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Abstract
We prove motivic versions of mass formulas by Krasner, Serre, and Bhargava concerning (weighted) counts of
extensions of local fields.
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1. Introduction

The aim of this article is to prove motivic versions of mass formulas by Krasner [Kra62, Kra66], Serre
[Ser78], and Bhargava [Bha07]. For a nonarchimedean local field K with residue field F𝑞 and for a
positive integer n, Serre proved the formula∑

𝐿

𝑞−d𝐿/𝐾

|Aut(𝐿) |
= 𝑞1−𝑛, (1.1)

where L runs over isomorphism classes of totally ramified extensions of K with [𝐿 : 𝐾] = 𝑛, Aut(𝐿) is
the group of K-automorphisms and d𝐿/𝐾 is the discriminant exponent of 𝐿/𝐾 . Using Serre’s formula,
Bhargava proved a similar formula∑

𝐿

𝑞−d𝐿/𝐾

|Aut(𝐿/𝐾) |
=

𝑛−1∑
𝑗=0

𝑃(𝑛, 𝑛 − 𝑗)𝑞− 𝑗 , (1.2)
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2 T. Yasuda

this time L running over isomorphism classes of étale K-algebras of degree n. Here 𝑃(𝑛, 𝑖) denotes the
number of partitions of n into exactly i positive integers.

In [Yas17], the author proved these formulas by a different approach which was based upon observa-
tion from [WY15] which relates Bhargava’s formula with the Hilbert scheme of points. In this approach,
we can prove Bhargava’s formula first and deduce Serre’s formula from it, using the relationship between
the two formulas, obtained by Kedlaya [Ked07] using the exponential formula.

Before Serre obtained his formula, Krasner had obtained a formula for the number of degree-n
extensions of K with a prescribed discriminant exponent as well as one restricted to totally ramified
extensions. Thus, Krasner’s result is a refinement of that of Serre and we can also obtain Serre’s result as
a consequence of that of Krasner. Under the condition that K has characteristic 𝑝 > 0, the situation that
we focus on in the present paper, the most interesting case is when 𝑝 | 𝑛, 𝑚−𝑛+1 > 0 and 𝑝 � (𝑚−𝑛+1)
with m the prescribed discriminant exponent. Under these conditions, the number of degree-n totally
ramified extensions of K in a fixed algebraic closure of K with discriminant exponent m is

𝑛(𝑞 − 1)𝑞 � (𝑚−𝑛+1)/𝑝� .

We may rewrite this formula as ∑
𝐿

1
|Aut(𝐿) |

= (𝑞 − 1)𝑞 � (𝑚−𝑛+1)/𝑝� , (1.3)

where L runs over isomorphism classes of such extensions of K(instead of counting subfields of 𝐾).
To formulate motivic versions of these formulas, we consider the P-moduli space Δ𝑛 (resp. Δ◦𝑛) of

degree-n étale covers (resp. connected covers) of the punctured formal disk Spec 𝑘�𝑡� with k denoting a
field, constructed in [TY23]. The notion of P-moduli space is even coarser than the one of coarse moduli
space, but enough to define motivic integrals that we consider below. For details, see Section (3). The
discriminant exponent defines a constructible function d : Δ𝑛 → Z as well as its restriction to Δ◦𝑛. We
can define the integral ∫

Δ𝑛
L−d :=

∞∑
𝑚=0
[d−1 (𝑚)]L−𝑚

and similarly the integral
∫
Δ◦𝑛
L−d in a version of the complete Grothendieck ring of varieties, denoted

by M̂♥
𝑘 (for the definition of this ring, see Definition 7.1). Motivic versions of formulas (1.1) and (1.2)

by Serre and Bhargava are formulated as follows:

Theorem 1.1 (Theorem 7.4 and Corollary 7.5). We have the following equalities in M̂♥
𝑘 :∫

Δ◦𝑛

L−d = L1−𝑛,∫
Δ𝑛
L−d =

𝑛−1∑
𝑗=0

𝑃(𝑛, 𝑛 − 𝑗)L− 𝑗 .

The second equality of the theorem is equivalent to [Yas24a, Corollary 1.5] via the correspondence
between the discriminant exponent and the Artin conductor [WY15], except for a slight difference in the
Grothendieck rings being used. The proof in [Yas24a] is obtained by translating the proof of Bhargava’s
formula in [Yas17] into the motivic setting.

We also prove a motivic version of Krasner’s formula (1.3). Let Δ (𝑚)𝑛 := d−1 (𝑚) ⊂ Δ◦𝑛, the locus of
étale covers with discriminant exponent m. This is a constructible subset.
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Theorem 1.2 (see Theorem 7.6 for the full statement of the result). If k has characteristic 𝑝 > 0 and if
𝑝 | 𝑛, 𝑚 − 𝑛 + 1 > 0 and 𝑝 � (𝑚 − 𝑛 + 1), then we have

[Δ (𝑚)𝑛 ] = (L − 1)L � (𝑚−𝑛+1)/𝑝�

in M̂♥
𝑘 .

The author used this result as a working hypothesis in a previous paper [Yas16, Section 12] to verify
a certain duality in mass formulas. He also applies this theorem to a study of quotient singularities in
another paper [Yas24b].

We now explain the outline of the proof of Theorem 1.1. Our strategy is to translate Serre’s arguments,
which use p-adic measures, to the motivic setting by using the theory of motivic integration, a theory
pioneered by Kontsevich [Kon95] and Denef–Loeser [DL99]. We use a version of the theory over a
complete discrete valuation ring established by Sebag [Seb04]. We consider the space of Eisenstein
polynomials of degree n with coefficients in 𝑘	𝑡
, denoted by 𝔈𝔦𝔰. We regard this as a subspace of the
arc space J∞(A𝑛𝑘	𝑡
) of the affine spaceA𝑛

𝑘	𝑡

. Through the natural map𝔈𝔦𝔰 → Δ◦𝑛, we relate the integral∫

Δ◦𝑛
L−d with the motivic volume of𝔈𝔦𝔰/G𝑚, the quotient of𝔈𝔦𝔰 by a natural action ofG𝑚. This motivic

volume is easy to compute, leading to the motivic version of Serre’s formula. The motivic version
of Bhargava’s formula easily follows from that of Serre. The motivic version of Krasner’s formula is
obtained by an explicit description of the locus of those Eisenstein polynomials which give extensions
of a prescribed discriminant exponent.

Throughout the paper, we work over a field k of characteristic 𝑝 ≥ 0. A k-variety means a separated
scheme of finite type over k. We follow the convention that when 𝑝 = 0, then p is coprime to any positive
integer n and we write 𝑝 � 𝑛. The symbol K means an extension of k, unless otherwise noted. In this
paper, every ring is assumed to be commutative. For a ring R, we denote by 𝑅	𝑡
 the ring of power
series with coefficients in R and by 𝑅�𝑡� its localization by t, which is nothing but the ring of Laurent
power series with coefficients in R. When K is a field and A is an étale 𝐾�𝑡�-algebra, we denote by O𝐴

the integral closure of 𝐾	𝑡
 in A. For a finite group G, a G-torsor means an étale G-torsor.

2. Discriminants

Let R be a ring and let S be an R-algebra which is free of rank n as an R-module. For each element
𝑠 ∈ 𝑆, the map 𝑆 → 𝑆, 𝑥 ↦→ 𝑠𝑥 is an R-linear map and its trace Tr(𝑠) is defined as an element of R.
The discriminant 𝐷 (𝑠1, . . . , 𝑠𝑛) of an R-module basis 𝑠1, . . . , 𝑠𝑛 ∈ 𝑆 is defined to be the determinant
of the 𝑛 × 𝑛 matrix (Tr(𝑠𝑖𝑠 𝑗 ))𝑖, 𝑗 with entries in R. It is known that the ideal generated by 𝐷 (𝑠1, . . . , 𝑠𝑛)
is independent of the choice of basis and that S is étale over R if and only if (𝐷 (𝑠1, . . . , 𝑠𝑛)) = 𝑅 or
equivalently 𝐷 (𝑠1, . . . , 𝑠𝑛) is an invertible element of R.

Consider the case 𝑅 = Z[𝑌1, . . . , 𝑌𝑛], the n-variate polynomial ring with integer coefficients, and

𝑆 = 𝑅[𝑥]/(𝑥𝑛 + 𝑌1𝑥
𝑛−1 + · · · + 𝑌𝑛−1𝑥 + 𝑌𝑛).

We define the discriminant polynomial 𝐹 (𝑌1, . . . , 𝑌𝑛) ∈ 𝑅 to be the discriminant 𝐷 (1, 𝑥, . . . , 𝑥𝑛−1) of
the R-basis 1, 𝑥, . . . , 𝑥𝑛−1 of S. For any ring 𝑅′ and an 𝑅′-algebra

𝑆′ = 𝑅′ [𝑥]/(𝑥𝑛 + 𝑦1𝑥
𝑛−1 + · · · + 𝑦𝑛−1𝑥 + 𝑦𝑛) (𝑦1, . . . , 𝑦𝑛 ∈ 𝑅′),

we have 𝐷 (1, 𝑥𝑆′ , . . . , 𝑥
𝑛−1
𝑆′ ) = 𝐹 (𝑦1, . . . , 𝑦𝑛), where 𝑥𝑆′ is the image of x in 𝑆′. The 𝑅′-algebra 𝑆′ is

étale if and only if 𝐹 (𝑦1, . . . , 𝑦𝑛) is an invertible element of 𝑅′.
Next consider the case where 𝑅 = 𝐾�𝑡� with K a field and

𝑆 = 𝑅[𝑥]/(𝑥𝑛 + 𝑦1𝑥
𝑛−1 + · · · + 𝑦𝑛−1𝑥 + 𝑦𝑛) (𝑦1, . . . , 𝑦𝑛 ∈ 𝑅).
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4 T. Yasuda

The polynomial in the last equality is called an Eisenstein polynomialif ord 𝑦𝑖 > 0 for every i and
ord 𝑦𝑛 = 1. If this is the case, from [Ser79, p. 19], S is a discrete valuation field with uniformizer x and
has residue field isomorphic to K. The field extension 𝑆/𝑅 is separable if and only if 𝐹 (𝑦1, . . . , 𝑦𝑛) ≠ 0.
When 𝑆/𝑅 is separable, its discriminant exponent is defined to be

d𝑆/𝑅 := ord 𝐹 (𝑦1, . . . , 𝑦𝑛) ∈ Z≥0.

We often write d𝑆/𝑅 simply as d𝑆 , omitting R.

3. Strong P-moduli spaces

In this section, we recall results from [TY23]. Let Aff/𝑘 be the category of affine schemes over k and
let ACF/𝑘 be its full subcategory consisting of spectra Spec 𝐾 with K an algebraically closed field.
We identify a k-scheme X with the associated functor

(Aff/𝑘)op → Set, 𝑇 ↦→ Hom𝑘 (𝑇, 𝑋).

For a functor 𝑍 : (Aff/𝑘)op → Set, we let 𝑍𝐹 : (ACF/𝑘)op → Set be its restriction to (ACF/𝑘)op.

Definition 3.1. Let Y be a k-scheme and let X be a functor (Aff/𝑘)op → Set (e.g., a k-scheme).
A P-morphism 𝑓 : 𝑌 → 𝑋 is a natural transformation 𝑌𝐹 → 𝑋𝐹 such that there exist morphisms of
ℎ : 𝑍 → 𝑌 and 𝑔 : 𝑍 → 𝑋 of k-schemes such that h is surjective and locally of finite type and the
following diagram is commutative:

𝑍𝐹

ℎ𝐹
��

𝑔𝐹

���
��

��
��

�

𝑌𝐹
𝑓

�� 𝑋𝐹

(3.1)

We denote by Hom𝑃
𝑘 (𝑌, 𝑋) the set of P-morphisms over k from Y to X. We denote by 𝑋𝑃 the functor

(Aff/𝑘)op → Set, 𝑇 ↦→ Hom𝑃
𝑘 (𝑇, 𝑋).

A P-morphism 𝑓 : 𝑌 → 𝑋 is said to be a P-isomorphismif there exists a P-morphism 𝑔 : 𝑋 → 𝑌 such
that both 𝑓 ◦ 𝑔 and 𝑔 ◦ 𝑓 are the identities.

For a scheme X, we denote its underlying point set by |𝑋 |. This set is identified with the set
of equivalence classes of geometric points Spec 𝐾 → 𝑋; two geometric points Spec 𝐾 → 𝑋 and
Spec 𝐾 ′ → 𝑋 are equivalent if they fit into the commutative diagram

Spec 𝐾 ′′ ��

��

Spec 𝐾 ′

��
Spec 𝐾 �� 𝑋

with 𝐾 ′′ also an algebraically closed field. The set |𝑋 | is equipped with the Zariski topology.
A P-morphism 𝑓 : 𝑌 → 𝑋 induces a map | 𝑓 | : |𝑌 | → |𝑋 | in the obvious way.

Lemma 3.2 [TY23, Lemmas 4.7 and 4.32]. Let Y and X be separated schemes locally of finite type over
k. Let 𝑓 : 𝑌 → 𝑋 be a P-morphism.

1. There exist finite-type morphisms ℎ : 𝑍 → 𝑌 and 𝑔 : 𝑍 → 𝑋 such that diagram (3.1) is commutative
and h is geometrically bijective (that is, for every algebraically closed field K, ℎ(𝐾) : 𝑍 (𝐾) → 𝑌 (𝐾)
is bijective.)
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2. If Γ 𝑓 : 𝑌 → 𝑌 ×𝑘 𝑋 is the graph of f, then Im(|Γ 𝑓 |) is a locally constructible subset of |𝑌 ×𝑘 𝑋 |.
3. f is a P-isomorphism if and only if it is geometrically bijective.

Definition 3.3. Keeping the assumption of Lemma 3.2, we denote the locally constructible subset
Im(|Γ 𝑓 |) again by Γ 𝑓 . For a point 𝑥 : Spec 𝐾 → 𝑋 with K any field, the fiber 𝑓 −1(𝑥) is defined to be
the constructible subset

(Γ 𝑓 ×𝑋,𝑥 Spec 𝐾) ∩ pr−1
𝑋 (𝑥) ⊂ 𝑌 ⊗𝑘 𝐾.

Here Γ 𝑓 ×𝑋,𝑥 Spec 𝐾 means the preimage of Γ 𝑓 by the morphism

id × 𝑥 : 𝑌 ⊗𝑘 𝐾 → 𝑌 ×𝑘 𝑋.

Definition 3.4. We define the category of P-schemes over k, denoted by P-Sch/𝑘 , to be the category
having k-schemes as objects and P-morphisms over k as morphisms.

Definition 3.5. Let F : (Aff/𝑘)op → Set be a functor. A strong P-moduli space of F is a k-scheme X
given with a morphism 𝜋 : F → 𝑋𝑃 such that the induced morphism 𝜋 : F𝑃 → 𝑋𝑃 is an isomorphism.

If it exists, a strong P-moduli space is unique up to a unique P-isomorphism. By definition, if X is
a strong P-moduli space of F , then for every algebraically closed field K, the map F (𝐾) → 𝑋 (𝐾) is
bijective.

Theorem 3.6 [TY23, Theorem 8.9]. For a finite group G, the functor

F𝐺 : (Aff/𝑘)op → Set, Spec 𝑅 ↦→ {𝐺-torsors over Spec 𝑅�𝑡�}/�

has a strong P-moduli space which is a countable coproduct of affine k-varieties. Here a G-torsor means
an étale G-torsor.

Definition 3.7. For a ring R, we say that a finite étale 𝑅�𝑡�-algebra A is of degree n (resp. of discriminant
exponent m, connected) if for every point Spec 𝐾 → Spec 𝑅, the induced 𝐾�𝑡�-algebra 𝐴 ⊗𝑅�𝑡� 𝐾�𝑡�
is of degree n (resp. of discriminant exponent m, a field). For 𝑛 ∈ Z>0 and 𝑚 ∈ Z≥0, we define the
following functors:

F𝑛 : (Aff/𝑘)op → Set
Spec 𝑅 ↦→ {finite étale 𝑅�𝑡�-algebras of degree 𝑛}/�,

F◦𝑛 : (Aff/𝑘)op → Set
Spec 𝑅 ↦→ {connected finite étale 𝑅�𝑡�-algebras of degree 𝑛}/�

and

F (𝑚)𝑛 : (Aff/𝑘)op → Set

Spec 𝑅 ↦→

{
connected finite étale 𝑅�𝑡�-algebras of
degree 𝑛 and discriminant exponent𝑚

}
/�.

Corollary 3.8. The functor F𝑛, F◦𝑛 and F (𝑚)𝑛 have strong P-moduli spaces which are coproducts of
countably many affine k-varieties.

Proof. Since F𝑛 is isomorphic to F𝑆𝑛 , Theorem 3.6 shows that F𝑛 has a strong P-moduli space which
is a coproduct of countably many affine k-varieties. From [TY23, Lemma 8.7 and Theorem 8.9],
F◦𝑛 also has a strong P-moduli space which is a coproduct of countably many affine k-varieties. From
[WY15], the discriminant exponent function d : F𝑛 → Z≥0, which is identified with the Artin conductor
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6 T. Yasuda

a : F𝑆𝑛 → Z≥0, is a special case of v-function v : F𝑆𝑛 → Z≥0. From [TY23, Theorem 9.8], d is a locally
constructible function. Hence, the property “d = 𝑚” is locally constructible. From [TY23, Theorem
8.9], F (𝑚)𝑛 also has a P-moduli spaces which is a coproduct of countably many affine k-varieties. �

Definition 3.9. We denote by Δ◦𝑛 and Δ (𝑚)𝑛 P-moduli spaces of F◦𝑛 and F (𝑚)𝑛 , which are coproducts of
countably many affine k-varieties.

By the definition of strong P-moduli space, for each connected finite étale 𝑅�𝑡�-algebra of degree n
and discriminant exponent m, we have the induced P-morphism Spec 𝑅 → Δ (𝑚)𝑛 .

Remark 3.10. Let us write Δ◦𝑛 =
∐

𝑖∈𝐼 𝑊𝑖 , where I is a countable set and 𝑊𝑖 are k-varieties. Then,
locally constructible subsets and constructible subsets of Δ◦𝑛 are characterized as follows. A subset
𝐶 ⊂ Δ◦𝑛 is locally constructible if and only if for every i, 𝐶∩𝑊𝑖 is a constructible subset of 𝑊𝑖 . A locally
constructible subset 𝐶 ⊂ Δ◦𝑛 is constructible if it is quasicompact or equivalently if it is contained in⋃

𝑖∈𝐼0 𝑊𝑖 for a finite subset 𝐼0 ⊂ 𝐼. Note that whether a subset 𝐶 ⊂ Δ◦𝑛 is locally constructible (resp.
constructible) or not is independent of the choice of P-moduli space: if (Δ◦𝑛)′ is another P-moduli
space of F◦𝑛 and 𝐶 ′ ⊂ (Δ◦𝑛)

′ is the subset corresponding to C, then C is locally constructible (resp.
constructible) if and only if so is 𝐶 ′.

4. The space of Eisenstein polynomials

In this section, we construct the space of Eisenstein polynomials as a subspace of an arc space and
study its properties. We refer the reader to [CLNS18] for details on arc spaces, in particular, from the
viewpoint of motivic integration.

Let 𝑉 := A𝑛
𝑘	𝑡


= Spec 𝑘	𝑡
[𝑥1, . . . , 𝑥𝑛] and let J∞𝑉 and J𝑙 𝑉 , 𝑙 ∈ Z≥0, be its arc scheme and jet
schemes. Namely, for a k-algebra R, we have

(J∞𝑉) (𝑅) = Hom𝑘	𝑡
(Spec 𝑅	𝑡
, 𝑉),

(J𝑙 𝑉) (𝑅) = Hom𝑘	𝑡
(Spec 𝑅	𝑡
/(𝑡𝑙+1), 𝑉).

For 𝑙 ′, 𝑙 ∈ Z≥0 with 𝑙 ′ ≥ 𝑙, we have truncation morphisms

𝜋𝑙 : J∞𝑉 → J𝑙 𝑉 and 𝜋𝑙
′

𝑙 : J𝑙′ 𝑉 → J𝑙 𝑉.

Definition 4.1. For a k-algebra R, R-points of J∞𝑉 correspond to n-tuples of power series
𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑅	𝑡
𝑛. We let them correspond also to polynomials

𝑓𝑦 (𝑥) := 𝑥𝑛 + 𝑦1𝑥
𝑛−1 + · · · + 𝑦𝑛−1𝑥 + 𝑦𝑛 ∈ 𝑅	𝑡
[𝑥] .

We let 𝐴𝑦 be the 𝑅�𝑡�-algebra 𝑅�𝑡�[𝑥]/( 𝑓𝑦 (𝑥)).

As we saw in Section 2, when R is a field K, the extension 𝐴𝑦/𝐾�𝑡� is separable if and only if 𝐹 (𝑦) ≠ 0.

Definition 4.2. For indeterminates𝑌𝑖, 𝑗 (1 ≤ 𝑖 ≤ 𝑛, 𝑗 ≥ 0) and for integers 𝑚 ≥ 0, we define polynomials
𝐹𝑚 (𝑌𝑖, 𝑗 ) ∈ Z[𝑌𝑖, 𝑗 ; 𝑗 ≤ 𝑚] by

𝐹

��
∑
𝑗≥0

𝑌1, 𝑗 𝑡
𝑗 , . . . ,

∑
𝑗≥0

𝑌𝑛, 𝑗 𝑡
𝑗
�� =

∑
𝑚≥0

𝐹𝑚(𝑌𝑖, 𝑗 )𝑡
𝑚.

Definition 4.3. Let 𝔈𝔦𝔰 ⊂ J∞𝑉 (resp. 𝔈𝔦𝔰sep,𝔈𝔦𝔰 (𝑚) ) to be the locus of Eisenstein polynomials (resp.
separable Eisenstein polynomials, Eisenstein polynomials whose discriminants have order m).
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If we write 𝑦𝑖 =
∑

𝑗∈Z≥0 𝑦𝑖, 𝑗 𝑡
𝑗 , then the above loci are described as

𝔈𝔦𝔰 = {(𝑦𝑖, 𝑗 ) | for every 𝑖, 𝑦𝑖,0 = 0 and 𝑦𝑛,1 ≠ 0},
𝔈𝔦𝔰sep = {(𝑦𝑖, 𝑗 ) ∈ 𝔈𝔦𝔰 | for some 𝑚, 𝐹𝑚 (𝑦𝑖, 𝑗 ) ≠ 0},

𝔈𝔦𝔰 (𝑚) = {(𝑦𝑖, 𝑗 ) ∈ 𝔈𝔦𝔰 | for 𝑚′ < 𝑚, 𝐹𝑚′ (𝑦𝑖, 𝑗 ) = 0 and 𝐹𝑚 (𝑦𝑖, 𝑗 ) ≠ 0}.

These are locally closed subsets of J∞𝑉 . We have 𝔈𝔦𝔰sep =
⊔

𝑚≥0 𝔈𝔦𝔰
(𝑚) . For 𝑦 ∈ 𝔈𝔦𝔰sep(𝐾), the

associated extension 𝐴𝑦/𝐾�𝑡� is separable and totally ramified. Let 𝜛 ∈ 𝐴𝑦 = 𝐾�𝑡�[𝑥]/( 𝑓𝑦 (𝑥)) denote
the image of x, which is a uniformizer of 𝐴𝑦 . As is well-known, the discriminant exponent d𝐴𝑦/𝐾�𝑡� of
𝐴𝑦/𝐾�𝑡� is also equal to

𝑛 ord 𝑓 ′𝑦 (𝜛) = 𝑛 ord

(
𝑛∑
𝑖=0
(𝑛 − 𝑖)𝑦𝑖𝜛

𝑛−𝑖−1

)
(4.1)

with 𝑦0 = 1 (for example, see [Ser79, Proposition 6 on p. 50 and Corollary 2 on p. 56]). Here we denote
the unique extension of the valuation ord : 𝐾�𝑡�→ Z≥0 ∪ {∞} to 𝐴𝑦 again by ord. This equality shows
that if 𝑝 � 𝑛, then d𝐴𝑦/𝐾�𝑡� = 𝑛 − 1 and hence 𝔈𝔦𝔰 (𝑚) = ∅ for 𝑚 ≠ 𝑛 − 1. For n with 𝑝 | 𝑛, we have the
following explicit description of 𝔈𝔦𝔰 (𝑚) .

Proposition 4.4. Suppose that 𝑝 > 0 and 𝑝 | 𝑛. Let

𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝐾	𝑡
𝑛 = 𝔈𝔦𝔰(𝐾).

We have 𝑦 ∈ 𝔈𝔦𝔰 (𝑚) (𝐾) if and only if for every 𝑖 ∈ {1, . . . , 𝑛 − 1} with 𝑝 � (𝑛 − 𝑖), the inequality

ord 𝑦𝑖 ≥

⌈
𝑚 − 𝑛 + 1 + 𝑖

𝑛

⌉
holds and the equality in this inequality holds if 𝑚 + 𝑖 + 1 ∈ 𝑛Z.

Proof. In the situation of the proposition, we have

d𝐴𝑦/𝐾�𝑡� = 𝑛 ord

����

∑
0≤𝑖<𝑛
𝑝�(𝑛−𝑖)

(𝑛 − 𝑖)𝑦𝑖𝜛
𝑛−𝑖−1


����.
For i with 𝑝 � (𝑛 − 𝑖), we have

𝑛 ord
(
(𝑛 − 𝑖)𝑦𝑖𝜛

𝑛−𝑖−1
)
≡ 𝑛 − 𝑖 − 1 mod 𝑛Z.

In particular, for distinct i’s, these values are different to one another. Therefore,

𝑛 ord 𝑓 ′𝑦 (𝜛) = min{𝑛 − 𝑖 − 1 + 𝑛 ord 𝑦𝑖 | 0 ≤ 𝑖 < 𝑛, 𝑝 � (𝑛 − 𝑖)}.

Moreover, if d𝐴𝑦/𝐾�𝑡� = 𝑚, the minimum is attained at i with 𝑚 + 𝑖 + 1 ∈ 𝑛Z. This proves the
proposition. �

Definition 4.5. For 𝑙 ∈ Z≥0, we let 𝔈𝔦𝔰 (𝑚)𝑙 ⊂ J𝑙 𝑉 be the image of 𝔈𝔦𝔰 (𝑚) by 𝜋𝑙 .
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Corollary 4.6. Let 𝑐 := 𝑚−𝑛+1. Suppose that 𝑝 | 𝑛, 𝑝 � 𝑐 and 𝑐 ≥ 0. For 𝑙 ≥ �(𝑐+𝑛−1)/𝑛� = �𝑚/𝑛�,
𝔈𝔦𝔰 (𝑚)𝑙 is a locally closed subset of J𝑙 𝑉 . Moreover, if we give it the reduced scheme structure, then

𝔈𝔦𝔰 (𝑚)𝑙 � G2
𝑚 × A

𝑛𝑙−𝑐+�𝑐/𝑝�−1
𝑘 .

In particular, 𝔈𝔦𝔰 (𝑚)𝑙 is an affine variety.

Proof. The jet scheme J𝑙 𝑉 is the affine space A𝑛(𝑙+1)𝑘 with the coordinates 𝑦𝑖, 𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 𝑙.
The subset 𝔈𝔦𝔰 (𝑚)𝑙 of it is defined by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦𝑖,0 = 0 (1 ≤ 𝑖 ≤ 𝑛),

𝑦𝑛,1 ≠ 0,

𝑦𝑖, 𝑗 = 0
(
𝑖 < 𝑛, 𝑝 � (𝑛 − 𝑖), 𝑗 <

⌈
𝑐+𝑖
𝑛

⌉)
,

𝑦𝑖, 𝑐+𝑖𝑛
≠ 0 (𝑖 < 𝑛, 𝑝 � (𝑛 − 𝑖), 𝑐 + 𝑖 ∈ 𝑛Z),

which shows that 𝔈𝔦𝔰 (𝑚)𝑙 is a locally closed subset. The last two conditions can be rephrased as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦𝑖, 𝑗 = 0

(
𝑖 < 𝑛, 𝑝 � (𝑛 − 𝑖), 𝑐 + 𝑖 ∉ 𝑛Z, 𝑗 ≤

⌊
𝑐+𝑖
𝑛

⌋ )
𝑦𝑖, 𝑗 = 0

(
𝑖 < 𝑛, 𝑝 � (𝑛 − 𝑖), 𝑐 + 𝑖 ∈ 𝑛Z, 𝑗 <

⌊
𝑐+𝑖
𝑛

⌋ )
𝑦𝑖, 𝑐+𝑖𝑛

≠ 0 (𝑖 < 𝑛, 𝑝 � (𝑛 − 𝑖), 𝑐 + 𝑖 ∈ 𝑛Z).

Thus, we have

𝔈𝔦𝔰 (𝑚)𝑙 � G2
𝑚 × A

𝑛𝑙−𝑠−1
𝑘 ,

where

𝑠 =
∑

1≤𝑖<𝑛
𝑝�(𝑛−𝑖)

⌊
𝑐 + 𝑖

𝑛

⌋
.

Let us write 𝑛 = 𝑝𝑛′. From Hermite’s identity (for example, see [ST03, Chapter 12]), we have

𝑠 =
𝑛−1∑
𝑖=1

⌊
𝑐

𝑛
+

𝑖

𝑛

⌋
−

𝑛′−1∑
𝑖=1

⌊
𝑐

𝑛
+

𝑖

𝑛′

⌋
=

⌊
𝑛
𝑐

𝑛

⌋
−

⌊
𝑛′

𝑐

𝑛

⌋
= 𝑐 −

⌊
𝑐

𝑝

⌋
. �

Lemma 4.7. For a k-algebra R and for a point 𝑦 ∈ 𝔈𝔦𝔰 (𝑚) (𝑅), 𝐴𝑦 is étale over 𝑅�𝑡�.

Proof. Since the leading coefficient 𝐹𝑚 (𝑦𝑖, 𝑗 ) of 𝐹 (𝑦1, . . . , 𝑦𝑛) is an invertible element of R, 𝐹 (𝑦) ∈ 𝑅�𝑡�
is invertible and 𝐴𝑦/𝑅�𝑡� is étale. �

Since 𝔈𝔦𝔰 (𝑚) itself is an affine scheme having the coordinate ring

𝑆 = 𝑘 [𝑦𝑖, 𝑗 , 𝑦
−1
𝑛,1, 𝐹

−1
𝑚 | 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ Z≥0]/(𝐹𝑚′ | 𝑚

′ < 𝑚),

we have the corresponding étale algebra over 𝑆�𝑡� and the induced P-morphism

𝜓 = 𝜓 (𝑚) : 𝔈𝔦𝔰 (𝑚) → Δ (𝑚)𝑛 .
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For each point 𝑦 ∈ 𝔈𝔦𝔰 (𝑚) (𝑅), the composition P-morphism

Spec 𝑅
𝑦
−→ 𝔈𝔦𝔰 (𝑚) → Δ (𝑚)𝑛

is the P-morphism associated to the 𝑅�𝑡�-algebra 𝐴𝑦 .

Remark 4.8. For 𝑦 ∈ 𝔈𝔦𝔰(𝑅), even if 𝐾�𝑡�→ 𝐾�𝑡�[𝑥]/( 𝑓𝑦) is étale for every point Spec 𝐾 → Spec 𝑅
with K a field, the map 𝑅�𝑡� → 𝑅�𝑡�[𝑥]/( 𝑓𝑦) is not generally étale as the following example exists.
Suppose that k has characteristic two. Let 𝑅 = 𝑘 [𝑠] and 𝑓 = 𝑥2 + (𝑠𝑡 + (𝑠 + 1)𝑡2)𝑥 + 𝑡 ∈ 𝑅�𝑡�[𝑥]. Then
𝑅�𝑡�[𝑥]/( 𝑓 ) is not étale over 𝑅�𝑡�. Indeed, 𝑑𝑓 /𝑑𝑥 = 𝑠𝑡 + (𝑠 + 1)𝑡2 is not a unit in 𝑅�𝑡�. Hence it is not a
unit in 𝑅�𝑡�[𝑥]/( 𝑓 ) either. On the other hand, for any point Spec 𝐾 → Spec 𝑅, since 𝑑𝑓 /𝑑𝑥 is a unit in
𝐾�𝑡�, the induced map 𝐾�𝑡� → 𝐾�𝑡�[𝑥]/( 𝑓 ) is étale. This explains why we need to decompose 𝔈𝔦𝔰sep

into subsets 𝔈𝔦𝔰 (𝑚) to have a map to Δ◦𝑛.

For 𝑦 ∈ 𝔈𝔦𝔰 (𝑚)𝑙 (𝑅) ⊂ (𝑅	𝑡
/(𝑡
𝑙+1))𝑛, let 𝑦̃ ∈ 𝔈𝔦𝔰 (𝑚) (𝑅) ⊂ 𝑅	𝑡
𝑛 be its canonical lift given by

𝑦̃𝑖, 𝑗 =

{
𝑦𝑖, 𝑗 ( 𝑗 ≤ 𝑚)

0 ( 𝑗 > 𝑚).

For 𝑙 ≥ �𝑚/𝑛�, the assignment 𝑦 ↦→ 𝑦̃ defines a morphism 𝔈𝔦𝔰 (𝑚)𝑙 → 𝔈𝔦𝔰 (𝑚) , which is a section of
𝜋𝑙 |𝔈𝔦𝔰 (𝑚) : 𝔈𝔦𝔰

(𝑚) → 𝔈𝔦𝔰 (𝑚)𝑙 . We define the P-morphism

𝜓𝑙 = 𝜓 (𝑚)𝑙 : 𝔈𝔦𝔰 (𝑚)𝑙 → Δ◦𝑛, 𝑦 ↦→ 𝐴𝑦̃ ,

which is the composition of the section 𝔈𝔦𝔰 (𝑚)𝑙 → 𝔈𝔦𝔰 (𝑚) and 𝜓 : 𝔈𝔦𝔰 (𝑚) → Δ (𝑚)𝑛 .
We need the following lemma, which is a variant of Fontaine’s [Fon85, Prop. 1.5].

Lemma 4.9. Let 𝐿/𝐾�𝑡� be a finite separable extension and 𝐸/𝐾�𝑡� any algebraic extension. Let O𝐿

and O𝐸 be the integral closures of 𝐾	𝑡
 in L and E, respectively. Let l be an integer with 𝑙 > d𝐿/𝐾�𝑡�.
Suppose that there exists a 𝐾	𝑡
-algebra homomorphism 𝜂 : O𝐿 → O𝐸/𝑡

𝑙O𝐸 . Then there exists a
𝐾�𝑡�-embedding 𝐿 → 𝐸 .

Proof. The proof is also similar to the one of [Fon85, Proposition 1.5]. Let us write O𝐿 = 𝐾	𝑡
[𝛼] and
let 𝑓 (𝑋) be the minimal polynomial of 𝛼 over 𝐾�𝑡�, which is of degree 𝑛 = [𝐿 : 𝐾�𝑡�]. We embed L
and E into an algebraic closure Ω of 𝐾�𝑡� and denote the extension of the valuation ord to Ω again by
ord. Let 𝛽 ∈ O𝐸 be a lift of 𝜂(𝛼). Then ord 𝑓 (𝛽) ≥ 𝑙. Let 𝛼 = 𝛼1, , . . . , 𝛼𝑛 ∈ Ω be the conjugates of 𝛼.
Since 𝑓 (𝛽) =

∏𝑛
𝑖=1(𝛽 − 𝛼𝑖), we have

sup
𝑖

ord(𝛽 − 𝛼𝑖) ≥
ord( 𝑓 (𝛽))

𝑛
≥

𝑙

𝑛
>

d𝐿

𝑛
. (4.2)

Recall that the discriminant of 𝐿/𝐾�𝑡� is the ideal generated by
∏

𝑖≠ 𝑗 (𝛼 𝑗 − 𝛼𝑖). Suppose that
ord(𝛼1 − 𝛼2) = sup𝑖≠ 𝑗 ord(𝛼𝑖 − 𝛼 𝑗 ). If 𝜎𝑖 , 1 ≤ 𝑖 ≤ 𝑛, are 𝐾�𝑡�-automorphisms of Ω with 𝜎𝑖 (𝛼) = 𝛼𝑖 .
Then,

d𝐿 ≥
∑
𝑖≠ 𝑗

ord(𝛼𝑖 − 𝛼 𝑗 ) ≥
𝑛∑
𝑖=1

ord(𝜎𝑖 (𝛼1) − 𝜎𝑖 (𝛼2)) ≥ 𝑛 ord(𝛼1 − 𝛼2). (4.3)

Combining (4.2) and (4.3) gives

sup
𝑖

ord(𝛽 − 𝛼𝑖) > sup
𝑖≠ 𝑗

ord(𝛼𝑖 − 𝛼 𝑗 ).
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From Krasner’s lemma [Lan94, II, S2, Proposition3], for i with ord(𝛽−𝛼𝑖) = sup𝑖 ord(𝛽−𝛼𝑖), we have
𝐾�𝑡�(𝛼𝑖) ⊂ 𝐾�𝑡�(𝛽) ⊂ 𝐸 . The composite map

𝐿
∼
−→ 𝐾�𝑡�(𝛼𝑖) ↩→ 𝐾�𝑡�(𝛽) ↩→ 𝐸

is a 𝐾�𝑡�-embedding. �

Corollary 4.10. Let L and 𝐿 ′ be finite separable field extensions of 𝐾�𝑡� of the same degree. Suppose
that for some 𝑙 > d𝐿 , there is a 𝐾	𝑡
-isomorphism O𝐿/𝑡

𝑙O𝐿
∼
−→ O𝐿′/𝑡

𝑙O𝐿′ . Then there exists a
𝐾�𝑡�-isomorphism 𝐿

∼
−→ 𝐿 ′.

Proof. From the last proposition, there exists a 𝐾�𝑡�-embedding 𝐿 → 𝐿 ′. Because of their degrees, it
is an isomorphism. �

Corollary 4.11. For 𝑙 ≥ 𝑚, the two morphisms 𝜓 (𝑚) , 𝜓 (𝑚)𝑙 ◦ 𝜋𝑙 : 𝔈𝔦𝔰 (𝑚) → Δ◦𝑛 induce the same
P-morphism.

Proof. For a geometric point 𝑦 ∈ 𝔈𝔦𝔰 (𝑚) (𝐾), the field extension 𝐴𝑦/𝐾�𝑡� has discriminant exponent m.
Since

O𝐴𝑦/𝑡
𝑙+1O𝐴𝑦 = (𝐾	𝑡
/(𝑡

𝑙+1)) [𝑥]/( 𝑓𝑦 (𝑥)),

if 𝑦, 𝑦′ ∈ 𝔈𝔦𝔰 (𝑚) (𝐾) map to the same point of 𝔈𝔦𝔰 (𝑚)𝑙 (𝐾) for 𝑙 ≥ 𝑚, then 𝐴𝑦 and 𝐴𝑦′ are isomorphic
over 𝐾�𝑡�. This proves the corollary. �

Corollary 4.12. The locally closed subset Δ (𝑚)𝑛 ⊂ Δ◦𝑛 is quasicompact and constructible.

Proof. We first note that from Remark 3.10, the assertion is independent of the choice of the P-moduli
space Δ◦𝑛 of the functor F◦𝑛 . For an algebraically closed field K, every totally ramified extension 𝐴/𝐾�𝑡�
is associated to some Eisenstein polynomial. This shows that

Im(𝜓 (𝑚) ) = Im(𝜓 (𝑚)𝑙 ) = Δ (𝑚)𝑛 .

Since the P-morphism 𝜓 (𝑚)𝑙 is represented by a morphism 𝑌 → Δ◦𝑛 of k-schemes with Y a k-variety, its
image is quasicompact and constructible. �

Definition 4.13. Let G𝑚 denote the multiplicative group Spec 𝑘 [𝑠, 𝑠−1] over the base field k. We define
a grading on 𝑘 [𝑥1, . . . , 𝑥𝑛] by deg(𝑥𝑖) = 𝑖 which induces a G𝑚-action on V and one on J∞𝑉 .

Lemma 4.14. The maps 𝜓 (𝑚) and 𝜓 (𝑚)𝑙 are G𝑚-invariant.

Proof. Let 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝔈𝔦𝔰
(𝑚) (𝐾) ⊂ 𝐾	𝑡
𝑛 and 𝑏 ∈ 𝐾∗ = G𝑚 (𝐾). Let

𝑦′ := 𝑏𝑦 = (𝑏𝑦1, 𝑏
2𝑦2, . . . , 𝑏

𝑛𝑦𝑛).

We have an isomorphism 𝐴𝑦 → 𝐴𝑦′ , 𝑥 ↦→ 𝑏−1𝑥. This shows that 𝜓 (𝑚) is G𝑚-invariant. Similarly
for 𝜓 (𝑚)𝑙 . �

Proposition 4.15. Let 𝐴 : Spec 𝐾 → Δ (𝑚)𝑛 be a point with K any field and let 𝑙 ≥ 𝑚. The fiber 𝜓−1
𝑙 (𝐴)

is a closed subset of 𝔈𝔦𝔰 (𝑚)𝑙 ⊗𝑘 𝐾 .

Proof. Since the proof is a little long and technical, we divide it into several steps.

A setup. By base change, we may assume that 𝐾 = 𝑘 and that they are algebraically closed. Then,
the point 𝐴 ∈ Δ (𝑚)𝑛 (𝑘) is identified with an étale 𝑘�𝑡�-algebra of degree n. Let 𝑍 = Spec 𝑅 be an affine
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smooth irreducible curve over k with a distinguished closed point 0 ∈ Spec 𝑅 and let 𝑦 : 𝑍 → 𝔈𝔦𝔰 (𝑚)𝑙

be a k-morphism such that an open dense subset 𝑍◦ ⊂ 𝑍 maps into 𝜓−1
𝑙 (𝐴). We will show that the

distinguished point 0 also maps into 𝜓−1
𝑙 (𝐴), which implies the proposition. Let 𝐴𝑦 = 𝑅�𝑡�[𝑥]/( 𝑓𝑦 (𝑥))

be the algebra corresponding to y. Each point 𝑧 ∈ 𝑍 (𝑘) induces a homomorphism 𝑅�𝑡�→ 𝑘�𝑡�, which in
turn induces an algebra 𝐴𝑦,𝑧/𝑘�𝑡�. For 𝑧 ∈ 𝑍◦(𝑘), we have 𝐴𝑦,𝑧 � 𝐴. Our goal is to show that 𝐴𝑦,0 � 𝐴.

Strategy. Our strategy to achieve this goal is as follows. For a group G of a special form, we
construct some G-torsor Spec 𝐵𝑦 → Spec 𝑅�𝑡� which factors through Spec 𝐴𝑦 . We show that for each
point 𝑧 ∈ 𝑍 (𝑘), the “fiber” 𝐵𝑦,𝑧 is isomorphic to (𝐴𝑦,𝑧)

𝑣 for some 𝑣 ∈ Z>0, where 𝐴𝑦,𝑧 denotes a
Galois closure of 𝐴𝑦,𝑧/𝑘�𝑡�. For such a group G, we have a fine moduli stack Δ̃𝐺 of G-torsors over
Spec 𝑘�𝑡� and have the morphism 𝑍 → Δ̃𝐺 corresponding to the above G-torsor. We will see that the
image of the map 𝑍 (𝑘) → Δ̃𝐺 (𝑘)/� is finite and hence the map is constant. This implies the desired
conclusion.

Construction of 𝐵𝑦 . We begin to construct a G-torsor as above. Let 𝐶𝑦/𝑅�𝑡� and 𝐶𝑦,0/𝑘�𝑡� be the
𝑆𝑛-torsors corresponding to the degree-n étale algebras 𝐴𝑦/𝑅�𝑡� and 𝐴𝑦,0/𝑘�𝑡�, respectively (for exam-
ple, see [Ser58, Section 1.5]). If we identify 𝑆𝑛−1 with the stabilizer of 1 for the action 𝑆𝑛 � {1, . . . , 𝑛},
then (𝐶𝑦)

𝑆𝑛−1 = 𝐴𝑦 and (𝐶𝑦,0)
𝑆𝑛−1 = 𝐴𝑦,0. Let Spec 𝐵′𝑦,0 ⊂ Spec 𝐶𝑦,0 be a connected component and

let 𝐺 ⊂ 𝑆𝑛 be its stabilizer so that Spec 𝐵′𝑦,0 → Spec 𝑘�𝑡� is a G-torsor and 𝐵′𝑦,0/𝑘�𝑡� is a Galois closure
of 𝐴𝑦,0/𝑘�𝑡�. Since the residue field k of 𝑘�𝑡� is algebraically closed, G coincides with its inertia group
(often denoted by 𝐺0). From [Ser79, p. 68, Corollary 4], 𝐺 = 𝐺0 is the semidirect product 𝐻 � 𝐶 of a
p-group H and a cyclic group C of order coprime to the characteristic of k. If 𝐺 ′ denotes the stabilizer
of 1 for the action 𝐺 � {1, . . . , 𝑛}, then 𝐴𝑦,0 = (𝐵′𝑦,0)

𝐺′ .
Let 𝑢 ∈ 𝐴𝑦 be the image of x by the map

𝑅�𝑡�[𝑥] → 𝐴𝑦 = 𝑅�𝑡�[𝑥]/( 𝑓𝑦 (𝑥))

and let 𝑢 be the image of u in 𝐴𝑦,0. Then, 𝐴𝑦,0 = 𝑘�𝑡�[𝑢] and 𝐵′𝑦,0 = 𝑘�𝑡�[𝑔𝑢 | 𝑔 ∈ 𝐺]. Let
𝐵′𝑦 := 𝑅�𝑡�[𝑔𝑢 | 𝑔 ∈ 𝐺] ⊂ 𝐶𝑦 . Then 𝐵′𝑦 is a finitely generated torsion-free 𝑅�𝑡�-module. Note that 𝑅	𝑡

is a Noetherian domain of dimension 2. Moreover, 𝑅	𝑡
 is excellent [Val75] and [Mat87, Theorem 19.5].
It follows that the localization 𝑅�𝑡� = 𝑅	𝑡
𝑡 is an excellent Dedekind domain. Since 𝐵′𝑦 is a torsion-free
𝑅�𝑡�-module and 𝐵′𝑦,0 is a free 𝑘�𝑡�-module of rank |𝐺 |, 𝐵′𝑦 is a locally free 𝑅�𝑡�-module of rank |𝐺 |.
Moreover, the subring 𝐵′𝑦 ⊂ 𝐶𝑦 is stable under the G-action.

From [Gro65, Scholie 7.8.3], the ring 𝐵′𝑦 is excellent. Therefore, the normalization 𝐵𝑦 of 𝐵′𝑦 is finitely
generated as a 𝐵′𝑦-module as well as an 𝑅�𝑡�-module. By a similar reasoning as above, 𝐵𝑦 is a locally
free 𝑅�𝑡�-module of rank |𝐺 |. We also see that 𝐵𝑦 is a locally free 𝐴𝑦-module of rank |𝐺 ′ | = |𝐺 |/𝑛.
We have natural morphisms of Dedekind schemes

Spec 𝐶𝑦
𝛾
−→ Spec 𝐵𝑦

𝛽
−→ Spec 𝐴𝑦

𝛼
−→ Spec 𝑅�𝑡�. (4.4)

Morphisms 𝛼, 𝛽, 𝛾 as well as their compositions are flat. The morphism 𝛼 ◦ 𝛽 is G-invariant and the
morphism 𝛽 is 𝐺 ′-invariant. We know that 𝛼 and 𝛼 ◦ 𝛽 ◦ 𝛾 are étale. From [Gro67, Proposition 17.7.7],
𝛼 ◦ 𝛽 is étale. From [Gro67, Proposition 17.3.4], 𝛽 is also étale.

Proving that Spec 𝐵𝑦 → Spec 𝑅�𝑡� is a G-torsor. We now claim that the G-action on Spec 𝐵𝑦 is
free. Each element 𝑔 ∈ 𝐺 \ {1} acts nontrivially on 𝐵′𝑦,0 and hence also on 𝐵′𝑦 and 𝐵𝑦 . If the G-action
on Spec 𝐵𝑦 is not free, then for some 𝑔 ∈ 𝐺 \ {1}, the quotient morphism Spec 𝐵𝑦 → (Spec 𝐵𝑦)/〈𝑔〉 is
ramified. But, this is impossible due to [Gro67, Proposition 17.3.3(v)] and the fact that the morphism
𝛼 ◦ 𝛽 : Spec 𝐵𝑦 → Spec 𝑅�𝑡� is étale and factors through (Spec 𝐵𝑦)/〈𝑔〉. This shows the claim. We
have shown that Spec 𝐵𝑦 → Spec 𝑅�𝑡� is an étale finite morphism of degree |𝐺 | and G-invariant for a
free G-action on Spec 𝐵𝑦 . We conclude that this is a G-torsor. By the same argument, we also see that
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12 T. Yasuda

Spec 𝐵𝑦 → Spec 𝐴𝑦 is a 𝐺 ′-torsor. In summary, we have shown that some compositions of morphisms
in (4.4) are torsors for groups displayed in the following diagram:

Spec 𝐶𝑦 𝛾
��

𝑆𝑛

��
Spec 𝐵𝑦

𝛽

𝐺′ ��

𝐺

��
Spec 𝐴𝑦 𝛼

�� Spec 𝑅�𝑡�

“Fibers” of 𝐵𝑦 are powers of Galois closures. For a point 𝑧 ∈ 𝑍 (𝑘), base changing (4.4) with
Spec 𝑘�𝑡�→ Spec 𝑅�𝑡�, we get a sequence of finite étale morphisms

Spec 𝐶𝑦,𝑧
𝛾𝑧
−−→ Spec 𝐵𝑦,𝑧

𝛽𝑧
−−→ Spec 𝐴𝑦,𝑧

𝛼𝑧
−−→ Spec 𝑘�𝑡�.

If 𝐴𝑦,𝑧/𝑘�𝑡� denotes a Galois closure of 𝐴𝑦,𝑧/𝑘�𝑡�, then 𝐶𝑦,𝑧 � (𝐴𝑦,𝑧)
𝑢 for some 𝑢 ∈ Z>0. Since

Spec 𝐵𝑦,𝑧 → Spec 𝑘�𝑡� is a G-torsor, we can write 𝐵𝑦,𝑧 � 𝐷𝑣 for some Galois extension 𝐷/𝑘�𝑡�. Then,
D is an intermediate field of 𝐴𝑦,𝑧/𝐴𝑦,𝑧 such that 𝐷/𝑘�𝑡� is Galois, which shows that 𝐷 = 𝐴𝑦,𝑧 and
𝐵𝑦,𝑧 � (𝐴𝑦,𝑧)

𝑣 .

Completing the proof by using a moduli stack. Since G is the semidirect product 𝐻 � 𝐶 of a
p-group H and a tame cyclic group C, we can use the moduli stack Δ̃𝐺 of G-torsors over Spec 𝑘�𝑡�

constructed in [TY20] (denoted by Δ𝐺 in the cited paper). The stack Δ̃𝐺 is written as the inductive
limit of Deligne–Mumford stacks X𝑛, 𝑛 ∈ Z≥0 of finite type, where transition morphisms X𝑛 → X𝑛+1
are representable and universally injective. In particular, we have

{𝐺-torsors over Spec 𝑘�𝑡�}/� = Δ𝐺 (𝑘)/�

=
⋃
𝑛

X𝑛 (𝑘)/�.

Since Z is quasicompact, the morphism 𝑍 → Δ̃𝐺 corresponding to the G-torsor Spec 𝐵𝑦 → Spec 𝑅�𝑡�
factors through a morphism 𝑍 → X𝑛 for some n. Recall that for 𝑧 ∈ 𝑍◦(𝑘), we have an 𝑘�𝑡�-
isomorphism 𝐴𝑦,𝑧 � 𝐴. Therefore, for 𝑧 ∈ 𝑍◦(𝑘), 𝐴𝑦,𝑧 � 𝐴, where 𝐴 is a Galois closure of 𝐴/𝑘�𝑡�.
It follows that for 𝑧 ∈ 𝑍◦(𝑘), 𝐵𝑦,𝑧 � (𝐴)𝑣 as a 𝑘�𝑡�-algebra. There are at most finitely many G-torsor
structures which can be given to the morphism Spec(𝐴)𝑣 → Spec 𝑘�𝑡�. It follows that the image of
the map 𝑍◦(𝑘) → X𝑛 (𝑘)/� is a finite set. Since (𝑍 \ 𝑍◦)(𝑘) is a finite set, the image of the map
𝑍 (𝑘) → X𝑛 (𝑘)/� is also finite. Since Z is irreducible, we conclude that the map 𝑍 (𝑘) → X𝑛 (𝑘)/�
is constant. Hence, the G-torsors 𝐵𝑦,𝑧/𝑘�𝑡�, 𝑧 ∈ 𝑍 (𝑘) are isomorphic to one another. It follows that
étale 𝑘�𝑡�-algebras 𝐴𝑦,𝑧 = (𝐵𝑦,𝑧)

𝐺′ , 𝑧 ∈ 𝑍 (𝑘) are isomorphic to one another, and hence all of them are
isomorphic to A. In particular, 𝐴𝑦,0 � 𝐴 as desired. �

5. The space of uniformizers

Let 𝐴/𝐾�𝑡� be a totally ramified extension of degree n and discriminant exponent m with a chosen
uniformizer 𝜛. We construct a map associating an Eisenstein polynomial to an arbitrary uniformizer
of A. To do so, we introduce some more notation. Let 𝐴 be a Galois closure of 𝐴/𝐾�𝑡� with Galois
group G. We define groups

𝐸 := {𝑔 ∈ 𝐺 |∀𝑎 ∈ 𝐴, 𝑔(𝑎) = 𝑎},

𝐻 := {𝑔 ∈ 𝐺 | 𝑔(𝐴) = 𝐴},

𝐻 := 𝐻/𝐸 = Aut(𝐴/𝐾�𝑡�).
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Let 𝜎1, . . . , 𝜎𝑛 : 𝐴 ↩→ 𝐴̃ be the 𝐾�𝑡�-embeddings. Let 𝑠𝑖 (𝑢1, . . . , 𝑢𝑛), 𝑖 = 1, . . . , 𝑛, be elementary
symmetric polynomials of n variables with degree i and put 𝑠0 = 1 by convention.

With the above notation, to a uniformizer 𝜛′ ∈ 𝐴, we associate the polynomial

𝑓𝜛′ (𝑥) :=
𝑛∑
𝑖=0
(−1)𝑖𝑠𝑖 (𝜎1(𝜛

′), . . . , 𝜎𝑛 (𝜛
′))𝑥𝑛−𝑖 ∈ 𝐾	𝑡
[𝑥] .

Note that the coefficients (−1)𝑖𝑠𝑖 (𝜎1(𝜛
′), . . . , 𝜎𝑛 (𝜛

′)) are elements of 𝐾	𝑡
, since they are invariant
under the G-action. If we denote the unique extension of the valuation ord to A again by ord, then

ord 𝑠𝑛 (𝜎1 (𝜛
′), . . . , 𝜎𝑛 (𝜛

′)) = ord
𝑛∏
𝑖=1

𝜎𝑖 (𝜛
′) =

𝑛∑
𝑖=1

ord 𝜎𝑖 (𝜛
′) = 𝑛 ·

1
𝑛
= 1.

We also see that 𝑠𝑖 (𝜎1 (𝜛
′), . . . , 𝜎𝑛 (𝜛

′)) has positive order for every 𝑖 > 0. There exists a 𝐾�𝑡�-
isomorphism

𝐾�𝑡�[𝑥]/( 𝑓𝜛′ ) → 𝐴, 𝑥 ↦→ 𝜛′.

Thus, we have obtained the map

𝜛′ ↦→ 𝑓𝜛′ (𝑥)

sending a uniformizer to an Eisenstein polynomial. Conversely, if an Eisenstein polynomial 𝑓 (𝑥) ∈

𝐾	𝑡
[𝑥] defines an extension 𝐾�𝑡�[𝑥]/( 𝑓 (𝑥)) admitting a 𝐾�𝑡�-isomorphism 𝜌 : 𝐾�𝑡�[𝑥]/( 𝑓 (𝑥))
∼
−→ 𝐴,

then 𝑓 (𝑥) is recovered as 𝑓𝜌(𝑥) . Namely, the map

{uniformizers of 𝐴} → {𝑦 ∈ 𝔈𝔦𝔰 (𝑚) (𝐾) | 𝐴𝑦 � 𝐴}, 𝜛′ ↦→ 𝑓𝜛′ (5.1)

is surjective.
Next we realize this map as a map of arc spaces as follows. Let

𝑊 := Spec 𝐾	𝑡
[𝑤0, . . . , 𝑤𝑛−1] = A
𝑛
𝐾	𝑡


and let 𝔒𝐴 := J∞𝑊 . For an extension 𝐿/𝐾 , we can identify 𝔒𝐴(𝐿) with the integer ring O𝐴𝐿 of
𝐴𝐿 := 𝐴 ⊗𝐾�𝑡� 𝐿�𝑡� by the bijection

(J∞𝑊) (𝐿) → O𝐴𝐿 ,

𝛾 = (𝛾0, . . . , 𝛾𝑛−1) ↦→ 𝜛𝛾 :=
𝑛−1∑
𝑎=0

𝛾𝑎𝜛
𝑎 .

Let𝔘𝔱𝐴,𝔘𝔣𝐴,𝔐𝐴 ⊂ 𝔒𝐴 be the locally closed subschemes corresponding to the groups of units, the sets
of uniformizers and the maximal ideals ofO𝐴𝐿 by the above bijection. For each 𝑙 ∈ Z≥0, let𝔒𝐴,𝑙 := J𝑙 𝑊 ,
the l-jet scheme, which corresponds to O𝐴/𝑡

𝑙+1O𝐴, and let 𝜋𝑙 : 𝔒𝐴→ 𝔒𝐴,𝑙 be the truncation map. We
put

𝔘𝔱𝐴,𝑙 := 𝜋𝑙 (𝔘𝔱𝐴) and 𝔘𝔣𝐴,𝑙 := 𝜋𝑙 (𝔘𝔣𝐴).

Using the fixed uniformizer 𝜛 ∈ 𝐴, for each 1 ≤ 𝑖 ≤ 𝑛, we define the polynomial

𝑆𝑖 (𝑤0, . . . , 𝑤𝑛−1) := 𝑠𝑖

(
𝑛−1∑
𝑎=0

𝑤𝑎𝜎1(𝜛
𝑎), . . . ,

𝑛−1∑
𝑎=0

𝑤𝑎𝜎𝑛 (𝜛
𝑎)

)
∈ O𝐴̃[𝑤0, . . . , 𝑤𝑛−1] .

This is invariant by the G-action, hence in fact belongs to 𝐾	𝑡
[𝑤0, . . . , 𝑤𝑛−1].
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Definition 5.1. We define a 𝐾	𝑡
-morphism

𝜙 : 𝑊 = Spec 𝐾	𝑡
[𝑤0, . . . , 𝑤𝑛−1] → 𝑉𝐾 = Spec 𝐾	𝑡
[𝑥1, . . . , 𝑥𝑛]

by 𝜙∗(𝑥𝑖) = (−1)𝑖𝑆𝑖 . We write the associated maps of arc spaces and jet schemes as

𝜙𝑙 : J𝑙 𝑊 = 𝔒𝐴,𝑙 → J𝑙 𝑉𝐾 (0 ≤ 𝑙 ≤ ∞).

We define gradings on 𝐾	𝑡
[𝑤0, . . . , 𝑤𝑛−1] and 𝐾	𝑡
[𝑥1, . . . , 𝑥𝑛] by

deg 𝑤𝑖 = 1 and deg 𝑥𝑖 = 𝑖,

respectively. With these gradings, the map 𝜙∗ of coordinate rings is degree-preserving and 𝜙 is equivari-
ant for the corresponding actions of G𝑚,𝐾 = G𝑚 ⊗𝑘 𝐾 . It follows that 𝜙𝑙 , 0 ≤ 𝑙 ≤ ∞ are also equivariant
for the induced actions of G𝑚,𝐾 on jet/arc spaces.

Lemma 5.2. Let 𝐿/𝐾 be a field extension. The map 𝜙∞ sends 𝛾 ∈ 𝔘𝔣𝐴(𝐿) to the point of 𝔈𝔦𝔰 (𝑚) (𝐿)
corresponding to 𝑓𝜛𝛾 . In particular, we have 𝜙∞(𝔘𝔣𝐴) = 𝜓−1 (𝐴) and 𝜙𝑙 (𝔘𝔣𝐴,𝑙) = 𝜓−1

𝑙 (𝐴) for 𝑙 ≥ 𝑚.

Proof. The first assertion follows from construction. For a field extension 𝐿/𝐾 , let 𝐴𝐿 := 𝐴 ⊗𝐾�𝑡� 𝐿�𝑡�.
As a base change of map (5.1), we get a surjection

{uniformizers of 𝐴𝐿} → {𝑦 ∈ 𝔈𝔦𝔰
(𝑚) (𝐿) | 𝐴𝑦 � 𝐴𝐿}, 𝜛′ ↦→ 𝑓𝜛′ .

This shows 𝜙∞(𝔘𝔣𝐴) = 𝜓−1(𝐴). We get

𝜙𝑙 (𝔘𝔣𝐴,𝑙) = 𝜙𝑙 (𝜋𝑙 (𝔘𝔣𝐴)) = 𝜋𝑙 (𝜙∞(𝔘𝔣𝐴)) = 𝜋𝑙 (𝜓
−1 (𝐴)) = 𝜓−1

𝑙 (𝐴),

where the last equality follows from Corollary 4.11. �

Let 𝜎 ∈ 𝐻 = Aut(𝐴/𝐾�𝑡�) and for each 0 ≤ 𝑎 < 𝑛, let us write

𝜎(𝜛𝑎) =
𝑛−1∑
𝑏=0

𝑐𝜎𝑎𝑏𝜛
𝑏 (𝑐𝜎𝑎𝑏 ∈ 𝐾	𝑡
).

Let 𝜎 act on 𝐾	𝑡
[𝑤0, . . . , 𝑤𝑛−1] by 𝑤𝑏 ↦→
∑𝑛−1
𝑎=0 𝑐𝜎𝑎𝑏𝑤𝑎. This gives an H-action on W.

Lemma 5.3. This H-action on W commutes with the G𝑚,𝐾 -action and the morphism 𝜙 is H-invariant.

Proof. The first assertion follows from the fact that the automorphism of 𝐾	𝑡
[𝑤0, . . . , 𝑤𝑛−1] induced
by 𝜎 ∈ 𝐻 is linear and degree-preserving. To show the second assertion, it is enough to show that 𝑆𝑖
are H-invariant. For 𝜎, 𝜎′ ∈ 𝐻, we have

𝑛−1∑
𝑏=0

𝜎(𝑤𝑏)𝜎
′(𝜛𝑏) =

𝑛−1∑
𝑏=0

𝑛−1∑
𝑎=0

𝑐𝜎𝑎𝑏𝑤𝑎𝜎
′(𝜛𝑏)

=
𝑛−1∑
𝑎=0

𝑤𝑎

𝑛−1∑
𝑏=0

𝑐𝜎𝑎𝑏𝜎
′(𝜛𝑏)

=
𝑛−1∑
𝑎=0

𝑤𝑎 (𝜎
′𝜎) (𝜛𝑎).
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Since the 𝑠𝑖 are symmetric polynomials and the sequences (𝜎𝜎1) (𝜛
𝑎), . . . , (𝜎𝜎𝑚) (𝜛

𝑎) and
𝜎1(𝜛

𝑎), . . . , 𝜎𝑚(𝜛
𝑎) are permutations of each other, we have

𝑆𝑖 (𝜎(𝑤0), . . . , 𝜎(𝑤𝑛−1)) = 𝑠𝑖

(
𝑛−1∑
𝑎=0

𝜎(𝑤𝑎)𝜎1(𝜛
𝑎), . . . ,

𝑛−1∑
𝑎=0

𝜎(𝑤𝑎)𝜎𝑛 (𝜛
𝑎)

)
= 𝑠𝑖

(
𝑛−1∑
𝑎=0

𝑤𝑎 (𝜎𝜎1) (𝜛
𝑎), . . . ,

𝑛−1∑
𝑎=0

𝑤𝑎 (𝜎𝜎𝑛) (𝜛
𝑎)

)
= 𝑆𝑖 (𝑤0, . . . , 𝑤𝑛−1).

Thus 𝜙 is H-invariant. �

The last lemma implies that the morphism 𝜙∞ : J∞𝑊 → J∞𝑉𝐾 is also H-invariant and so is its
restriction 𝔘𝔣𝐴 → 𝜓−1 (𝐴). Note that from Proposition 4.15, 𝜓−1

𝑙 (𝐴) ⊂ J𝑙 𝑉𝐾 , 𝑙 ≥ 𝑚 and 𝜓−1 (𝐴) =
𝜋−1
𝑙 (𝜓

−1
𝑙 (𝐴)) ⊂ J∞𝑉𝐾 are closed subsets. We obtain morphisms

𝜙∞ : 𝔘𝔣𝐴/𝐻 → 𝜓−1(𝐴) and 𝜙𝑙 : 𝔘𝔣𝐴,𝑙/𝐻 → 𝜓−1
𝑙 (𝐴) (𝑙 ∈ Z≥0).

Lemma 5.4. For each extension 𝐿/𝐾 , the map 𝔘𝔣𝐴(𝐿)/𝐻 → 𝜓−1 (𝐴) (𝐿) is bijective.

Proof. For a uniformizer 𝜛′, the associated Eisenstein polynomial is also written as 𝑓𝜛′ =
∏𝑛

𝑖=1 (𝑥 −
𝜎𝑖 (𝜛

′)). Therefore, if 𝑓𝜛′ = 𝑓𝜛′′ , then 𝜛′ and 𝜛′′ are conjugate and 𝜛′′ = 𝜎(𝜛′) for some 𝜎 ∈ 𝐻.
Thus 𝔘𝔣𝐴(𝐿)/𝐻 → 𝜓−1(𝐴) (𝐿) is injective. The surjectivity follows from Lemma 5.2. �

We can summarize relations among various spaces that we obtained so far in the following diagram.

𝔘𝔣𝐴
� � ��

��

J∞𝑊

𝜙∞

��

𝔘𝔣𝐴/𝐻

bij. 𝜙∞
��

𝜓−1(𝐴)
� � ��

��

𝔈𝔦𝔰 (𝑚) ⊗𝑘 𝐾
� � ��

𝜓⊗𝑘𝐾

��

J∞𝑉

𝐴 ∈ Δ◦𝑛 ⊗𝑘 𝐾

Let e be the ramification index of 𝐴/𝐾�𝑡� and let 𝔇𝐴/𝐾�𝑡� and 𝔇𝐴/𝐾�𝑡� be the differents of 𝐴/𝐾�𝑡�

and 𝐴/𝐾�𝑡�, which are principal ideals of O𝐴 and O𝐴, respectively. We denote the normalized valuation
on 𝐴 by 𝑣𝐴 and the unique extension of the valuation ord to 𝐴 again by ord. The two valuations are
related by 𝑒 · 𝑣𝐴 = ord.

Lemma 5.5. We have

𝑣 𝐴̃(𝔇𝐴̃/𝐾�𝑡�)

𝑒
= ord𝔇𝐴̃/𝐾�𝑡� ≤ 𝑛 · ord𝔇𝐴/𝐾�𝑡� = 𝑚.

Proof. The left equality is obvious. The right equality follows from the fact that the discriminant is
the norm of the different and a formula for valuations of norms (for example, [Neu99, Chapter II,
(4.8) and Chapter III, (2.9)]). The Galois closure 𝐴̃ is obtained as the composite of all conjugates of
A in an algebraic closure of 𝐾�𝑡�. This shows 𝔇𝐴̃/𝐾�𝑡� | (𝔇𝐴/𝐾�𝑡�)

𝑛. Indeed Toyama [Tôy55] proved
the corresponding result for the composite of two number fields. The same argument applies to the
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case of local fields and the generalization to the composite of an arbitrary number of local fields is
straightforward. It follows that ord𝔇𝐴̃/𝐾�𝑡� ≤ 𝑛 · ord𝔇𝐴/𝐾�𝑡�. �

Lemma 5.6. For 𝑙 ≥ 𝑚, the H-action on 𝔘𝔣𝐴,𝑙 is free.

Proof. By taking a base change, we may assume that K is algebraically closed, in particular, perfect.
Then, we can apply the theory of ramification groups explained in [Ser79, Chapter IV]; we follow the
notation from this reference. From [Ser79, p. 64, Proposition 4], for 1 ≠ 𝑔 ∈ 𝐺, 𝑖𝐺 (𝑔) ≤ 𝑣 𝐴̃(𝔇𝐴̃/𝐾�𝑡�).
Let 𝑎 = 𝑒𝑚 and let 𝐺𝑎 be the a-th ramification group (lower numbering) consisting of g with 𝑖𝐺 (𝑔) ≥
𝑎 + 1. Using Lemma 5.5, we see that if 𝑔 ≠ 1, then 𝑖𝐺 (𝑔) ≤ 𝑎 and hence 𝑔 ∉ 𝐺𝑎. Thus, we conclude
that 𝐺𝑎 = 1. Let 𝜑 𝐴̃/𝐾�𝑡� be the Herbrand function so that 𝐺𝑎 = 𝐺𝜑𝐴̃/𝐾�𝑡� (𝑎) , where the right-hand side
is a higher ramification group with the upper numbering. From [Ser79, p.64, Proposition 4 and p. 74,
Lemma 3], we have

𝜑 𝐴̃/𝐾�𝑡� (𝑎) =
1
𝑒

∑
𝑔∈𝐺

min{𝑖𝐺 (𝑔), 𝑎 + 1} − 1

=
1
𝑒

∑
𝑔≠1

𝑖𝐺 (𝑔) +
𝑎 + 1

𝑒
− 1

=
𝑣 𝐴̃(𝔇𝐴̃/𝐾�𝑡�)

𝑒
+

𝑎 + 1
𝑒
− 1

≤ 𝑚 +
𝑒𝑚 + 1

𝑒
− 1

≤ 2𝑚.

Thus 𝐺2𝑚 = 1. From [Del84, Proposition A.6.1] and [Ser79, p.61, Lemma 1], if 𝜎 : 𝐴 ↩→ 𝐴̃ is a 𝐾�𝑡�-
embedding different from the chosen embedding 𝐴 ↩→ 𝐴, which we denote by 𝜎0, and if 𝜛′ ∈ O𝐴 is a
uniformizer, then

2 · ord(𝜎(𝜛′) −𝜛′) ≤
∑
𝜏≠𝜎0

ord(𝜏(𝜛′) −𝜛′) + sup
𝜏≠𝜎0

ord(𝜏(𝜛′) −𝜛′)

< 2𝑚 + 1.

and hence ord(𝜎(𝜛′) −𝜛′) < 𝑚 + 1. In particular, for 1 ≠ ℎ ∈ 𝐻, if 𝑙 ≥ 𝑚, then

ℎ(𝜛′) ≠ 𝜛′ mod 𝑡𝑙+1.

This shows the lemma. �

6. Bundles having “almost affine spaces” as fibers

We keep the notation from the last section. In particular, A denotes a totally ramified extension of 𝐾�𝑡�
of degree n and discriminant exponent m. Let J ⊂ 𝐾	𝑡
[𝑤0, . . . , 𝑤𝑛−1] be the Jacobian ideal of the
morphism 𝜙 : 𝑊 → 𝑉 . Namely, J is the principal ideal generated by the determinant of the Jacobian
matrix

𝜕 (𝑆1, . . . , 𝑆𝑛)

𝜕 (𝑤0, . . . , 𝑤𝑛−1)
.

Its order function

ordJ : J∞𝑊 → Z≥0 ∪ {∞}
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is defined as follows: for a point 𝛾 ∈ J∞𝑊 represented by a morphism Spec 𝐿 → J∞𝑊 with L a field,
if 𝛾′ : Spec 𝐿	𝑡
 → 𝑊 is the corresponding arc and if we can write (𝛾′)−1J = (𝑡𝑛) ⊂ 𝐿	𝑡
, then
ordJ (𝛾) = 𝑛. Here, we followed the convention that (0) = (𝑡∞).

Lemma 6.1. The restriction ordJ |𝔘𝔣𝐴 of ordJ to 𝔘𝔣𝐴 takes the constant value m.

Proof. Since 𝑆𝑖 is the composite of 𝑠𝑖 (𝑥1, . . . , 𝑥𝑛) and 𝑥 𝑗 =
∑
𝑎 𝑤𝑎𝜎𝑗 (𝜛

𝑎), the above Jacobian matrix
can be written as

𝜕 (𝑠1, . . . , 𝑠𝑛)

𝜕 (𝑥1, . . . , 𝑥𝑛)

++++𝑥𝑖=∑𝑛−1
𝑎=0 𝑤𝑎𝜎𝑖 (𝜛

𝑎) ×
𝜕
(∑𝑛−1

𝑎=0 𝑤𝑎𝜎1(𝜛
𝑎), . . . ,

∑𝑛−1
𝑎=0 𝑤𝑎𝜎𝑛 (𝜛

𝑎)
)

𝜕 (𝑤0, . . . , 𝑤𝑛−1)
. (6.1)

Concerning the first factor, as was proved in [Ser78, p. 1036], we have

det
𝜕 (𝑠1, . . . , 𝑠𝑛)

𝜕 (𝑥1, . . . , 𝑥𝑛)
=

∏
𝑖< 𝑗

(𝑥𝑖 − 𝑥 𝑗 ).

For 𝛾 = (𝛾0, . . . , 𝛾𝑛−1) ∈ 𝔘𝔣𝐴, substituting 𝛾𝑎 for 𝑤𝑎 in(∏
𝑖< 𝑗

(𝑥𝑖 − 𝑥 𝑗 )

)+++++𝑥𝑖=∑𝑛−1
𝑎=0 𝑤𝑎𝜎𝑖 (𝜛

𝑎) ,

we get ∏
𝑖< 𝑗

(𝜎𝑖 (𝜛𝛾) − 𝜎𝑗 (𝜛𝛾)).

From [Keu23, the proof of Proposition 1.29], its square is the discriminant of 1, 𝜛𝛾 , . . . , 𝜛
𝑛−1
𝛾 .

On the other hand, concerning the second factor of (6.1), we have

𝜕
(∑𝑛−1

𝑎=0 𝑤𝑎𝜎1(𝜛
𝑎), . . . ,

∑𝑛−1
𝑎=0 𝑤𝑎𝜎𝑛 (𝜛

𝑎)
)

𝜕 (𝑤0, . . . , 𝑤𝑛−1)
= (𝜎𝑖 (𝜛

𝑎))𝑖,𝑎 .

The discriminant of 𝐴/𝑘�𝑡� with respect to the basis 1, 𝜛, . . . , 𝜛𝑛−1 is the square of det(𝜎𝑖 (𝜛
𝑎))𝑖,𝑎

[Keu23, Proposition 1.28]. We have showed that the determinants of the two factors in (6.1) both have
order 𝑚/2, which shows ordJ (𝛾) = 𝑚. �

Lemma 6.2. For an extension 𝐿/𝐾 and for 𝑙 ≥ 2𝑚, every fiber of 𝔘𝔣𝐴,𝑙 (𝐿)/𝐻 → 𝔈𝔦𝔰 (𝑚)𝑙 (𝐿) is
contained in a fiber of 𝔘𝔣𝐴,𝑙 (𝐿)/𝐻 → 𝔘𝔣𝑙−𝑚(𝐿)/𝐻.

Proof. Suppose that two points 𝑏𝑙 , 𝑏
′
𝑙 ∈ 𝔘𝔣𝐴,𝑙 (𝐿) map to the same point 𝑎𝑙 ∈ 𝔈𝔦𝔰

(𝑚)
𝑙 (𝐿). Let 𝑏, 𝑏′ ∈

𝔘𝔣𝐴(𝐿) be lifts of 𝑏𝑙 , 𝑏
′
𝑙 respectively and let 𝑎 := 𝜙∞(𝑏) ∈ 𝔈𝔦𝔰

(𝑚) (𝐿). Then, from [CLNS18, Chapter 5,
Proposition 3.1.7], there exists 𝑐 ∈ 𝔘𝔣𝐴 such that 𝜙∞(𝑐) = 𝑎 and the images 𝑐𝑙−𝑚, 𝑏′𝑙−𝑚 ∈ 𝔘𝔣𝐴,𝑙−𝑚 of
𝑐, 𝑏′ are the same. Note that the constant 𝑐𝑉 appearing in the cited result is taken to be 1 in our situation,
since V is smooth. The condition that 𝜙∞(𝑐) = 𝜙∞(𝑏) = 𝑎 implies that c is in the H-orbit of b. Therefore
𝐻 (𝑐𝑙−𝑚) = 𝐻 (𝑏𝑙−𝑚) = 𝐻 (𝑏′𝑙−𝑚). This shows the lemma. �

Definition 6.3. Let r be a non-negative integer. We say that a morphism 𝑓 : 𝑌 → 𝑋 of k-varieties
is an A𝑟 -bundle(resp. weak A𝑟 -bundle) if for every geometric point 𝑥 ∈ 𝑋 (𝐾), the fiber 𝑓 −1(𝑥) is
K-isomorphic to A𝑟𝐾 (resp. to the quotient A𝑟𝐾 /𝐶 of the affine space A𝑛𝐾 by a finite cyclic group C of
order coprime to p).
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Definition 6.4. A variety X over k is said to be a weak affine space if there exists a sequence of
k-varieties 𝑋 = 𝑋0, 𝑋1, . . . , 𝑋𝑙 = Spec 𝑘 such that for each 0 ≤ 𝑖 < 𝑙, there exists a morphism between
𝑋𝑖 and 𝑋𝑖+1 in either direction which is a weakA𝑟𝑖 -bundle for some 𝑟𝑖 . A weak affine space of dimension
r is called also as a weak A𝑟𝑘 .

Lemma 6.5. For 𝑙 ≥ 2𝑚, the morphism 𝜙𝑙 : 𝔘𝔣𝐴,𝑙/𝐻 → 𝜓−1
𝑙 (𝐴) is an A𝑚-bundle.

Proof. By base change, we may suppose that 𝐾 = 𝑘 and they are algebraically closed. Moreover, it
suffices to consider fibers over closed points. In the rest of this proof, all points that we consider are
closed. For 𝑎𝑙 ∈ 𝜓−1

𝑙 (𝐴), the fiber (𝜙𝑙)−1(𝑎𝑙) of 𝜙𝑙 : 𝔘𝔣𝐴,𝑙/𝐻 → 𝔈𝔦𝔰 (𝑚)𝑙 over 𝑎𝑙 is contained in the fiber
(𝜋𝑙𝑙−𝑚)

−1(𝑏𝑙−𝑚) of the truncation map 𝜋𝑙𝑙−𝑚 : 𝔘𝔣𝐴,𝑙/𝐻 → 𝔘𝔣𝐴,𝑙−𝑚/𝐻 over a point 𝑏𝑙−𝑚 ∈ 𝔘𝔣𝐴,𝑙−𝑚/𝐻.
Let 𝑏𝑙−𝑚 ∈ 𝔘𝔣𝐴,𝑙−𝑚 be a lift of 𝑏𝑙−𝑚. From Lemma 5.6, since 𝑙 − 𝑚 ≥ 𝑚, the H-action on 𝔘𝔣𝐴,𝑙−𝑚
is free. In particular, for ℎ ∈ 𝐻 \ {1}, ℎ(𝑏𝑙−𝑚) ≠ 𝑏𝑙−𝑚, which shows that for two distinct points
of 𝜋−1

𝑙−𝑚 (𝑏𝑙−𝑚), the H-action cannot send one point to the other. From Lemma 5.4, the restriction
of 𝜙∞ to 𝜋−1

𝑙−𝑚 (𝑏𝑙−𝑚) is injective. The freeness of the H-action on 𝔘𝔣𝐴,𝑙−𝑚 also shows that the map
(𝜋𝑙𝑙−𝑚)

−1(𝑏𝑙−𝑚) → (𝜋
𝑙
𝑙−𝑚)

−1(𝑏𝑙−𝑚) is an isomorphism. From [CLNS18, Chapter 5, Theorem 3.2.2.c],
(𝜋𝑙𝑙−𝑚)

−1(𝑏𝑙−𝑚) → 𝔈𝔦𝔰 (𝑚)𝑙 is a piecewiseA𝑚-bundle over its image and so is (𝜋𝑙𝑙−𝑚)
−1(𝑏𝑙−𝑚) → 𝔈𝔦𝔰 (𝑚)𝑙 .

Since (𝜙𝑙)−1(𝑎𝑙) ⊂ (𝜋
𝑙
𝑙−𝑚)

−1(𝑏𝑙−𝑚), we conclude that (𝜙𝑙)−1(𝑎𝑙) � A𝑚𝑘 . �

Lemma 6.6. Let y be a geometric point of 𝜓−1
𝑙 (𝐴). Suppose 𝑝 | 𝑛 and 𝑙 ≥ �𝑚/𝑛�. Then, the stabilizer

Stab(𝑦) of y with respect to the G𝑚-action on 𝔈𝔦𝔰 (𝑚)𝑙 is a tame cyclic group.

Proof. Let 𝐿/𝑘 be the algebraically closed field such that y is an L-point. For 𝜆 ∈ G𝑚(𝐿), if we write
𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ (𝐿	𝑡
/(𝑡

𝑙+1))𝑛, we have

𝜆 · 𝑦 = (𝜆𝑦1, . . . , 𝜆
𝑛𝑦𝑛).

Thus, if 𝑦𝑖 ≠ 0 for some i, then Stab(𝑦) is contained 𝜇𝑖 , the group of i-th roots of 1. From Proposition 4.4,
there exists 𝑖 ∈ {1, . . . , 𝑛 − 1} such that 𝑝 � 𝑖 and 𝑦𝑖 ≠ 0, which proves the lemma. �

From Lemma 5.3, we get a G𝑚,𝐾 -equivariant morphism 𝔘𝔣𝐴,𝑙/𝐻 → 𝜓−1
𝑙 (𝐴). Since 𝔘𝔣𝐴,𝑙 is affine,

so is 𝔘𝔣𝐴,𝑙/𝐻. The fiber 𝜓−1
𝑙 (𝐴) is also an affine variety over K, thanks to Proposition 4.15. The G𝑚,𝐾 -

actions on 𝜓−1
𝑙 (𝐴) and𝔘𝔣𝐴,𝑙/𝐻 have finite stabilizers. Thus, the geometric quotients𝔘𝔣𝐴,𝑙/(𝐻×G𝑚,𝐾 ) =

(𝔘𝔣𝐴,𝑙/𝐻)/G𝑚,𝐾 and 𝜓−1
𝑙 (𝐴)/G𝑚,𝐾 exist and are again affine varieties over K.

Corollary 6.7. For 𝑙 ≥ 2𝑚, the morphism 𝔘𝔣𝐴,𝑙/(𝐻 × G𝑚,𝐾 ) → 𝜓−1
𝑙 (𝐴)/G𝑚,𝐾 is a weak A𝑚-bundle.

Proof. Let 𝑦 ∈ 𝜓−1
𝑙 (𝐴) (𝐿) be a geometric point and let 𝑦 be its image in (𝜓−1

𝑙 (𝐴)/G𝑚,𝐾 ) (𝐿). Let
C be the stabilizer at y for the G𝑚,𝐾 -action on 𝜓−1

𝑙 (𝐴), which is a finite and tame cyclic group from
Lemma 6.6. From [AV02, Lemma 2.3.3], the fiber of 𝔘𝔣𝐴,𝑙/(𝐻 × G𝑚,𝐾 ) → 𝜓−1

𝑙 (𝐴)/G𝑚,𝐾 over 𝑦 is
the quotient of the fiber of 𝔘𝔣𝐴,𝑙/𝐻 → 𝜓−1

𝑙 (𝐴) over y by the action of C. The corollary follows from
Lemma 6.5. �

Lemma 6.8. The structure morphism 𝔘𝔣𝐴,𝑙/(𝐻 × G𝑚,𝐾 ) → Spec 𝐾 factors as

𝔘𝔣𝐴,𝑙/(𝐻 × G𝑚) = 𝑍𝑛(𝑙+1)−2 → 𝑍𝑛(𝑙+1)−3 → · · · → 𝑍0 = Spec 𝐾

in such a way that each morphism 𝑍𝑖+1 → 𝑍𝑖 is an A1-bundle. In particular, 𝔘𝔣𝐴,𝑙/(𝐻 × G𝑚,𝐾 ) is a
weak A𝑛(𝑙+1)−2

𝐾 .
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Proof. Again by a base change argument, we may assume that 𝐾 = 𝑘 and they are algebraically closed
and consider only closed points. Let 𝔪𝐴 be the maximal ideal of A and let ℭ𝑛(𝑙+1) ⊂ 𝔘𝔣𝐴,𝑙 be the
subvariety corresponding to elements of

O𝐴/𝑡
𝑙+1O𝐴 = O𝐴/𝔪

𝑛(𝑙+1)
𝐴

that are equal to the chosen uniformizer 𝜛 modulo 𝔪2
𝐴. For 2 ≤ 𝑖 ≤ 𝑛(𝑙 + 1), let ℭ𝑖 be the variety

corresponding to the images of such elements in O𝐴/𝔪𝑖
𝐴. As a K-variety, ℭ𝑖 is isomorphic to A𝑖−2

𝐾 .
We define a (lower-numbering) filtration 𝐻∗ of H in the way which is standard if 𝐴/𝐾�𝑡� is a Galois
extension: for 𝑖 ≥ 0,

𝐻𝑖 := Ker(𝐻 → Aut(O𝐴/𝔪
𝑖+1
𝐴 )).

For a uniformizer 𝜛 ∈ 𝐴, the map 𝑔 ↦→ 𝑔(𝜛)/𝜛 defines an injective homomorphism 𝐻𝑖/𝐻𝑖+1 →
𝑈𝑖/𝑈𝑖+1. From [Ser61, Section 1.6], 𝑈0/𝑈1 � G𝑚 and for 𝑖 ≥ 1, 𝑈𝑖/𝑈𝑖+1 � G𝑎. Therefore 𝐻0/𝐻1 is
a tame cyclic group and 𝐻𝑖/𝐻𝑖+1, 𝑖 ≥ 1 are elementary abelian p-groups. Similarly, for 𝑖 ≥ 1, we can
have an embedding 𝐻𝑖/𝐻𝑖+1 → 𝔪𝑖+1

𝐿 /𝔪
𝑖+2
𝐿 by 𝑔 ↦→ 𝑔(𝜛) −𝜛.

We claim that the composite morphism

ℭ𝑛(𝑙+1) ↩→ 𝔘𝔣𝐴,𝑙 → 𝔘𝔣𝐴,𝑙/G𝑚

is an isomorphism. Indeed, the morphism is clearly a universal homeomorphism. To show that it is an
isomorphism, it is enough to show that it is étale. We have the G𝑚-equivariant morphism 𝔘𝔣𝐴,𝑙 → G𝑚
corresponding to the map sending a uniformizer 𝜛′ to 𝜆 ∈ 𝑘∗ if 𝜛′ = 𝜆𝜛 modulo 𝔪2

𝐴. This is a smooth
morphism and ℭ𝑛(𝑙+1) is the fiber over 1 ∈ G𝑚 of this morphism. This shows that ℭ𝑛(𝑙+1) intersects
with each G𝑚-orbit transversally, which implies that ℭ𝑛(𝑙+1) → 𝔘𝔣𝐴,𝑙/G𝑚,𝑘 is étale. We have proved
the claim.

We see that 𝐻 (ℭ𝑛(𝑙+1) ) ⊂ 𝔘𝔣𝐴,𝑙 consists of |𝐻/𝐻1 | connected components, each of which is
isomorphic toℭ𝑛(𝑙+1) . The stabilizer of the componentℭ𝑛(𝑙+1) ⊂ 𝐻 (ℭ𝑛(𝑙+1) ) is 𝐻1. Therefore𝔘𝔣𝐴,𝑙/(𝐻×
G𝑚) � ℭ𝑛(𝑙+1) /𝐻1. We claim that for every 𝑗 ≥ 1 and every i with 2 ≤ 𝑖 ≤ 𝑛(𝑙 + 1), the map
ℭ𝑖/𝐻 𝑗 → ℭ𝑖−1/𝐻 𝑗 is an A1-bundle. To see this, we first note that ℭ𝑖 → ℭ𝑖−1 is a bundle with fiber
𝔪𝑖−1

𝐿 /𝔪
𝑖
𝐿 = G𝑎. If 𝑗 ≥ 𝑖 − 1, then the 𝐻 𝑗 -actions on ℭ𝑖 and ℭ𝑖−1 are trivial and the claim follows. If

𝑗 = 𝑖 − 2, then the map of the claim has fibers isomorphic to

(𝔪𝑖−1
𝐿 /𝔪

𝑖
𝐿)/(𝐻𝑖−2/𝐻𝑖−1) � G𝑎 .

The last isomorphism follows from [Mil17, Corollary 14.56]. For 𝑗 < 𝑖 − 2, the map of the claim is
identified with

(ℭ𝑖/𝐻𝑖−2)/(𝐻 𝑗/𝐻𝑖−2) → ℭ𝑖−1/(𝐻 𝑗/𝐻𝑖−2).

The claim now holds since the action of 𝐻 𝑗/𝐻𝑖−2 on ℭ𝑖−1 is free. We have proved the claim.
Thus we obtain a tower of A1-bundles

𝔘𝔣𝐴,𝑙/(𝐻 × G𝑚) � ℭ𝑛(𝑙+1) /𝐻1 → ℭ𝑛(𝑙+1)−1/𝐻1 → · · · → ℭ2/𝐻1 = pt.

This shows the lemma. �

Lemma 6.9. For every geometric point 𝐴 ∈ Δ◦𝑛 (𝐾) with d𝐴 = 𝑚 and for 𝑙 ≥ 2𝑚, the closed subset
𝜓−1
𝑙 (𝐴)/G𝑚,𝐾 ⊂ 𝔈𝔦𝔰 (𝑚)𝑙 ⊗𝑘 𝐾/G𝑚,𝐾 is a weak A𝑛(𝑙+1)−2−𝑚

𝐾 .

Proof. We first note that from Proposition 4.15, 𝜓−1
𝑙 (𝐴) ⊂ 𝔈𝔦𝔰 (𝑚)𝑙 ⊗𝑘 𝐾 is a closed subset, which is

also G𝑚,𝐾 -invariant. Therefore, 𝜓−1
𝑙 (𝐴)/G𝑚,𝐾 ⊂ (𝔈𝔦𝔰

(𝑚)
𝑙 ⊗𝑘 𝐾)/G𝑚,𝐾 is also a closed subset (for
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example, see [New09, Theorem 1.1]). From Corollary 6.7 and Lemma 6.8, 𝜓−1
𝑙 (𝐴)/G𝑚,𝐾 is a weak

A
𝑛(𝑙+1)−2−𝑚
𝐾 . �

Lemma 6.10. Let 𝑌, 𝑋 be k-varieties and let 𝑓 : 𝑌 → 𝑋 be a P-morphism over k with the graph
Γ ⊂ 𝑌 ×𝑘 𝑋 . Let pr𝑌 and pr𝑋 be the projections from 𝑌 ×𝑘 𝑋 to Y and X, respectively. Suppose that for
every point 𝑤 : Spec 𝐾 → 𝑋 with K an arbitrary field, the fiber 𝑓 −1(𝑤) is an irreducible closed subset
of 𝑌 ⊗𝑘 𝐾 .

1. Then, for every point 𝑥 ∈ 𝑋 , there exists an open dense subset 𝑈𝑥 of {𝑥} such that pr−1
𝑋 (𝑈𝑥) ∩ Γ is a

closed subset of pr−1
𝑋 (𝑈𝑥).

2. There exists a decomposition 𝑋 =
⊔𝑙

𝑖=1 𝑋𝑖 of X into finitely many locally closed subsets 𝑋𝑖 such that
for each i, pr−1

𝑋 (𝑋𝑖) ∩ Γ is a locally closed subset of 𝑌 ×𝑘 𝑋 .

Proof. (1) By assumption, Γ ∩ pr−1
𝑋 (𝑥) is a closed subset of pr−1

𝑋 (𝑥). Let C be its closure in 𝑌 × 𝑋 ,
which is contained in pr−1

𝑋 ({𝑥}). Since 𝐶 ∩ pr−1
𝑋 (𝑥) = Γ ∩ pr−1

𝑋 (𝑥), the symmetric difference 𝐶�Γ

is a constructible subset whose image in X does not contain x. Let 𝑍 := {𝑥} ∩ pr𝑋 (𝐶�Γ). This is a
constructible subset of {𝑥} which does not contain x. Let 𝑈𝑥 := {𝑥} \ 𝑍 , which is an open dense subset
of {𝑥}. By construction, we have 𝐶 ∩ pr−1

𝑋 (𝑈𝑥) = Γ ∩ pr−1
𝑋 (𝑈𝑥), which is a closed subset of pr−1

𝑋 (𝑈𝑥).
(2) We show this in the stronger form such that for every j, 𝑊 𝑗 :=

⊔𝑙
𝑖= 𝑗 𝑋𝑖 is a closed subset of X.

We construct 𝑋𝑖’s inductively as follows. We put 𝑋1 to be 𝑈𝜂 for the generic point 𝜂 of an irreducible
component of 𝑊1 = 𝐵 having the maximal dimension. Suppose that we have constructed 𝑋1, . . . , 𝑋 𝑗−1

and let 𝑊 𝑗 = 𝑋 \
⋃ 𝑗−1

𝑖=1 𝑋𝑖 . We take the generic point 𝜉 of an irreducible component of 𝑊 𝑗 having the
maximal dimension. We put 𝑋 𝑗 := 𝑈𝜉 ∩𝑊 𝑗 and 𝑊 𝑗+1 := 𝑊 𝑗 \ 𝑋 𝑗 . We then have

(dim𝑊𝑖 , 𝜈(𝑊𝑖)) > (dim𝑊𝑖+1, 𝜈(𝑊𝑖+1)),

where pairs are ordered lexicographically and 𝜈(−) means the number of irreducible components of
maximal dimension. The procedure ends after finitely many steps and gives a desired decomposition
of X. �

Definition 6.11. We say that a morphism 𝑓 : 𝑌 → 𝑋 of k-varieties is avery weak A𝑚-bundle if for every
geometric point 𝑥 ∈ 𝑋 (𝐾), the fiber 𝑓 −1(𝑥) is universally homeomorphic to a weak A𝑚𝐾 .

In particular, a universal homeomorphism of k-varieties is a very weak A0-bundle.

Corollary 6.12. There exists a scheme morphism 𝑓 : 𝑌 → 𝑋 which is a very weak A𝑛(𝑙+1)−2−𝑚-bundle
and induces the P-morphism 𝔈𝔦𝔰 (𝑚)𝑙 /G𝑚 → Δ (𝑚)𝑛 .

Proof. From Proposition 4.15, the P-morphism ℎ : 𝔈𝔦𝔰 (𝑚)𝑙 /G𝑚 → Δ (𝑚)𝑛 satisfies the assumption of
Lemma 6.10. Therefore, if Γ denotes its graph, then there exists a decomposition Δ (𝑚)𝑛 =

⊔𝑙
𝑖=1 𝑋𝑖 into

locally closed subsets 𝑋𝑖 such that for each i, pr−1
Δ (𝑚)𝑛

(𝑋𝑖) ∩ Γ is a locally closed subset. Giving these

locally closed subsets the reduced scheme structures, let us consider the coproducts 𝑋 :=
∐𝑙

𝑖=1 𝑋𝑖 and
𝑌 :=

∐𝑙
𝑖=1(pr−1

Δ (𝑚)𝑛

(𝑋𝑖) ∩ Γ). The natural morphism 𝑓 : 𝑌 → 𝑋 induces the P-morphism

ℎ : 𝔈𝔦𝔰 (𝑚)𝑙 /G𝑚 → Δ (𝑚)𝑛 . From construction, the morphism

pr−1
Δ (𝑚)𝑛

(𝑋𝑖) ∩ Γ→ ℎ−1 (𝑋𝑖)

is a universal homeomorphism. From Lemma 6.9, this is a very weak A𝑛(𝑙+1)−2−𝑚-bundle. �

7. Motivic mass formulas

Let 𝐾0(Var/𝑘) denote the Grothendieck ring of k-varieties and let L := [A1
𝑘 ].
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Definition 7.1. We define 𝐾♥0 (Var/𝑘) to be the quotient of 𝐾0(Var/𝑘) by the following relation: for
each very weak A𝑚-bundle 𝑌 → 𝑋 , we have [𝑌 ] = [𝑋]L𝑚. We define M♥

𝑘 := 𝐾♥0 (Var/𝑘) to be the
localization of 𝐾♥0 (Var/𝑘) by L. For 𝑠 ∈ Z, let 𝐹𝑠 ⊂ M♥

𝑘 to be the subgroup generated by elements
of the form [𝑋]L𝑟 with dim 𝑋 + 𝑟 ≤ −𝑠. We define the dimensional completion M̂♥

𝑘 of M♥
𝑘 to be the

projective limit lim
←−−

M♥
𝑘/𝐹𝑠 .

There exist ring structures on 𝐾♥0 (Var/𝑘),M♥
𝑘 , andM̂♥

𝑘 which are induced by the one on 𝐾0(Var/𝑘).

Remark 7.2. Let us suppose now that k is a finitely generated field. We denote by WRep𝐺𝑘 (Q𝑙)
the abelian category of mixed l-adic representations of the absolute Galois group 𝐺𝑘 = Gal(𝑘sep/𝑘).
Its Grothendieck ring 𝐾0(WRep𝐺𝑘 (Q𝑙)) admits the completion 𝐾0(WRep𝐺𝑘 (Q𝑙)) with respect to
weights. We have a ring homomorphism M𝑘 := 𝐾0(Var𝑘 ) [L−1] → 𝐾0(WRep𝐺𝑘 (Q𝑙)) sending [𝑋]
to

∑
𝑖 (−1)𝑖 [𝐻𝑖

𝑐 (𝑋,Q𝑙)], which extends to M̂♥
𝑘 → 𝐾0(WRep(Q𝑙)) by an argument similar to one in

[Yas24a, Lemma 9.11] and its subsequent paragraphs. Hence, for each equality in M̂♥
𝑘 that we obtain

below, we have the corresponding equality in 𝐾0(WRep(Q𝑙)), provided that k is finitely generated.

Lemma 7.3. We have

[Δ (𝑚)𝑛 ]L
𝑛(𝑙+1)−2−𝑚 = [𝔈𝔦𝔰 (𝑚)𝑙 /G𝑚] ∈ 𝐾♥0 (Var/𝑘).

Proof. Take a morphism 𝑌 → 𝑋 as in Corollary 6.12. We have the following equalities in 𝐾♥0 (Var/𝑘):

[𝔈𝔦𝔰 (𝑚)𝑙 /G𝑚] = [𝑌 ] = [𝑋]L
𝑛(𝑙+1)−2−𝑚 = [Δ (𝑚)𝑛 ]L

𝑛(𝑙+1)−2−𝑚. �

The map 𝔈𝔦𝔰𝑙+1/G𝑚 → 𝔈𝔦𝔰𝑙/G𝑚 is an A𝑛-bundle. We define a motivic measure 𝜇 on 𝔈𝔦𝔰/G𝑚
taking values in M̂♥

𝑘 in the usual way: for a cylinder 𝐶 ⊂ 𝔈𝔦𝔰/G𝑚, 𝜇(𝐶) := [𝜋𝑙 (𝐶)]L−𝑛𝑙 for 𝑙 � 0.
We then extend this measure to measurable subsets (see [CLNS18, Chapter 6, Section 3] for details). In
particular, 𝔈𝔦𝔰/G𝑚, 𝔈𝔦𝔰sep/G𝑚 and 𝔈𝔦𝔰 (𝑚) /G𝑚 are measurable subsets and we have

𝜇(𝔈𝔦𝔰/G𝑚) = 𝜇(𝔈𝔦𝔰sep/G𝑚) =
∑
𝑚

𝜇(𝔈𝔦𝔰 (𝑚) /G𝑚)

= [𝜋1 (𝔈𝔦𝔰)/G𝑚]L
−𝑛 = L−1.

Theorem 7.4. We have ∫
Δ◦𝑛

L−d = L−𝑛+1 ∈ M̂♥
𝑘 . (7.1)

Proof. In M̂♥
𝑘 ,

[Δ (𝑚)𝑛 ]L
−𝑚 = [𝔈𝔦𝔰 (𝑚)𝑙 /G𝑚]L

−𝑛(𝑙+1)+2

= 𝜇(𝔈𝔦𝔰 (𝑚) /G𝑚)L
−𝑛+2.

It follows that ∫
Δ◦𝑛

L−d = L−𝑛+2
∑
𝑚

𝜇(𝔈𝔦𝔰 (𝑚) /G𝑚)

= L−𝑛+2𝜇(𝔈𝔦𝔰/G𝑚)

= L−𝑛+1 ∈ M̂♥
𝑘 . �
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Corollary 7.5. Let 𝑃(𝑛, 𝑙) denote the number of partitions of n into exactly l parts;

𝑃(𝑛, 𝑙) := {(𝑞1, . . . , 𝑞𝑙) ∈ (Z>0)
𝑙 | 𝑞1 ≥ · · · ≥ 𝑞𝑙 ,

𝑙∑
𝑖=1

𝑞𝑖 = 𝑛}.

Then, we have ∫
Δ𝑛
L−d =

𝑛−1∑
𝑗=0

𝑃(𝑛, 𝑛 − 𝑗)L− 𝑗 ∈ M̂♥
𝑘 . (7.2)

Proof. The natural P-morphism

𝑛∐
𝑙=1

∐
(𝑞𝑖 ) ∈𝑃 (𝑛,𝑙)

𝑙∏
𝑖=1

Δ◦𝑞𝑖 → Δ𝑛, (𝐴𝑖)1≤𝑖≤𝑙 ↦→
𝑙∏
𝑖=1

𝐴𝑖

is geometrically bijective. Moreover, we have

d(
∏
𝑖

𝐴𝑖) =
∑
𝑖

d(𝐴𝑖).

Thus ∫
∏𝑙
𝑖=1 Δ

◦
𝑞𝑖

L−d =
𝑙∏
𝑖=1

∫
Δ◦𝑞𝑖

L−d =
𝑙∏
𝑖=1
L−𝑞𝑖+1 = L−𝑛+𝑙

and ∫
Δ𝑛
L−d =

𝑛∑
𝑙=1

∑
(𝑞𝑖 ) ∈𝑃 (𝑛,𝑙)

∫
∏𝑙
𝑖=1 Δ

◦
𝑞𝑖

L−d

=
𝑛∑
𝑙=1

∑
(𝑞𝑖 ) ∈𝑃 (𝑛,𝑙)

L−𝑛+𝑙

=
𝑛∑
𝑙=1

𝑃(𝑛, 𝑙)L−𝑛+𝑙

=
𝑛−1∑
𝑗=0

𝑃(𝑛, 𝑛 − 𝑗)L− 𝑗 . �

Theorem 7.6. In what follows, we follow the convention that 0 � 𝑛 for every positive integer n.

1. Δ (0)𝑛 is P-isomorphic to Spec 𝑘 .
2. We have Δ (𝑚)𝑛 = ∅ for 𝑚 > 0 satisfying either of the following conditions:

(a) 𝑝 � 𝑛, 𝑚 ≠ 𝑛 − 1,
(b) 𝑝 | 𝑛, 𝑝 � (𝑚 − 𝑛 + 1), 𝑚 − 𝑛 + 1 < 0,
(c) 𝑝 | 𝑛, 𝑝 | (𝑚 − 𝑛 + 1).

3. If 𝑝 � 𝑛 and 𝑚 = 𝑛 − 1, then Δ (𝑚)𝑛 is P-isomorphic to Spec 𝑘 .
4. If 𝑝 | 𝑛, 𝑝 � (𝑚 − 𝑛 + 1) and 𝑚 − 𝑛 + 1 ≥ 0, then we have

[Δ (𝑚)𝑛 ] = (L − 1)L � (𝑚−𝑛+1)/𝑝�

in M♥
𝑘 [(L − 1)−1] as well as in M̂♥

𝑘 .
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Proof. (1) For an algebraically closed field K, Δ (0)𝑛 (𝐾) is a singleton corresponding to the trivial étale
algebra 𝐾�𝑡�𝑛/𝐾�𝑡�, which shows the assertion.

(2) If 𝐴𝑦/𝐾�𝑡� corresponds to an Eisenstein polynomial 𝑥𝑛 + 𝑦1𝑥
𝑛−1 + · · · + 𝑦𝑛, then from (4.1), we

have

d𝐴𝑦 = 𝑛 min
0≤𝑖≤𝑛

ord

(
𝑛∑
𝑖=0
(𝑛 − 𝑖)𝑦𝑖𝜛

𝑛−𝑖−1

)
.

If 𝑝 � 𝑛, then the minimum on the right side is attained by ord 𝑛𝜛𝑛−1 = (𝑛 − 1)/𝑛 and d𝐴𝑦 = 𝑛 − 1,
which shows (a). (The case (a) follows also from the proof of (3).) Suppose 𝑝 | 𝑛 and 𝐴/𝐾�𝑡� is a totally
ramified extension of degree n and discriminant exponent m. From Proposition 4.4, for some i with 𝑝 � 𝑖
and 0 ≤ 𝑖 ≤ 𝑛 − 1, we have

𝑚 = 𝑛 − 𝑖 − 1 + 𝑛 ord 𝑦𝑖 .

It follows that

𝑚 − 𝑛 + 1 = 𝑛 ord 𝑦𝑖 − 𝑖 > 0

and

𝑝 � (𝑚 − 𝑛 + 1).

This shows (b) and (c).
(3) Let K be an algebraically closed field and let 𝐴/𝐾�𝑡� be an extension of degree n. Let 𝐴 be its

Galois closure with Galois group G. We may identify G with a transitive subgroup of 𝑆𝑛. Moreover, G
is isomorphic to the semidirect product 𝐻 �𝐶 of a p-group H and a tame cyclic subgroup C if 𝑝 > 0 and
isomorphic to a cyclic group if 𝑝 = 0. We claim that if 𝑝 > 0, then 𝐻 = 1. To show this by contradiction,
suppose that 𝐻 ≠ 1. Since 𝑝 � 𝑛 and H is a p-group, the H-action on {1, . . . , 𝑛} has at least one fixed
point, say 1. Since G is transitive, there exists 𝑔 ∈ 𝐺 such that 𝑔(1) is not fixed by H. Then, 𝑔−1𝐻𝑔 ≠ 𝐻,
which contradicts the fact that H is a normal subgroup of G. We have proved the claim. Then, 𝐺 = 𝐶 is
the cyclic subgroup of 𝑆𝑛 generated by a cyclic permutation of an n-cycle. In particular, the stabilizer
Stab(1) of 1 ∈ {1, . . . , 𝑛} is trivial and 𝐴 = 𝐴𝐺 = 𝐴. We conclude that 𝐴/𝐾�𝑡� is a cyclic Galois
extension. As is well-known, A is isomorphic to 𝐾�𝑡1/𝑛�. Hence Δ (𝑚−1)

𝑛 (𝐾) is a singleton, which shows
the assertion.

(4) We put 𝑐 := 𝑚 − 𝑛 + 1. From Lemma 7.3, we have

[Δ (𝑚)𝑛 ] = [𝔈𝔦𝔰
(𝑚)
𝑙 /G𝑚]L

−𝑛𝑙+𝑐+1 ∈ 𝐾♥0 (Var𝑘 ).

Since the G𝑚-torsor 𝔈𝔦𝔰 (𝑚)𝑙 → 𝔈𝔦𝔰 (𝑚)𝑙 /G𝑚 is Zariski locally trivial thanks to Hilbert’s Theorem 90, we
have

[𝔈𝔦𝔰 (𝑚)𝑙 /G𝑚] = (L − 1)−1 [𝔈𝔦𝔰 (𝑚)𝑙 ]

in M♥
𝑘 [(L − 1)−1]. From Corollary 4.6,

[𝔈𝔦𝔰 (𝑚)𝑙 ] = (L − 1)2L𝑛𝑙−𝑐+�𝑐/𝑝�−1.

Combining these equalities, we get

[Δ (𝑚)𝑛 ] = (L − 1)−1
(
(L − 1)2L(𝑛𝑙−𝑐+�𝑐/𝑝�−1)

)
L−𝑛𝑙+𝑐+1

= (L − 1)L �𝑐/𝑝�
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in M♥
𝑘 [(L−1)−1]. Since L−1 is invertible in M̂♥

𝑘 , we have a natural homomorphism M♥
𝑘 [(L−1)−1] →

M̂♥
𝑘 . Thus, the same equality holds also in M̂♥

𝑘 . �

The following corollary is a direct consequence of the last theorem:

Corollary 7.7. We have

dimΔ (𝑚)𝑛 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (𝑝 � 𝑛, 𝑚 = 𝑛 − 1),
−∞ (𝑝 � 𝑛, 𝑚 ≠ 𝑛 − 1),
�(𝑚 − 𝑛 + 1)/𝑝� (𝑝 | 𝑛, 𝑝 � (𝑚 − 𝑛 + 1), 𝑚 − 𝑛 + 1 ≥ 0),
−∞ (𝑝 | 𝑛, 𝑝 � (𝑚 − 𝑛 + 1), 𝑚 − 𝑛 + 1 < 0),
−∞ (𝑝 | 𝑛, 𝑝 | (𝑚 − 𝑛 + 1)).

Here we follow the convention that dim ∅ = −∞ and that if 𝑝 = 0, then 𝑝 � 𝑛. Moreover, when Δ (𝑚)𝑛 ≠ ∅,
then it has only one irreducible component of the maximal dimension.

Remark 7.8. The original mass formulas in [Kra62, Kra66, Ser78, Bha07] also hold for local fields of
characteristic zero. It should be possible to similarly prove motivic mass formulas in characteristic zero,
once the relevant P-moduli space is constructed.
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