µ1 · · ·µs−1

=

∑

Xs,Z∈X

NY
Z,Xs

µsµ(Z)ωs−2 (by the inductive hypothesis)

= ωs−1µ(Y ) (using the case s = 2)
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