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I ntroduction

Theobject of thispaper isto calculate’ Néron’'slocal height pairing and Schneider’s
local p-adic height pairing on abelian varieties with split multiplicative reduction.
Such an abelian variety admits of arigid analytic uniformizationas7'/A, where T’
isasplitrigid analytic torusand A isalatticein T'. The pullback of adivisor on A
isthe divisor of athetafunction on T'. These theta functions and their automorphy
factors will be the building blocks of our formulas. Our results generalize well-
known results on Tate curves to the higher dimensional case.

Concerning the Néron pairing, we actually prove a more general statement,
namely aformulafor the Néron map on an abelian variety with split multiplicative
reduction which is similar to a formula due to Néron for an abelian variety over
C. Here we use the terminus Néron map for the association of a canonical local
height function with any given divisor. These canonical local height functionswere
constructed by Néron in order to find quadratic global height functions on abelian
varieties.

Afterwardswerestrict our attention to height pairings, which meansthat we con-
sider only divisors algebraically equivalent to zero. We adopt an approach to height
pairings which is due to Mazur and Tate (see [Ma-Ta]). Starting with an abelian
variety over alocal field K and any homomorphism p from K* to some abelian
group Y, they define alocal height pairing on A with valuesin'Y” whenever p can
be continued to a ‘bihomomorphic’ map, a so-called p-splitting, o: P(K) — Y
on the K-rational points of the Poincaré biextension associated with A. In some
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casesthere exist canonical p-splittings, e.g. when K isarchimedean and p vanishes
on elements of absolute value one, or when K is non-archimedean, p is unrami-
fied (i.e. vanishes on the group of units), and the target group Y satisfies certain
divisibility conditions. These two cases suffice to describe Néron's local height
pairings via canonical p-splittings. There is also an axiomatic characterization of
the p-splittings leading to Schneider’slocal p-adic heights (as defined in [Schy).

For an abelian variety with split multiplicative reduction we define a new p-
splitting by a certain expression on a trivial biextension covering P(K). This
definition is restricted to the case where p is what we call A-invertible, i.e. where
p maps the lattice A to a lattice of full rank in Y™. If p is unramified, we show
that p is A-invertible if and (adding an additional assumption) only if the Mazur—
Tate condition for the existence of a canonical p-splitting is fulfilled, and that
our p-splitting coincides with the canonical one. Furthermore, if p is the map
corresponding to Schneider’s p-adic height, then p is A-invertible if and only if
Schneider’sconditionsarefulfilled, and in this case our p-splitting isthe onegiving
rise to the p-adic height.

Moreover, we prove aformulafor the height pairing defined by our p-splitting,
using theta functions on the covering torus 7" and their automorphy factors, which
yields the desired formulas for Schneider’s and Néron's pairings.

After this paper was completed, welearnt that ageneralization of our formulafor
the Néron map to arbitrary abelian varieties with semistable reduction was proved
independently (and earlier) by M. Hindry in the unpublished preprint [Hi]. Hindry
is interested in finding good representatives for the local Néron height functions
associated with a divisor which are a priori only defined up to a constant, whereas
our main interest liesin computing height pairingsin the Mazur and Tate style and
investigating their existence conditions. With this focus we only get information
on divisors algebraically equivalent to zero, but we can investigate height pairings
with value groups other than the real numbers. So the overlap between this paper
and [Hi] concerns only our Section 3. We nevertheless decided to include this
section to compl ete the picture.

1. Local heights

Let us first recall some facts about local height functions and height pairings.
We fix an abelian variety A over alocal field K, whose absolute value we will
alwaysnormalize according to the product formula, i.e. if K = R, wetaketheusual
absolutevalue, if K = C, wetakethe square of the usual absolutevalue, andif K is
non-archimedean, we denotethe residue classfield by k and put || x = (#k) v,
where v is the valuation map (normalized so that a prime element has valuation
one). By A’ we denote the dual abelian variety of A. If K is non-archimedean, we
denote by R itsring of integral elements, and by A (respectively .A’) the Néron
model of A (respectively of A’) over Spec R. We write Div(A) for the group of
(Weil or Cartier) divisorson A, and for any nonzero f in the function field K (A)
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of A wedenote the corresponding principal divisor by div( f). For any Zariski open
subset U of A, let Q(U) be the group of continuous functionsU (K') — R, and let
C(U) bethe subgroup of constant functionson U (K).

THEOREM 1.1 (Néron). Thereisa uniqueway of associatingto any D € Div(A)
an element

pr,p = pp € Q(A\suppD)/C(A\supp D)
with the following properties:

(i) All representativesof 1 have divisor D, i.e. whenever D restricted to some
Zariski open subset U of A is equal to the divisor of a rational function
[ (restricted to U), then for every representative p7, of pp there exists a
continuous map «: U(K) — R such that %, (z) = log|f(z)|x + a(z) on
(A\supp D)(K) NU(K).

(i) up+rp’ = pp + ppr, where both sides are defined.

(iii) For all f € K(A)*, wehave gy f = log|f|x modulo C(A\suppdiv(f)).

(iv) Forall a € A(K) wehave - p = jip o tq.

Wecall D — up the Neron map.
Proof. Existence follows from [Né&1], Theorem 1, p. 278, and [N&1], Proposi-
tion 5, p. 292. Uniqueness follows from [Né1], Lemme 7, p. 279. O

Note that the Néron map is compatible with finite base changes: For any finite
extension L over K therestriction of [L: K]*luL,DAL to A(K) isequal to ik p.

Let Z9(A/K) denote the group of all zero cycles on A with degree zero and
K-rational support (i.e. the elements of degree zero in the free abelian group on
A(K)). For any z = Sina; € Z9(A/K) we put pup(z) = Siniut,(a;) for an
arbitrary representative piy, of p. Then pup(z) isawell-defined real number if the
support of z is digjoint from the support of D.

By (Div A x Z°(A/K))" we denote the set of all pairs (D, z) with disjoint
supports. Then we can define a pairing (Div A x Z°(A/K))" — R by (D, z)
1p(z). We will denote the restriction of this pairing to (Div® A x Z%(A/K))’,
where Div® A denotes the group of divisorson A algebraically equivalent to 0, by
(, )v,a/ K- An axiomatic characterization of (, )y 4,k isgivenin [N&l], p. 294.

In[BI], Bloch gave adescription of Néron'slocal height pairing using a contin-
uation of themap log| |k to extensions of A by G,,. This approach was modified
by Schneider in [Sch] to define an (analytic) p-adic height pairing. The conceptual
background of Bloch’s and Schneider’s constructions becomesfully transparent in
the paper [Ma-Ta] by Mazur and Tate. Let us briefly recall some of their results.
Denote by P the G,,-torsor on A x A’ corresponding to the Poincaré bundle
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expressing the duality between A and A’. P can be endowed with the structure
of a biextension of A and A’ by G,,, (with respect to the fppf, étale or Zariski
topology), see [SGA7, I, exp. VIII], p. 225. Note that P(K) is a biextension of
A(K)and A'(K) by K* inthe category of sets.

DEFINITION 1.2 ([Ma-Ta], p. 199). Let U, V, W and Y be abelian groups, let
X beabiextensionof U and V by W, and let p: W — Y be ahomomorphism. A
p-splitting of X isamap o: X — Y such that

(i) o(wz) = p(w) + o(z) fordlw e Wandz € X.
(1) Forall u € U (respectively v € V') therestriction of o to X xpyxy ({u} x V)
(respectively X xpxyv (U x {v})) isagroup homomorphism.

Now let p: K* — Y be a homomorphism to some abelian group Y and assume
that o : P(K) — Y isap-splitting. Then we can define a bilinear pairing

(a )MT,g: (D|V0A x 70 (A/K)), — Y,

(D, 2) — a(sp(2)),

where sp is arational section of P[4, ¢4y — A with divisor D, and where d is
the point in A'(K') corresponding to D. The rational section sp, is defined only up
to a constant in K> which vanishes when we continue sp linearly to Z%(A/K).
We have (div(f),z)ur,e = p(f(2)) and (¢;D,t:z) yre = (D,2)mT, fOr al
a € A(K) (see[Ma-Ta], 2.2, p. 212). In the following three cases, Mazur and Tate
prove the existence of a canonical p-splitting:

() Let K bearchimedean, i.e. R or C, and assumethat p(c) = Oforal c € K*
with |¢|x = 1. Put v(c) := log |c|x. Since p(c) depends only on the value v(c),
there is aunique homomorphism: R — Y suchthat r o v = p. Thereisaunique
continuous v-splitting o, of P(K) (see[Ma-Ta], 1.8.1, p. 201), and we define the
canonical p-splitting o, of P(K) tobeo, = r o 0,. ((Ma-Td], 1.5.1, p. 202.)

(I1) Assumethat K is non-archimedean, i.e. the absolute value is discrete, and
that p vanisheson R*. If thisisthe case, we call p unramified. Assumethat Y is
uniquely divisible by m 4, the exponent of the group Ay (k)/.A%(k), k being the
residue class field of R. There exists a unique biextension Py of A° and A’ by
Gm,r (Over R and with respect to the fppf-topology) with generic fibre P, see
[SGA7, | exp. VIII], 7.1 b), p. 300. The canonical p-splitting o, is defined as the
unique p-splitting vanishingon Pr(R) C P(K). ([Ma-Ta, 1.5.2, p. 202.)

(I11) Assume that K is non-archimedean, .A has ordinary reduction and Y is
uniquely divisible by m amarnan 4, where n 4 is the exponent of A% (k) /T (k)
for the maximal torus T4 in A;. Theformal completion P! of Py alongtheinverse
image of T4y x T4 in Py isaformal biextension of the formal completion of A
along T4 and theformal completion of A" dlong T4 by G/, theformal completion
of G, r dongitsspecial fibre. P! istrivial and admitsauniquesplit og: P — GJ,.
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Then the canonical p-splitting o, is defined as the unique p-splitting of P(K') such
that 0| pi() = p o 0o. ((Ma-Ta], 1.5.3, p. 203)

The canonical p-splitting isin al three cases compatible with base change with
respect to continuous embeddings of local fields, see[Ma-T4], 1.10.2, p. 205.

Cases (1) and (I1) are sufficient to get a description of the local Néron pairings.
PutY = R and let p: K* — R bethe map p(z) = log|z|x. Then p vanishes
on elements with absolute value 1. As the divisibility condition in (I1) is fulfilled
in R, we get a canonical p-splitting o,: P(K) — R, applying case (1), if K is
archimedean, and case (I1), if K isnon-archimedean. Accordingto[Ma-Ta], 2.3.1,
p. 212wehave (D, z) yr,0, = (D, 2) N,a/K -

The connection to Schneider’'s p-adic height pairing is the following: Let K
be a finite extension of @, and let p: K* — @, be a non-trivial continuous
homomorphism. Then p is continuous for the profinite topology on K* and
extends therefore uniquely to a homomorphism p” on the profinite completion
K™/ of K*. By local class field theory, K *" is topologically isomorphic to
Gal(K®/K). Then p" determinesaz,-extension K,/ K with intermediate fields
K, which are the uniquely determined cyclic extensions of degree p” of K such
that p(Ng, /K K,)') = p"p(K*) C Qp, see[Ma-Td], 1.11.1, p. 207. For any com-
mutative group G over K we denote by NG(K) C G(K) the group of universal
norms with respect to K,/K. Furthermore, let P(K,, K) be the set of points
in P(K,) which project to A(K,) x A'(K). Wedefine NP(K) C P(K) asthe
intersection of al Ny, ,xP(K,, K), where we use the group structure of P over
A’ to define norms. If NA(K) hasfiniteindex in A(K), then NP(K) carries the
structure of abiextensionof NA(K)and A’'(K) by NG,,(K), see[Ma-Ta], 1.11.4,
p. 208.

THEOREM 1.3. If| = p, assumethat NA(K) hasfiniteindexin A(K). Thenthere
exists a unique p-splitting o,,: P(K) — Q, vanishing on

NP(K) ifl=p
Pr(R) ifl#p.
Wecall (, )ur,0, Schneider’slocal p-adic height pairing with respect to p.
Proof. See[Ma-Ta], 1.11.5, p. 208 for the casel = p. The casel # p follows

from the existence of the canonical splitting in case (11), since the homomorphism
p- K* — @, isunramified (see the beginning of the proof of 4.13). O

If p isunramified (so e.g. in the casel # p), the universal norm group NA(K)
alwayshasfiniteindex in A(K'), and the canonical p-splitting vanishing on Pi(R)
can also be described as the unique p-splitting vanishingon N P(K), see[Ma-Ta],
1.11.6, p. 208.

Note that if L isafinite extension of K, then p extendsto anon-trivial continuous
homomorphism p: L* — Q,, andweget o, = 0, | p(x)- Hence the p-splittings
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leading to Schneider’s p-adic height pairings can be calculated after finite base
changes.

2. Abelian varietieswith split multiplicative reduction

Let K be a non-archimedean local field. We will denote by Rigx the site of rigid
analytic varieties over K endowed with the strong Grothendieck topology, see
[BGR], p. 357. Adopting the terminology from [BGR], we call coverings with
respect to this site admissible. By Zar i we denotethe big Zariski site over SpecK,
i.e. the category of all schemeslocally of finitetype over Spec K endowed with the
Zariski topology. Therigid analytic GAGA-functor, asexplainedin [K @], Section 1
and [BGRY], p. 361f, induces a morphism of sites which we denote by

an: Rig, — Zarg.

For an object X and a morphism f in the Zariski category we simply write X"
and /" for the corresponding analytic objects. Thereis anatural map

. an
ax: X" — X,

of locally G-ringed spaces. (See [Kd], Section 1, and for the definition of locally
G-ringed spaces see[BGR], 9.3.1, p. 353). Therigid analytic analogues of Serre’'s
GAGA theorems hold, see [KO]. We will call a group object in Rigx a (rigid)
analytic group. A split rigid analytic torus T' over K isarigid analytic group over
K suchthat T' ~ (Gy, )" for some natural number n. Its character group is the
analytic Cartier dual of T', hence a constant analytic group defined by afree abelian
group H of rank n contained in T'(7', O ). Any choice of abasisx1, . . ., x, of the
free Z-module H yields anisomorphism 7' ~ (G7, ,)*" and can be used to define

amap
v: T(K) — R",

z > (log[xa(2)], .- 109[xn(2)))-

We call aclosed analytic subgroup A C T asplit latticeif it is a constant analytic
K-group whose K -rational points are mapped bijectively via v (for some choice
of x1,...xn) toalattice of full rank in R, see [Bo-LU3], p. 656.

We say that an abelian variety A over K has split multiplicative reduction if the
specia fibre of the identity component of the Néron model of A is a split torus.
Then there existsa split analytic torus T over K and asplit lattice A C T such that
we have an isomorphism 7'/A — A" in the rigid analytic category. (See [Ray]
or [Bo-Lu3], p. 655f.) Therigid analytic structure on the quotient 7'/ A is defined
sothat T — T'/A islocally bianalytic, see [Ge], p. 324, or Bo-LU3], p. 661. Via
theprojectionT" — A", A%" isthe categorical quotient of T after the A-operation
(in the sense of [Mul], p. 3). On an abelian variety A with split multiplicative
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reduction we have atheory of thetafunctions analogousto the situation over C. We
have

(T,0°)=K*H ={ax:a € K*,x € H},

where O denotestherigid analytic structure sheaf. (See[Ma], p. 289.) Notethat the
analogous group in the complex analytic setting is more complicated. That makes
the definition of thetafunctions even easier in therigid analytic case. Let M bethe
sheaf of meromorphic functionson 7" (in the sense of [Bo], p. 6).

DEFINITION 2.1 ([Ma)], p. 290). A function ® € T'(T, M*) with A-invariant
Cartier divisor div © is called atheta function.

Let © be atheta function. Then we have div(©(\z)) = div(©(z)), hence ©(\x)
and O(x) differ by anelementinT'(7", O ). Sofor al A € A there existsaconstant
a) € K* and acharacter y, € H such that

O(\z) = angl(a;)G)(x) foral zeT.

a) and x areuniquely determined, and it iseasy to seethat they have thefollowing
properties:

e )\ — X, isahomomorphism

* X0 (A2) = xa,(A1)
® ax G, = GrX(A2)

DEFINITION 2.2. We say that K contains enough roots if for every y € H and
for every A € A there existsan element w(, A) € K suchthat w(x, A)? = x(\).

Given A and H, there is always afinite extension L of K which contains enough
roots. We can define L by choosing bases A1, ..., A, of A and x1,...,x, Of H
and adjoining afixed square root of all x;(\;) to K.

Note. In this and in the next section we will assume that our ground field K
contains enough roots.

Let ©, a) and x, be asabove. Since K contains enough roots, we can define a
bimultiplicativeand symmetricmap [, Jo: Ax A — K> suchthat [\, 113 = x (1)
for al A\, € A. Furthermore, as x, is a character, [, ]3 has an extension to
a bimultiplicative map [, 13: A x T(K) — K*. We define ¢po: A — K* by
Yo(N) = ax|[\, A]o. Aneasy calculation showsthat ¢g isahomomorphism. Then
the automorphy factor of © has the following shape

O(Az) = YoM\ Ao [N, 2]6°0(z).

(The same arrangement of the automorphy factor is used in [Ma], p. 290). [, o is
uniquely determined up to a bimultiplicative and symmetric map from A x A to
{#1}. Hence the absolute values of [, ]e and ¢ are independent of the choice of

[7 ]@-
The following result is crucial for our investigations.
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THEOREM 2.3 (Gerritzen). HY(T,0*) = 1.
Proof. See[Ge], Theorem 1, p. 326. O

Thisimplies that every analytic Cartier divisor on T is a principa divisor. Let us
denoteby m: T — A" the uniformization map and consider an algebraic divisor
D on A. D inducesan analytic Cartier divisor D" = o D on A**. Thenn* D" is
principal, i.e. thereis afunction © € I'(T, M*) such that =* (D*") = div©. Our
notation isjustified, since © isindeed athetafunction in the sense of Definition 2.1.
We call © athetafunction corresponding to D. Two theta functions corresponding
to the same divisor D differ by an element in I'(7, 0*) = K* H. Note that for
a € K*andy € Hwehave[, ]ax@ =[, 3. Hencewemay put [, |3 = [, |3 for
any theta function correspondingto D.

PROPOSITION 2.4. A divisor D on A is algebraically equivalent to zero if and
onlyif[, 13 = L.

Proof. Let © be atheta function corresponding to D. Then Z(x, y) := O(xy)
O(z)~1O(y) 1 € I(T x T, M*) isathetafunction corresponding to the divisor
m*D —piD—p5D on A x A (wherem ismultiplication and p1, p» are projections).
Hence, if D isagebraically equivalent to zero,weget = = ay - ho (7 x ), where
ax € T'(T x T,0*) is the product of a constant « € K* and a character x on
T xT,andwhere h isarational functionon A x A with divisor m*D —pi D —p3D.
In this case, we deducefor all A € A

—)Xil(x? x) = —Xil(Axa 37),

whichimpliesx (), 1) = [, z] ;2. Hencefor all \ the character [\, —] ;2 isconstant,
hence equal to 1, which givesindeed [, ]D =1

On the other hand, supposethat [, 2, = 1. Thisimpliesthat Z(z,y) iSA x A-
invariant, hence £ = (= x =)*h for some global meromorphic function h on
A% x A Since A x A is projective, h is actually arational function (see e.g.
[Bo], p. 12), which implies that D is agebraically equivalent to zero. O

For any divisor D € Div®(A) and any theta function © corresponding to D we

choose[, Jo = 1,i.e. ¢o: A — K* isthe well-defined homomorphism satisfying
O(Az) = 1o (A)O(2).

We define a homomorphism

Div(A) — HY(A,T(T,0%)),

(where we take group cohomology with respect to the natural actionof A C T'(K)
onI'(T,0%)) by D — Op(Az)/Op(x). It is easy to see that this morphism is
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well-defined (i.e. independent of the choice of ©p), and that its kernel consists
exactly of the principal divisors. Hence we get an injection

¢: CHY(A) — HY(A, (T, 0%)).

In accordance with [Mul], 1.6, p. 30, we call a collection of morphisms u :
G x T — G¥ x T (A € A) suchthat uy,», = uy, o uy, and such that for all
A € A there exists an element e, € T'(T, O*) with uy(a, z) = (aey(x), Az), @
A-linearization on the trivial G¢'-torsor G x 1" over T'. For every G, -torsor L
on A thereis atrividization 7* L = G4 x T', hence the natural A-operation
on w*L*" (given by multiplication by A on 7T') induces a A-linearization {u,}
on G x T'. It is clear that a different trivialization of 7*L*" givesriseto a A-
linearization vy, suchthat uy = h~1owv, oh for somefixed G "-torsor isomorphism
h: Gi x T —5 G x T If thisis the case, we call u, and v, congruent. Let us
denote the set of congruence classes of A-linearizations by LinCl. Then we get a

map
1: CHY(A) — LinCl.

Asin the complex case (see [Mu2], Chapter |, Section 2) it is possible to define an
inverse map by constructing the quotient of G x T after a A-linearization. Hence
11 is a bijection. (See also [Bo—-L13], Lemma 2.2, p. 662.) Furthermore, if we

s

chooseanisomorphismi: G x T % n*L**, then (L®", G¥ x T % 7*L** 5
L) isthe categorical quotient (in Rigx) of G x T' by the operation of A given
by the A-linearization u, derived from 1. (For the definition of categorical quotients
see[Mul], p. 3)

Onthe other hand, we haveanatural bijectiony: H(A, (T, 0*)) — LinCl
induced by mapping a cocycle {e) } to the set of maps u, defined by u)(«, z) =
(cwex(z), Az). Following al our constructions, it turnsout that 1, o ¢: CH(A) —
LinCl coincides with the bijection 1), defined above. In particular, we deduce that
¢ isanisomorphism.

3. TheNéron map

If we assume for a moment that we are dealing with an abelian variety A over the
complex numbers, aresult of Néron tells us how to calculate the Néron map on A.
Let: V' — A(C) bethe complex uniformization of A(C), sothat A(C) = V/A,
where V' is a complex vector space and A is alattice in V. For every divisor D
on A thereisanormalized theta function ©p on V with divisor 7* D, i.e. Op isa
meromorphic function on V such that for all z € V andforal A € A

Oz + \) = O(2) exp [WH <z + % >\> + 2m’K(>\)} ,
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where H isahermitianformonV x V and K () isreal for al A € A. (For aproof
see[Lal] or [Ra].) Put

(@) = 10910p(2)| = ZH (2, 2),

where z € V isan arbitrary preimage of z € A(C). Then u: D — p}, mod C is
the Néron map on A. (See [N€&1], p. 329.)

We will now derive a similar formula in the non-archimedean case. So let us
return to the case that A is an abelian variety with split multiplicative reduction
over a non-archimedean local ground field K. Then A%" isuniformized as T'/A,
and we denote by w: T — A%" the projection map. We fix a basis x1,...,xn
for the character group H of 7" and abasis A4, ..., A, for the lattice A C T'(K).
By v we denote the valuation map on K*. Note that (v(x;A;)i ;) IS a matrix
of full rank over Z, since A is a split lattice. Fix a natural number N satisfying
N det(v(x;jAi)i,;) "t € Z.In analogy to the complex situation we define

DEFINITION 3.1. Wecall athetafunction © on 7" normalized, if |1po(\)| = 1for
al e A

Then we have the following

PROPOSITION 3.2. For any divisor D on A thereis a normalized theta function
©’ correspondingto thedivisor NV D, whichisuniquely determined up to a constant
a€ K*.

Proof. Consider adivisor D on A and athetafunction © correspondingto D. We
haveto find acharacter y € H suchthat ©' = x©" isanormalized thetafunction.
Now, according to our definition, y©% isnormalizedif and only if forall A € A we
have 1 = |1, o (A)| = [x(A)]]e (A)|N. For brevity, put ¢ := 1. To construct
X, we solve the linear system of equations v(1();)) = E}_jarv(xiA;) for all
i =1,...,n with uniquely determined a), € Q. Thenay, € det(v(x;j\;)i;) 7% for
al k, hence Nay, € Z.Define xy 1= x; V™ ---x,, V% € H. An easy caculation
now shows that |x(\;)| =1 = |¢(\;)|Y for all elements of our chosen basis. This
impliesthat |x ()|~ = |[¢(A\)|Y forall A € A, asbothsidesaremultiplicativein .
Hence x©" is normalized. The second part of our assertion is obvious, since two
theta functions corresponding to the same divisor differ by an element of K< H.
Note that any character mapping A to R* istrivial. O

DEFINITION 3.3. (i) Forany z € T'(K) wedenoteby w;(z) € Q, j € {1,...,n},
the uniquely determined solution of the following system of linear equations

v(xi(2)) = ij(z)v()(i()\j)) fori=1,...,n.
j=1
Note that Nw;(z) isan integer.
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(ii) For every divisor D on A put for y, z € T(K)
sz IOgH)‘za)‘ ] |

Notethat H j, isabilinear, symmetricmap T (K ) xT(K) — R,whichisobviously
continuousin both arguments. Some other properties of H;, which we need in our
calculation of the Néron map are established in the following lemma.

LEMMA 3.4.

(I) HD1+D2 = HDl + HDZ'
(ii) Let x beacharacter onT. Thenlog|x(z)| = X;w;(z)log|x(A;)].
(iii) For all y,z € T(K) wehave Hp(y, z) = —%E w;(y) 1og [\, 213 |.
(iv) For A € Aand z € T(K) wehave Hp(), z) = —3log|[), z]3 |, which gives
for z = u € A theequation Hp (A, 1) = —log|[A, u]p].

Proof. (i) is obvious from the definitions.

(ii) By definition, v(x;(z)) = Xw;(2)v(x;A;) for al i. Hence we get for all
i-log|xi(z)| = Ejw;(z)log|xi(A;)|. By additivity, thisholdsfor all x € H.

(iii) From (i), we get log |[\, 2] | = X;w;(2) log|[A, Aj]%|, whichimplies our
clam.

(iv) By (iii), we get for al i: Hp(A;,2z) = —%ijj(Ai)log|[>\j,z]%| =
—2log [N\, 23, ((\;) = d;;. As the )\; are a basis of A, this formula
holdsfor al A € A. O

We can now proveaformulafor the Néron map on A. Thefollowing theorem can be
deduced from aresult due to M. Hindry (Théoreme D in [Hi]) who independently
proved aformulafor the Néron map on an abelian variety with semistable reduction
viaits Raynaud uniformization. Nevertheless, since our argumentsarein adifferent
spirit, it might be useful for the reader to give a proof here.

THEOREM 3.5. For any divisor D on A let © v be a normalized theta function
corresponding to the divisor N.D. We definefor all z € (A\supp D)(K)

1 1
poyp () = 1091ONp(2)| — HNp(2 2),
where z € T'(K) isan arbitrary point with 7(z) = z. Then
p: D — (up = pey, mod C(A\supp D)),
isthe Néron map for A, asdefinedin 1.1.
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Proof. First of all, note that a different choice of ©  amounts to adding a
constant, so that p depends solely on D. Next, we will show that uyp(z) is
well-defined, i.e. independent of the choice of apreimage z of z. Indeed, for A € A
and z € 7~ 1({z}) we have

log|Onp(A2)| — Hyp(Az, A2) = log [\ Al [N 235 Onn(2)]
—Hnp(AA) — Hyp(z, 2)
—2HNp(A, 2)
= l0g|Onp(2)| — Hyp(2,2),

according to 3.4, (iv). Now we have to check properties (i) to (iv) of 1.1.

(i) Assume that the restriction of D to the Zariski open subset U of A is
equal to div f for some f € K(A). Then D" restricted to U*" equals div f%".
Choose a normalized theta function © = ©yp for ND. We have div((f*")" o
)| p-1yan = diV(O)|z-17an, hence ©/(f* o m)¥ € T(x~ U, O*). Thus,
log|©(z)/fN(nz)| € R for dl z € 7#~tU. As Hyp has no singularities,
and i (nz) = log|f (nz)| + (1/N)10g|©(2)/ ™ (12)| — (1/N)Hy p(z, 2), this
proves our claim.

(i) is clear since the product of two normalized theta functions is normalized.

(iii) Let f # O bearational function on A. Then f*" is a global meromorphic
function on A?", and (7* f%*)" is a normalized theta function corresponding to
N div(f), which implies that Kdiv ) = 109 | f| mod C.

(iv) Finally, we have to check trandation invariance. Let a beapointin A(K).
Fix some b € T'(K) with 7(b) = a. Denote by ¢, respectively t;, the translation
maps = +— ax ON A respectively z — bz on T'. Then obviously o ¢, = t, o .
So, if © = Oyp is anormalized theta function corresponding to N D, we have
m*(Nt;D) = (7o t,)*(ND) = t;(div ©). Hence © o ¢, is a theta function
corresponding to the divisor N¢:D. For dl A € A and al z € T(K) we have
O(bA2) = o (M, b5 I Alap [, 235 O (bz), whichimplies

L Ive ol =10 Ivpl and  [1heey, (A)] = e (A)[A, b5 -

Now let ©®' be a normalized theta function corresponding to N (¢:D). Then
©ot, = O'ax forsomea € K* and x € H, asboth thetafunctions havethe same
divisor. Hence (Yoo, (A)| = [1her (A)x(A)], which implies |[A, b]]Q2D| = |x(N)],
since ©® and ©" are normalized. Then we get, using again 3.4, Hyp(z,b) =
— 3% w;(2) log|[A;, b3 p| = 35jw;(2) log[x(A;)| = $log|x(z)|. Now we cal-
culatefor all z € T'(K) with 7z = z

1 1
po(azx) = Nlog|@(bz)| - NHND(bz,bz)
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1 1
= 1 109]6(2)] + - logla| + . 10g|x()| ~ 1 Hxn(b,b)

2 1
— NHND(z,b) — NHND(Z,Z)

= per(xz) modulo C.

Hence, 4 p = pup o tq, asclaimed. O

Theorem 3.5 generalizes a well-known result on Tate curves, see [La2], Chapter
I11, Section 5. We used normalized theta functionsin order to get aformula similar
to Néron'sresult in the complex case. We could avoid this notion altogether, asthe
following corollary shows:

COROLLARY 3.6. Let D be a divisor on A and let ©p be a theta function
correspondingto D. Definefor all z € T'(K) the vector (w1(z), ..., wy(2)) asin
3.3. Then put for all z € (A\suppD)(K)

1o, () =10g[Op (2 |_ij z)l0gle,, (A7) — Hp(z, 2),

wherez € T'(K) isan arbltrary preimage of z. Substituting © p by another theta
function corresponding to D amounts to adding a constant on the right-hand side,
hence we get a well-defined map

D+ pp = (i, modulo C(A\supp D)),

which is the Néron map.

Proof. An easy calculation, similar to the one in the proof of 3.5, shows that
the expression we used to define ug () does not depend on the choice of a
preimage z. Furthermore, if ¢ is an element in K* and x is a character, we
gt it () — e (#) = —l0gla| — log|x(z)| + Sjw;(2) log [x(A;)| = —log al
accordingto 3.4, (ii). Thisprovesthat using adifferent thetafunction corresponding
to D amounts to adding a constant. Therefore, it remains to be shown that up is
the Néron map, which follows easily by comparison with the expression we found
in3.5. |

We can now derive aformulafor Néron’s local height pairing.
COROLLARY 3.7. For (D, z) € (DiV® A x Z%(A/K))" with z = ¥n;a; we have

10000 = 5 5 w0 oglvon ()l

for any theta function © p correspondingto D and for arbitrary preimagesb; of a;
inT(K).

(D, 2)n,a/x =109
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Proof. Our statement follows immediately from 3.6. Note that for a divisor
D which is algebraically equivalent to zero Hp vanishes identically according
to 2.4. O

For adifferent investigation of Néron’slocal height pairing on principally polarized
abelian varietes with split multiplicative reduction see [Tu].

4. Local Mazur—Tate height pairings

We consider again an abelian variety A with split multiplicative reduction over a
non-archimedean local ground field K such that A*" is uniformized as7'/A, and
we denote by w: T — A" the projection map. Let T, be the split torus over K
with character group A. We put

T = TAan.

Then T’ is a split analytic torus. The character group H of T' can be regarded
as a subgroup of T'(K) = Hom (A, K*). Furthermore, the constant analytic
group defined by H is a split lattice in 7". Hence the quotient 7/ H is a rigid
analytic variety over K, see [Bo-LU3], p. 661. It is algebraic, i.e. there is an
abelian variety B over K with B“* ~ T"'/H (see [Ge], p. 341). We will denote
by 7' the uniformization map «': 7' — B%"*. We define now a 1-cocycle in
HY(A x H,T(T x T',0%)) by e(y ) = x(A)xA € (T x T",0%). It is easy to
seethat the cocycle condition is satisfied. e, ) definesa A x H-linearization

U(x) (o, z,y) = (e(A,X) (,y)a, Az, xy),

onthetrivial G&"-torsor over T'x T". Let P bealinebundleon A x B corresponding
t0 (u(y,y)) Viathe map ¢ from Section 2.

PROPOSITION 4.1. (B, P) isthe dual abelian variety correspondingto A.
Proof. Our claim follows from combining [Bo-L 1], Proposition 1.1, p. 258,
and [Bo-L 3], proof of 2.1, p. 663. (See also [Ge], Section 5.) O

Because of this Proposition, we will henceforth write A’ instead of B.

Recall that we proved in 2.4 that adivisor D on A is agebraically equivalent
to zero if and only if [, ]2, = 1. Theidentification of Pic%(A) with A’(K) isgiven
by mapping an isomorphism class of a line bundie M in Pic°(A4) to the point
y € A'(K) satisfying P| s,y =~ M. Thisis exactly the point y € A'(K) =
T'(K)/H = Hom(A, K*)/H corresponding to the class of )¢ € Hom(A, K*)
for any theta function © for M.

P (respectively its associated G%"'-torsor) is arigid analytic biextension of
A% and A" %" by G, Aswe explained at the end of Section 2, thereisan analytic
morphism

b0 GO x T x T' = (rr x «')* P9 — pon.
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such that (P*", ¢o) is the categorical quotient of G7' x T' x T" after the uy -
operation. ¢o isamorphismof G&"-torsors, i.e. ¢o liesover theprojection T x 7" —
A% x A" %" and commutes with the operation of G&'. ButasG%' x T' x T" isthe
trivial biextension of 7" and 7" by G, both sides carry additional structures. The
next Proposition investigatesin how far ¢ is aready a morphism of biextensions.

PROPOSITION 4.2. Thereisa unique point c € K* such that the map
¢i=meo o G x T x T' — P,

is a morphism of biextension. Here m,. denotes the G&"'-torsor operation by ¢ on
P,

Proof. Since for any ¢ € K* the map m,. o ¢g is compatible with the torsor
structures, the only problem isto find an element ¢ € K* such that ¢ := m, o ¢o
is a homomorphism with respect to both group structures. If ¢ is such an element,
then ¢o(c, 17, 17+) must be equal to the unit section of P*" over A’ " applied to
the unit section of A’ %" over K. Let us denote this element by e. On the other
hand, since both ¢o(1gar, 17, 17v) and e project to (14an, 14ran), they differ by
an element in K. Hence we see that we have to define ¢ € K* as the element
satisfying ¢o(c, 17, 177) = e. Put ¢ = m. o ¢p. It remains to be shown that ¢ is
indeed a morphism of biextensions.

We begin by studying the analytic morphism
[T xTxT — P,
(U7U7w) ’—> ¢(17 'U/U, w)¢(17u7w)_1¢(17v7w)_17

where on the right-hand side we multiply and take inverses with respect to the
group structure on P*™ over A’ “", and where we use functoria points (u, v, w).
We will now investigate the behaviour of f under the operation of A x A x H
onT x T x T'. By definition, ¢ isinvariant under the operation of u, , ), which
meansthat ¢(a, =, y) = d(ae ) (2,y), Az, xy). Hencean easy calculation using
the definition of thee(, ) showsthat f is A x A x H-invariant. Thus there exists
amorphism fo: A% x A% x A’ — P with foo (7 x 7 x ') = f.

Denote by v the projection P — A x A'. Then v%: P — A" x A’ is
a homomorphism of analytic groups over A’ “". Since v*" o ¢ = (m X ©') o po3
(where po3 isthe projection to the last two factors) is ahomomorphism, we seethat
vo fisthemapT x T x T" — A x A" givenby (u, v, w) — (Lgan, 7' (w)).
Hence v o fy is the morphism given by (a, b,c) — (1aan,c). This means that
v o fy factorizes through the unit section of the group A" x A’ ®" over A’ *".
As P is abiextension, we know that

an

0 G%L % A/ an , pan v A % Al an 07
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is an exact sequence of analytic groups over A’ “", Thus there exists an A’ *"-
morphism g: A% x A% x A'%" — G x A" which, composed with the
embedding G& x A’ — P, gives the morphism fo. Furthermore, g is the
product of amorphism h: A% x A% x A’ %" — G and the projectionto A’ *".
Now h correspondsto an element in I'(A*" x A% x A" O*), which by GAGA
theoremsisisomorphictoI'(A x A x A’, O*) = K* (see[Kd], p. 43). Hence f is
thefollowing morphism: 7' x T' x T" — T" dxm G x Ao — P whered is
a K -rational point of G27. But, by the definition of ¢, wehave f (17, 17, 17/) = e,
hencewe get d = 1. Thisimpliesthat ¢ is agroup homomorphism with respect to
the group structures over T" respectively A’ 2",
The same reasoning, applied to the morphism

TxT xT' — P,
(u’ U’ w) '_> ¢(1’ u’ Uw)¢(1’ u’ U)il(lb(l? u? w)ilﬂ

where we now use the group structure on P over A", implies that ¢ is aso
homomorphic with respect to the second group law. O

Note that P together with the new quotient morphism ¢: G&* x T' x T" — P
is still the categorical quotient of G x T' x T" for the action of A x H given by
the U(x,x)-

Let now Y be an abelian group (noted additively), and let p: K* — Y bea
homomorphism. Thefollowing result characterizesall p-splittingsin our situation:

PROPOSITION 4.3. Thereis a (1-1)-correspondence between

(@ p-splittings: P(K) — Y and
(b) p-splittings 7*: (G4 x T'x T")(K) — Y satisfyingforall A € A, x € H,
y € T(K)and z € T'(K): 7"(L,\,2) = —p(A(z)) and 7*(1,y,x) =
—p(x(y)), induced by mapping a p-splitting : P(K) — Y to7t* = 70 ¢.
Proof. As ¢ isamorphism of biextensions, for any p-splitting — of P(K) the
map 7 o ¢ will indeed be a p-splitting of (G&' x T'x T")(K). Furthermore, as ¢ is
Uy -invariant, wehaverog(A(2), A, 2) = Tod(ur 1)(1,1,2)) = 704(1,1,2) =
0. A parallel argument showsthat 7 o ¢(x(y), y, x) = 0. Hence r o ¢ isindeed an
element of the set in (b).

On the other hand, take a p-splitting 7*: K* x T'(K) x T'(K) — Y satisfying
(LA, 2) = —p(A(2)) and 7*(1,y, x) = —p(x(y)). Then we can calculate for
dlae K*, e A, xe HyeT(K)andz € T'(K)

™o, Ay, xz) = pla) +75(L A x) + 7 (LA 2) + 75 (1,9, X)
+7*(1,y, 2)

= — p(x(NA=)x(y) + ¥ (e, y, 2).
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Hence 7* is invariant under the operation given by the u, ). Since P(K) is the
categorical quotient of K* x T(K) x T'(K) after the u, ,-operation, there is
auniquemap 7: P(K) — Y suchthat 7 o ¢ = 7. As ¢ is a homomorphism of
biextensions, 7 isin fact a p-splitting. This provesour claim. O

Wewill now defineanew p-splitting for homomorphisms p with acertain property.
Aswe will seelater, this result can be used to calculate the canonical Mazur—Tate
height in case (1) and Schneider’slocal p-adic height pairing on A.

DEFINITION 4.4. Let p: K* — Y be a homomorphism to an abelian group Y.
Wecal p A-invertible, if the following two conditions are fulfilled:

(i) Y isthe additive group of a commutative ring (which we also call Y).

(if) Thereis a homomorphism pg: K* — Y and an element ¢ € Y such that
p = a - pg, and such that for some (and hence for any) bases Ag, ..., A, of A
and x1, ..., x, Of H the element det(po(x;A;)i;) isaunitiny’.

From now on, wefix abasisxs, ..., x, Of H andabasis \1, ..., A, of A.

THEOREM 4.5. Assumethat p: K* — Y is A-invertible. Let M € Mat,, ,(Y") be
the inverse matrix of (po(x;Ai)ij)-
(i) Definethe p-splitting 7*: K* x T'(K) x T"(K) — Y by

(Oé, Y, Z) — p(Oé) - (pO(le)7 e 7P0(Xny)) Mt(p()‘lz)v s 7p(>‘nz))

Then there exists a unique p-splitting 7: P(K) — Y suchthat 7 o ¢ = 7*.

(i) Denote the map T'(K) — Y™ given by y — (p(x1y), - - -, p(xny)) by p".
Assume that for every element u € p™(T'(K)) thereisa natural number d,, which
isaunitin'Y and which satisfies d,,u € p"(A). Then the p-splitting = defined in
(i) isthe unique p-splitting such that 7 o ¢ vanisheson {1} x (ker p™) x T'(K).

Proof. (i) It iseasy to seethat 7* isindeed a p-splitting. In order to check that
it givesrise to a p-splitting 7 of P(K), according to 4.3 we have to show for all
A xs y and z that 7(1, A, 2) = —p(A(2)) and 7(1,y, x) = —p(x(y)). Since we
know that 7* respects the group laws on the biextension K* x T'(K) x T'(K),
we can assumethat A € A and x € H are elements of the chosen bases. Note
that (po(x1i),-- -, po(Xn)i))M = te;, where ¢; is the ith unit vector, and that
M (p(xjA1),---p(xjAn)) = aej. Hence our claim follows.

(ii) The p-splitting in (i) obviously vanisheson {1} x ker p™ x T"(K). We have
to check that under the conditionsof (ii) 7* isuniquely determined by the following
properties:

e (LA 2) = —p(\(z)) foral X € A.

e 7(1,y,x) = —p(x(y)) foral x € H.
e 7°(1,y,2) = O0foral y € ker p" C T'(K).
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Consider elementsy € T'(K) and z € T'(K). Then according to our assumption
wefind anatural number d whichisaunitinY suchthat dp™(y) € p™(A) C Y".So
thereexistsanelement . € A suchthat p™(y%u~1) = 0 € Y, whichimpliesthat ¢
and y differ by an element inker p". Hencedr* (v, y, z) = dp(a) + 1 (1, 3¢, 2) =
dp(a) + 7(1, pu, z) = dp(a) — p(u(z)). Sinced isaunitinY’, we seethat 7* is
in this case uniquely determined. O

Asdescribed in Section 1, our p-splitting induces alocal pairing
(. )arrs: DIV A x 2°(A/K)) — Y.

We define meromorphic sections of arigid analytic line bundle (respectively G&'-
torsor) asin [EGA 1V], 20.1.8. The following result shows that the meromorphic
section of the trivial line bundle on T' given by a theta function ©p, isjust the lift
of arational section with divisor D.

LEMMA 4.6. Let D € Div°(A), and let d € A’(K) be the corresponding point.
Let © be a theta function for D, and let ¢ be the induced meromor phic section of
thetrivial torsor G;' x T'. Then there exists arational section s, of P[4, 14 With
divisor D, such that the following diagram commutes

T\supp 7* D" G xT
apOT aPo¢(_a_7d,)7
A\supp D Plaxiay

where as: A" — A and ap: P*" — P arethe canonical maps (see Sect. 2),
and whered’ € T'(K) isthe point corresponding to the homomorphismA — K *
given by

@D(Ax)
A — Yo, (A) = on(@)

Proof. By construction, ¢(—, —,d'): Gyt x T x {d'} — P™|gany{x(a)} IS
equal to thecomposition of anisomorphismw: G xT'x{d'} — 7*(P*"| gan x{ay)
and the projection 7* (P"| gan y {q)) — P*"*| gan x {q}- LEL NOW s 1) be any rational
section of P| 4, {4y With divisor D. Then s, inducesameromorphic section 7*s%'
of (P yan x {qy). Viathe isomorphism w, we find a meromorphic section ¢ of
G¥ x T x {d'} with divisor 7* D" such that the following diagram commutes
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T\supp 7* D" G x T
dpOT O[pogb(—,—,d,).
A\supp D Plsxiay

Furthermore, ¢ is given by a global meromorphic function ® on 7. We now have
to connect O to our given theta function © . We know that © and © p have the
same divisor, hence they differ by an element in K*H. Since ¢ is a lift of sp,
we have ¢(0(z), z,d') = ¢(O(Az), Az, d’). On the other hand, ¢(O(z), z,d') =
pu(r1)(O(x),2,d") = $(A(d)O (x), Az, d'), hence

©p(Az)
Op(r)
Since the presence of a character would affect the automorphy factor, © /© p must

be constant. If © = cO for some c € K*, the rational section csp of Pl 4
has also divisor D and makes the diagram in our claim commutative. O

= \d) =

DEFINITION 4.7. Assume that p is A-invertible. Define for al y € T'(K) the
vector (wa(y), .- wn(y)) € Y™ tobe (po(x1y), - - -, po(Xny)) M.

Then (w1(y), ..., wn(y)) isasolution of the linear system of equations
D=2 wiweba(y), i=1...n.
J

COROLLARY 4.8. Let D beinDiv®(A) andlet z = ©¥_ (a; — b;) beazerocycle
with K -rational support digoint from the support of D. Furthermore, let 7 be the
p-splitting defined in 4.5. For any choice of a theta function © ;, corresponding to
D and of preimages a;, b, of a;, b; inT'(K') we have

) zwj(n ) (o ().

(D, 2)mryr = p (
i

Proof. According to 4.6, for any y € T'(K)\supp7*D"* and for any theta
function ©p for D we have sp(ry) = $(O©p(y),y,d") for a suitable rational
section sp with divisor D and for A(d') = e, (). Hence

7(sp(my)) = 7(¢(Op(y),y,d))
= T*(GD(y)uyvd’)
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= p(Op(y)) — (po(Xx1Y);- - - Po(XnY))
M (p (Al(d’)) o p(An(d))
= Zw] p(Yep (Aj)),

by the definition of the w;’s. Th|S|mpI|esour claim. 0

We will now investigate the p-splitting 7 from 4.5 in the case that p is unramified,
i.e. that p vanisheson unitsin R. Recall that if p isunramified and if Y isuniquely
divisible by mn 4, the exponent of Ay (k) /A2 (k), Mazur and Tate have shown that
there exists a unique p-splitting o, of P(K) vanishing on Pr(R). Here Pg is
the unique biextension of A° and A’ by G, r with generic fibre P. The next
lemma will be needed to compare the conditions for the existence of o, and our

splitting 7.

LEMMA 4.9. Denote by v: K* — 7 the valuation map. Then m 4 divides
det(U(Xin)i,j), and det(v(Xin)iyj) dIVIdeSmZ inz.

Proof. For Tatecurves, thismeansthatm 4 = twv(x1A1), whichisawell-known
result, see [Si], p. 358f. Recall that det(v(x;Ai)i,;) # 0, asAisasplitlatticeinT.
Let A% betheformal completion of .A° along the special fibre. We can associateto
A% itsrigid analytic generic fibre A which is an open analytic subgroup variety of
A" (see[Bo—-L 2], Sect. 1). The uniformization map 7 induces an isomorphism

T(R) = {y € T(K) : yi(y)| =1 forall i} = A(K),

see [Bo-L 3], p. 655. We have furthermore a natural identification A(K) —
A(R). Thepreimage of A°( R) under thisidentificationisjust A(K), see[Bo-L{12],
Proposition 1.3, p. 72. Therestriction to the special fibreinduces a homomorphism
A(R) — Ag(k), which is surjective, since A is smooth over the henselianring R
([EGA 1V], 18.5.17). The preimage of A9 (k) under thismap isjust A(R).

So we find that the preimage of A9(k) under the surjective reduction map
A(K) — Ax(k) is A(K). Hence we get an isomorphism A(K)/A(K) —
Ay (k) /A (k). Via the uniformization =: T — A% we get an isomorphism
T(K)/T(R)A — Ar(k)/AQ(k). Hence m 4 is equal to the exponent of T'(K)/
T(R)A.

For any point y € T'(K) and any natural number m the point 4" isin T'(R)A
if and only if there are natural numbersmy, . . ., m,, such that

)) = ijv(Xi(Aj)) forali=1...n

It is easy to see that this is always the case if we choose . = det(v(xiAj)i,;)
= det(v(x;Ai)i ;). Hence m 4 divides det(v(x;Ai)i,;). On the other hand, choose
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for al k apoint y, € T(K) such that v(x;(yx)) = k. Thisis possible, since
(X1,---5xn): T(K) — K*™ is an isomorphism. As my4 is the exponent of
T(K)/T(R)A, wefind for every k£ € {1,...,n} integersmiy, .. ., my such that

m b, = mav(xi(yk)) Zm] v(xi(Nj)) foralli.

If M = (M; ;);,; istheinverse matrix of (v(x;\;)i ), thisisequivalentto M;; =
mj/ma foral j = 1,...,n. Hence all coefficients of M liein ma~1Z, which
implies that det(v(x;A:)i;) "t = det(M) € m "%, hence det(v(x;\i)i ;) divides
m’y iNZ. O

In order to compare our p-splitting to the canonical Mazur—Tate splitting in the
unramified case, we need another lemma:

LEMMA 4.10. Denote again by T'(R) C T'(K) the set of K-rational points of T’
which are mapped to R* by all characters x € H. The morphism of biextensions

¢ G xT x T — P™

maps R* x T(R) xT"(K) to Pr(R) C P(K). Furthermore, everypointin Pr(R)
hasapreimagein R* x T(R) x T'(K).

Proof. Wefix apoint z € T'(K) and put b = 7'(z) € A'(K). We denote by b
alsothe corresponding pointin A’(R), and we denotethe projection Pz — A% x A’
by v. For brevity, we put Z = Prg| 40, {3}, Which is an extension of A® by G, R
As H(SpecR, G,,) is trivia, Z(R) is an extension of A°(R) by R*. Now let
S = SpecR, and for al integersn > O put S,, = Spec R/ M"*+1, where M is
the maximal ideal in R. Note that Sy = Speck. For S-schemes and S-morphisms
we use subscripts n to indicate base changes by S, and for any S-scheme Y/
we denote the formal completion after its special fibre by Y. Hence we write
S for the formal spectrum of R. Then Z is a formal extension of A° by Gm,Rr-
Since A has split multiplicative reduction, all A are split tori. Hence, by [SGA7,
l, exp. VIII], 3.3.1, al extensions Z, split. Choose a section (o: A3 — Zo of
the projection vo: Zo — AS. By [SGA3, I, exp. IX], 3.6, we find for al n
uniquely determined S,,-homomorphisms¢,,: A% — Z,, suchthat ¢, x5, So = (o.
Furthermore, from v o (o = id 40, We deduce by [SGA3, 11, exp. I1X] 3.4, that
vy 0 (,, isthe identity map on A2. Hence we found a compatible system of sections
(¢n)n, Which inducesasection of the homomorphism Z — A®, and henceasection
of Z(§) — A%(S). Since Z(5) = Z(R) and A°(5) = A°(R) (which followse.g.
from Grothendieck’s existence theorem [EGA I11], 5.4.1), we find a section ¢ of
the homomorphism Pr(R)| a0(r)x (o) = Z(R) — A°(R).

For all y € T(R) we have v o ¢(1,y,2) = (n(y),n'(z)) € A°R) x {b}.
Composing this map with our section ¢, we get amorphism

Covog(ly,z) i {1} x T(R) x {z} — Pr(R)| 40(r)x {b}-
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AsvoCo(vod(lysz) = vod(lyz) = (n(y),r(z) , the maps y —
Covo¢p(l,y,z)andy — ¢(1,y, z) differ by ahomomorphism h: T(R) — K*.
Identifying 7'(R) with R*™, we get ahomomorphism h: R*™ — K *. Composing
h with the natural projection K* — K*/R* ~ Z, we get a homomorphism
g R*" — 7.

Assume now that Im g # {0}. Then there existsan integer « > O suchthat « is
minimal among all integers 5 > 0 suchthat 3 € Im g. Let y bean elementin R*"
with g(y) = a. Now chooseanatural number v > 1 suchthat the characteristic of £
doesnot divide. Let UY) ¢ R* bethe units congruent to 1 modulo the valuation
ideal. Then, by Hensel’sLemma, = — z” induces asurjection UY) — U, Now
R* ~ W x U™, where W istorsion. Hence ¢ factorizes through the projection of
R*™ to the direct factor 7Y™, Let y; be the projection of y to UV, Then thereis
az € UMD suchthat 27 = y1. Hence vg(z) = g(y1) = g(y) = a. As~ isbigger
than 1, we get a contradiction to our choice of a.

ThusIm g = {0}, which impliesthat theimage of 4 iscontained in R*. Hence
wefindthat Covog(1,y, 2)-4(1,y,z) Lisanelement of R*.As(ovop(L,y,2)
isin Pi(R), we deducethat ¢(1,y, z) € Pr(R). Let now (o, y, z) be an element
of R* x T(R) x T'(K). Then ¢(a, y, 2) = ap(l,y,z) € Pr(R), which proves
our first claim.

Finally let = be a point in Pg(R), and let (a,b) € A%R) x A'(R) be the
projection to A% x A’. Recall from the proof of 4.9 that the preimage of A°(R)
under themap T'(K) — A(K) = A(R) isjust T(R)A. Hence a has a preimage
y € T(R). We chooseany preimage z € T"(K) of b. Now ¢(1, y, z) isan element
of Pr(R) projecting dsoto (a,b) € A°(R) x A'(R), hencethereisan o € R
suchthat z = a¢(1,y, z) = ¢(a,y, z), which proves our claim. O

Now we can compare our p-splitting to the canonical splitting of Mazur and
Tate.

THEOREM 4.11. Let p: K* — Y be unramified, and let Y be a (commutative)
ring. If Y isuniquely divisible by m 4, then p is A-invertible. If p is A-invertiblein
suchaway that p = ap1 with det(p1(x;Ai): ;) @aunitand a not azerodivisor inY’,
then Y isuniquely divisibleby m 4.

Let us assume that Y is uniquely divisible by m 4, and put po(z) = v(z) - 1y.
Then (po(xjAi)i,;) hasaninverse matrix M € Mat,, ,(Y). Let 7. P(K) — Y be
the p-splitting defined by

7(z) = p(a) — (po(x19); - - - » po(xny)) M (p(M12), . . ., p(An2)),

for an arbitrary preimage (a, y,2) € K* x T'(K) x T'(K) of z € P(K) under
¢. Then 7 is uniquely determined by the property that 7 o ¢(1,y,z) = 0 for all
y e kerp®" C T(K)andal z € T'(K).

Furthermore, the canonical Mazur—Tate splitting o, in case (I1) isequal to 7.
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Proof. Let r be a prime element in R. The fact that p is unramified implies
that p satisfies p(z) = p(r)po(z). Assume now that Y is uniquely divisible by
ma. Then my isaunitin Y, and Lemma 4.9 implies that det(po(x;X:)i ;) =
det(v(x;Ai)ij) - Iy isaunitin Y. Hence p is A-invertible. On the other hand,
assume that there exists a homomorphism p;: K* — Y and anelement a € Y not
dividing zero such that p(z) = ap1(z) and such that det(p1(x;Xi)i,;) isaunitin
Y. Then p1(z) = po(x)pa(r), hence det(pa(x;Ai)i;) = pa(r)" det(po(x;Ai)i;),
which implies that det(po(x;Ai)i;) isaunitiny. From Lemma 4.9 we can now
deducethat m 4 isaunitinY’.

In order to show that 7 is uniquely determined by the property above, by Theo-
rem 4.5, (ii) it sufficesto show that for all y € T'(K) there exists anatural number
dy, € Y suchthat dyp™(y) € p"(A). Put d = det(v(x;Xi)i;). Thend is aunit
inY, aswe have just seen. For any y € T'(K) we can solve the system of linear
equations X;q;v(xi(A;)) = v(xi(y)) fori = 1,...,n with q1,...,q, € d Z.
Now it is easy to see that dp"(y) € p"(A). It remains to be shown that o, = 7.
As o, is the unique p-splitting vanishing on Pr(R), it suffices to show that our
p-splitting = fulfills that condition. Let 2z € Pr(R). According to Lemma 4.10,
we find a preimage («, y, z) of z under ¢ in R* x T(R) x T'(K). Then we have
7(r) = 7" (v, y,2) = 0,aT(R) C kerp". O

Using Corollary 4.8, we get a formula for the canonical local height pairing in
case (I1) in terms of theta functions. As the homomorphismlog| |x whichleadsto
Néron’slocal height pairing is unramified and the necessary divisibility conditions
are satisfied in Y = R, we get aformulafor the local Néron height pairing on A,
which coincides with the formula we derived from our description of the Néron
map in 3.7. (This does not make our results in Section 3 superfluous because there
we computed the whole Néron map, not only its restriction to Div®(A).)

For a construction of a K *-valued pairing with different theta functions on
an abelian variety from which one can deduce formulas for Néron’s local height
pairing and for a p-adic height pairing see [N&2], [N&3], and [Né4].

We will now derive a formula for Schneider’s local p-adic height pairing on
A. From now on we will assume that K is a finite extension of Q, for some
prime number /, and that p: K* — @, isanon-trivial continuous homomorphism
for some fixed prime number p. As we have seen in Section 1, p determines a
Zy-extension K.,/ K with intermediate fields K, of degree p” over K such that
p(Nk, kK)) = p"p(K*) C Q,. Recall that if [ = p, Schneider’s loca p-adic
height pairing with respect to p is defined only under the condition that the group
of universal norms N A(K) hasfiniteindex in A(K). Wewill first investigate this
condition.

PROPOSITION 4.12. If [ = p, then p is A-invertible if and only if NA(K) has
finiteindexin A(K).
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Proof. (For Tate curves, thisis also proved in [Na].) We may assumethat p is
not unramified: First of all note that p is unramified iff K, isunramified over K.
If thisis the case, we find by 4.11 that p is A-invertible, and by [Ma-Ta], 1.11.6,
p. 208, that the universal norm group has finite index.

Hence let us assumethat p is not unramified. Let r isaprime element in R, so
that K* ~ (r) x R*. Since R* is a compact subgroup of K *, it is mapped by
p to a compact subgroup. Therefore p(R*) is contained in p'Z, for some integer
t, and since p(R*) is closed and not zero, ¢ can be chosen so that p(R*) = p'Z,,.
Hence p(K*) = p(r)Z + p'Z,, = p*Z, for someinteger s.

For each intermediate field K, we write N, for the norm map N, k. The
homomaorphism p inducessurjectionsp: K* /N, K, — p(K*)/p”p(K*), since
p(N,K) = p”p(K*). As both groups have the same cardinality, these maps are
isomorphisms for al v. Furthermore, we see that the kernel of p is equal to
NN, K} = NG (K).

Now the preimage of NA(K) = N, N, A(K, ) under the covering map =: T'(K)
— A(K) is N,(AN,T(K,)). Hence m induces an isomorphism = : T'(K)/
Nv(AN,T(K,)) — A(K)/NA(K). Choose a basis xi,...,x, Of the char-
acter group H. Via(x1, - - -, xn), T'(K) isisomorphicto K *™. Denote the induced
lattice in K™ by A1. Then by definition, p is A-invertible, if and only if p™ (A1)
contains a Q,-basis of Qf, where p": K*" — @)} is the induced map. We get an
isomorphism K</ N, (A1(N,K)") — A(K)/NA(K). Asthekernel of p™ is
equal to (N, N, K9)" C Ny, (A1(N, K5)™), thisinduces an isomorphism

SE L AK)

Notethat p™ (N, A1(N, KS)") = p™ (A1), where p (A1) denotesthe p-adic closure
of p™(A1), so that

p" (K™ /pn (A1) — A(K)/NA(K).

Now let us assume that NA(K) has finite index in A(K). Then, since p™(K*™)
containsabasis of ¢, the same holds for p (A1) and hence also for p™(A1). So p
is A-invertible.

On the other hand, suppose that p is A-invertible. Then p™ (A1) containsa Q,-
basis of Q). Hence p"(K*")/p™(A1) is a finitely generated torsion Z,-module,
hence finite, which implies that NA(K') hasfiniteindex in A(K). O

Now we can calculate Schneider’s p-adic height pairing.

THEOREM 4.13. Let p: K* — Q, be a non-trivial continuous homomor phism
and assume that in the case [ = p the group of universal norms N A(K) has
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finite index in A(K'). Then the matrix (p(x;Ai)ij) has an inverse matrix M €
Mat, ,(Q,). Let 7: P(K) — Q, bethe p-splitting defined by

7(z) = p(a) — (p(x1y); - - -, (X)) M (p(A12), . . ., p(An2)),

for an arbitrary preimage (o, y,2) € K* x T(K) x T'(K) of z € P(K). Then
(, )mT,- isequal to Schneider’s p-adic height pairing corresponding to p.

Proof. First assumethat I # p. Aswe have seen at the beginning of the proof
of 412, p(R*) = p'Z,, for some integer ¢, if p(R*) # 0. But R* has no infinite
pro-p-quotient, which implies that p is unramified. By Theorem 4.11, we find that
7 isequal to the canonical Mazur—Tate splitting o, which proves our claim.

We now treat the case | = p. The fact that NA(K') has finite index in A(K)
impliesthat p in A-invertible, aswe have seenin 4.12. Hence M exists. Schneider’s
local p-adic height pairing isequal to (, )y, Where o, isthe unique p-splitting
vanishing on N P(K). Henceit sufficesto show that 7 vanisheson N P(K).

Foradl (a,y,z) € K* x T(K) x T'(K) denote by 7*(«, y, ) again the right-
hand side of the equation defining 7. Fix apoint (o, y,2) € K* x T'(K) x T'(K)
such that ¢(«,y,z) isin NP(K). Furthermore, fix a natural number m such
that the vector M *(p(A12),...,p(Mz)) € Q) is aready contained in m 122,
Bear in mind that . does not depend on « or y. We write N,, for the norm map
Nk, k- Foral v, the point ¢(c, y, z) isin N, P(K,, K), i.e. there exists a point
z, € P(K,), projectingto A(K,) x A'(K), suchthat N, z, = ¢(«a,y, z). Choose
a preimage (ay,yy, z) of =, in K x T(K,) x {z}. Then ¢N,(aw,yp,2) =
Ny(z,) = ¢(a,y, z). Recall that p(N,K,*) = p"p(K*). Furthermore, we have
seenin the proof of 4.12 that thereis an integer s such that p(K*) C p*Z,,. Hence
p(N,KS) C p* 7, Thenwe deriveforal v > 1

mt (e, y,z) = m7" (Nyay, Nyyy, z)
= mp(Nyow,) —m(p(Ny(x1y)), - - -, P(Ny (Xnyv)))
M (p(\az),- . pAa2)
€ p" Ly,
since p(N,K*) C p"**z, and mM'(p(A12),...,p(Az)) C Zj. Therefore
(v, y, z) = 0, which implies that 7 vanisheson NP (K). O

COROLLARY 4.14. If | = p, assume that NA(K) has finite index in A(K) (or,
equivalently, that p is A-invertible). Let D bein Divo(A) andlet z = X¥_ (a; — b;)
be a zero cycle with K -rational support which is disjoint from the support of D.
Choose a theta function © , corresponding to D and preimages a;, b} of a;, b; in
T'(K). Furthermore, definefor all y € T'(K) the vector (w1(y), ..., wn(y)) € @,
as the unique solution of the linear system of equations X;w;(y)p(xi(A;)) =
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p(xi(y)) for i = 1,...n. Then we have the following formula for Schneider’s
p-adic height pairing

(D, s, = o (TT92) 5™, (T1%) plen ()
9 MT,O’p 10 ; @D(b;) j:1 Vi ; b; 10 @D 7))
Proof. Immediate consequence of Corollary 4.8 and Theorem 4.13. O

If AisaTatecurve, and if

{ log, 0Nk /q, ifl =p,
p= .
log, o| |10 Ng/q, ifl#p,

we get the formula proven in [Sch], p. 408.

Finally, let us briefly compare our p-splitting 7 to the canonical p-splitting o,
in case (I11). First of all, the condition that p is A-invertible is not equivalent to
the divisibility condition in case (I11). But even if 7 and o, exist, we should not
expect them to coincide: As we have just seen, for continuous p: K* — Q,
our 7 gives rise to Schneider’s p-adic height pairing, hence the corresponding
height pairings do not even necessarily coincide on Tate curves, see [MTT], p. 34.
The relation between 7 and o, is the following: For any « € P(K) there exists
a certain preimage (o, y,2z) € K* x T(K) x T'(K) of z(mama) guch that
o,(x) = (mama)~p(a). Hence, by Theorem 4.13, the difference between o,
and 7 can be calculated viathe bilinear term involving M.

5. Thecanonical Mazur—Tate splitting in the Archimedean Case

Using the result of Néron which we recalled at the beginning of Section 3, one
can calculate Néron's local height pairing over an archimedean ground field via
theta functions. By transcribing our arguments in Section 4 from the rigid analytic
to the complex setting, we can do a bit more, namely prove a formula for Mazur
and Tate's canonical p-splitting in case (). From this we could reprove Néron's
expression for hislocal height pairing with arguments anal ogous to those we used
in Section 4.

So let A be an abelian variety over C of dimension n, such that A(C) = V/A
for some n-dimensional vector space V' and a lattice A in V. Let m: V' — A(C)
be the projection. Absolute values will from now on aways be complex ones. Let
p: C* — Y be ahomomorphism to an abelian group Y with p(c) = 0 whenever
lc| = 1. We define v(c) := log|c|. Recall from Section 1 that there is a unique
homomorphism »: R — Y such that r o v = p. Furthermore, there is a unique
continuous v-splitting o, of P(C), and the canonical p-splitting of P(C) equals
o, = r o 0,. Hence, in order to derive a formula for o, it suffices to treat the
case p = v. The canonical p-splitting in case |) does also exist if the ground field
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isR, not C, but as canonical p-splittings behave well under finite base changes, it
sufficesto treat the complex case.

According to [Mu2], p. 86, the uniformization of the dual abelian variety A’
can be described as follows: A'(C) = V'/A’, where V' = HoMe-aniilin (V, C), and
AN ={leV:Imi(\) €z fordl X e A}. Let n’ be the corresponding map
V' — A'(C), and let P be the canonical biextension of A and A’ by Gy, c. The
pullback of P(C) viar x 7": V x V! — A(C) x A'(C) isatrivial C* x V x V'-
torsor, since HX(V x V', 0*) = 1 (see[Mu2], p. 13). According to [Mu2], p. 86,
P(C) isthequotient of C* x V x V' for theaction of A x A’ given by

upy (@, 2,2") = (aexp(r[N(2) + 2/ () + Re(X' (V)]
—mi ImX (X)), A + 2z, N + 2),

foral (a,z,2') € C* xV x V'and (A\,\) € A x A’. After multiplying by an
element of C*, we can assume that the quotient map ¢: C* x V x V' — P(C)
maps (1,0y,0y7) to 1p/4(1a/c)- Asin 4.2 one can show that ¢ is amorphism of
biextensions. Definenow 7*: C* x V x V/ — R by

(0, 2,2") = v(a) — v(exp(nz'(2))).
Then we have

LEMMA 5.1. (i) 7* isav-splitting of the trivial biextensionC* x V' x V.
(i) 7* is continuous.
(iii) 7 isinvariant under the action of A x A’ given by u x)-
Proof. (i) and (ii) are obvious.
(i) We have
™ (u (@2, 7)) = v(@) + v(@pIrN(z) + 72/ (A) + 7 ReX (V)
—mi ImX (N)]) — v(exp[r (N + 2") (X + 2)])
= 7%(a, 2, 2") + v(exp[—2mi Im X (2)])
+v(exp[—27i Im N ())])

= T*(a7 Z? Z’)?

since ImX'(\) € 7, which leads to the vanishing of the third term. The second
term vanishes as | exp(—27i Im N (2))| = 1. O

From this we deduce immediately

THEOREM 5.2. Themap 7: P(C) — R given by

x+— 7, 2,2") = v(a) —v(exp[rs(2)]),
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where (a, z,2') € C* x V x V' isan arbitrary preimage of 2z € P(C) under ¢, is
a continuous v-splitting of P(C). Hence 7 is equal to the canonical v-splitting of
Mazur and Tate.
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