On Rational Solutions of x* +y’+ 2= R,
By H. W. RicamMoxND.
(Received 3rd January 1930. Read 7th February 1930.)

1. The earliest proof that every rational number () can be
expressed as a sum of cubes of three rational numbers (x, y, z), not
necessarily positive, was published in 1825 by S. Ryley, a school-
master of Leeds!: formulae were given for z, y, z in terms of a para-
meter, such that every value of the parameter led to a system of
values of z, y, 2z satisfying the above relation, and every rational
value of the parameter led to a system of rational values of =z, y, 2.
The later solutions referred to by Dickson are found to give the
same results as Ryley’s formula, as does another method, quoted in
a modified form by Landau? from a paper by the present writer.?
Thus it might almost be believed that Ryley’s century-old result
embodies all that is known with regard to the resolution of a
number into three cubes, and that his formula is unique. 1 propose
to examine the rationale of his method and the causes of its success;
it will then appear that an infinity of similar formulae exist, and that
one of them is at least as simple as his. It is convenient to state
Ryley’s formula, and the modification made by Landau, in section 2;
and to generalize the method in section 3.

Ryley’s Formula.

2. In order to obtain this special solution of

By =R, .. (i)
we write

u=x+y + z; v=Yy+2;
so that

R=(u—v)?P+@wv—20>+2=u®—3vu*—2%) + 302 (u —2)..... (ii)

1 L. E. Dickson, History of the Theory of Numbers, Vol. I, p. 726. Some further
information which I have discovered is to be found in the Messenger of Mathematics, 51
(1922), 172.

2 Vorlesungen iiber Zahlentheorie, Band 111, p. 216.
3 Proceedings of the London Mathematical Society (2) 21 (1922), 404-409.
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At this stage we restrict the values of z, y, 2, or of «, v, z by imposing
the condition that
ud—3v(ur—22) =0, ...... ... .0iunn (iii)

a condition which enables us, by substituting 6u for z, to express the
ratios w :v:z in terms of 8. It is best to avoid the symbol of
proportionality by introducing an undefined multiplier 2; so we write

u = 3h(1l — 62), v =h, z = 3h0 (1 — 6?%);
and with these values of u, v, z we find that
R =302 (u—z) = 9h3(1 — 0)2(1 + 6).

Replace the multiplier 2 by a new multiplier p = 3k (1 — 6), and
we arrive at the final algebraical result that, if z, y, z are determined

from
w—p(140); ve=—x,- 1 o L0004+ 0);
=Pp ’ _3/)1__0’ =p ’
then
2?4yt + 2 =ud — v (u? — 2% 4 30 (u —2) = L sl+0

3P 1%
With these values of u, v, 2z, and the derived values of z and y,
expressed in terms of 6 and p, the problem of making the sum of
the cubes of z, 9, z equal to R is reduced to finding the relation
between p and 6 which makes
3BR=p3(14+6)/(1—8);
we therefore substitute
6 = (3R -— p?)/ (3R + p?).

Landau modifies this by using a parameter ¢ = (1 4 68) /(1 — 6).

His equations are

u=12k¢ (¢ + 1); v =1k (¢ + 1)3; z=12k ¢ (¢ — 1);
R =72k ¢ (¢ + 1)8.
Replace the multiplier k by o = 6k (¢ + 1), and we find that, if

o $4=1)
TG

u = 20

: _ 1 :
¢+1’ v—€0(¢+1):

then x3+y3+z3=%o"¢.

In order to make the sum of the cubes of 2, y, z equal to R, we now

take
¢ = 3R/
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On substituting this value of ¢ we obtain values of %, v, z and
deduce values of x, ¥y as functions of o: the result is the same as
before, with o in place of p. Rational values of p and o lead to
rational values of z, y, z which satisfy the given equation (i).

Reasons why the Method is successful.

3. It will simplify matters if we regard homogeneous equations
in z, y, 2 as representing plane curves: when we have to deal
with equations such as (i) which are not homogeneous, we shall
regard z, y, z as cartesian coordinates in space; a homogeneous
equation will then represent a cone with vertex at the origin. There
need be no confusion.

Repeating the steps of the last section, we assume that z, y, z are
proportional to rational algebraic functions of a parameter, and write

z=hX(t); y=hY(t); z=hZ(t);, ........ (iv)

where at least one of the functions X (), Y (t), Z (¢) is of order three
and no one is of higher order. This implies that =, y, z are connected
by a homogeneous relation of order three which represents a cubic
curve having a double point. Substituting these values we find that

B4 yP FB=RF). ... (v)
The cubic curve
By +2=0 ... (vi)

meets the former cubic curve in nine points which correspond to the
values of ¢ for which F (¢) vanishes. It is true that in section 2 the
equation was of a lower order than nine, viz. three when expressed in
terms of the parameter 0, and seven in terms of ¢; but as usual this
means that the missing intersections lie at the point at which the
parameter is infinite: two cubics must have nine common points.
The form of F is the first crucial feature of the method, viz.

F)=K({t—a)f(t—b)20¢—¢); .ovevennnnn. (vii)
because of this we are able first to replace A by a new multiplier, s,

s=h(t—a)2(t—0), ... (viii)
so that

By +22=Ks*t—c)/(t—0); ....ein..... (ix)

we then make this expression equal to R by solving a linear equation
in f. The geometrical interpretation of all this is that we have
discovered a rational curve of order nine on the surface (i), the inter-
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section of (i) with a cubic cone whose vertex is the origin, and have
obtained expressions for the coordinates z, y, z of points on the curve
as rational algebralc functions of a parameter s. [What we have
done is to repeat the work of section 2 in terms of a generalized
parameter ¢ in place of 6,

t = (P60 -+ Q)/ (RO + 8)].

But, for the numerical applications we wish to make, something
more than this is demanded of our formulae. It is, if not essential,
at all events highly desirable that the coefficients in the functions
X (1), Y (t), Z (t) should be rational numbers,! because then a rational
value of ¢ leads to rational values of z, y, 2. If the coefficients in
X, Y, Z are rational numbers, so also are those of ¥ (¢). The forms
of the factors of F show that under these conditions a, b, ¢ must be
rational numbers; therefore the points of the first cubic at which ¢
has these values have rational coordinates. These points however
lie also on the second cubic (vi), and it is well known that only three
points on this curve have rational coordinates, viz. the three real
inflexions, whose coordinates are 1, —1, 0, in various orders. Of the
nine intersections of (iv) and (vi) six lie on (iv) where ¢ has the value
a, two where ¢ is b and one where ¢ is ¢; and each point is one of the
real inflexions of (vi). Now it is not possible to draw through nine
arbitrary points of (vi) a second cubic; through eight arbitrary points
of (vi) there pass a pencil of cubic curves, all of them having the
same ninth point in common with (vi). If the eight points are made
up of the inflexion at which t is a taken six times and that at which
t is b taken twice, the tangent at the former taken twice with that at
the latter taken once form one of the cubics of the pencil; the ninth
point at which ¢ is ¢ therefore coincides with the latter inflexion: and
this inference is confirmed if we express the coordinates of points on
(vi) by elliptic functions. That two different values of ¢ should give
the same point of (iv) is only to be accounted for by this point being
the double point which the cubie (iv) is bound to possess: as ¢ passes

1 It does not seem possible to make a more precise statement. Certain functions
having irrational coeflicients can be transfcrmed into functions having rational coeffici-
ents, and would therefore serve our purpose. But it is also to be noted that, although
coordinates of points of a cubic surface are generally expressible by rational algebraical
functions of two parameters, yet in a bipartite cubic surface real points do not corre-
spond to real parameters. It is not impossible that this irregularity in a matter of real
and unreal numbers should have a parallel in a matter of rational and irrational numbers.
Hence only a guarded statement can be made.
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through the value b we have a branch of (iv) which touches (vi); as ¢
passes through the value ¢ we have another branch which crosses it at
the same point.

Under the conditions that the functions X, Y, Z of (iv) shall
have rational coefficients, and that the function F shall factorize as
in (vii), the only solutions are those we have found. Six inter-
sections must lie at one inflexion, say at (0, —1, 1), and three either
at this or at another inflexion, say at (1, — 1, 0). The pencils of
cubics through the nine points are

o+ Yt 2= Ay +2)%;
2y 2= Ay + 2 (x4 y);

according as the second point of inflexion does or does not coincide
with the first. No member of the former pencil has a double point;
but in the latter, if A is 3, the cubic has a double point at (1, — 1, 0).
This is the one and only solution under the conditions stated, and
is seen to be Ryley’s solution. To this extent Ryley’s solution is
unique.

An Extension of the Method.

4, The method, however, imposes & quite unnecessary restriction
upon the functions X (¢), Y (f), Z (¢) when it is assumed that F (¢)
must contain! a linear factor raised to the sixth power. The whole
process is just as effective if

F(t)=K(t—a)®(t—a,)(t—0)*( —c)
and the new multiplier s which replaces % is defined by
s=h(t — a;) (t — ay) (¢t — b).

With equations (vii) and (viii) thus modified equation (ix) still holds,
and so on to the end,—with one difference. It is not necessary
for «, and a, to have rational values. The quadratic of which they
are roots must have rational coefficients, the line joining the corre-
sponding points of (iv) must have a rational equation, and the
third intersection of this line with (vi) must have rational coordinates,
i.e. must be one of the three real points of inflexion of (vi). We
therefore expect to obtain solutions similar to that of Ryley by

1 The functions X, Y, Z cannot be of lower order than three. Tt is supposed here
that they are of order three, but they might be of higher order.
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considering cubic curves which have 3-point contacts with (vi) at
two points collinear with an inflexion of (vi), and have a node
accounting for the remaining three intersections at another inflexion ;
that is, a double point at which one branch touches (vi).

A stmple Solution.

5. We may again suppose that the node is to lie at (1, — 1, 0) ;
the two 3-point contacts will be taken collinear with (0, — 1, 1).
Now 2 =0 is a line through the latter, and may be expected to
lead to a specially simple solution, worth investigating separately.
The line x = 0 meets (vi) in one real and two imaginary inflexions,
(0, — 1, 1), (0, — w, 1), (0, — w?, 1) ; and the tangents at the last two,
which have 3-point contacts, have the combined equation
yYP—yz+ 22 =0.
It follows that all the cubic curves of the pencil
Byt + 2 =A(x + y) (y* — yz + 2?)
have three 3-point contacts with (vi) at the three required points.
If X has the value 3, the curve has a double point at (1, — 1, 0), one
. branch touching (vi) there. Give A the value 3, and substitute
z=10(z +y);
a factor (x + y)? can be rejected, and we find that
z(l— 36+ 6%) =y (2 — 30 + 36% — 63).

We simplify this somewhat by writing 1— for 8; if we also introduce
a multiplier %, as was done in section 2, we find that the values

=h(1 4 gd); y=h(3p — 1 —y%); 2 =h (3 — 3y2) ...... (x)
make 23+ g3+ 28 = 93P (1 — o 4 ¢2)3.

We follow the procedurs of section 2 and introduce in place of % a
new multiplier s such that

s =3h(l — ¢ + §?):
then 2% 4 Y% 4 28 = 183y

In order to express a given rational number B as a sum of cubes of
three rational numbers, we take the value 3R/s® for ¢; every rational
value of s then gives a rational solution. The formula gives 2, y, 2
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explicitly and is not more involved than Ryley’s. Both are curiously
complicated and unsymmetrical in contrast to the given equation (i)
of which they are solutions.

A positive rational number is expressed as a sum of three positive
rational cubes by Ryley’s formula if the parameter lies between
certain limits. (See the paper referred to in footnote 3). With the
present formulae the limits are simpler and more easily determined.
The values of ¢ for which y vanishes are 2 cos (27/9), 2 cos (8#/9),
2 cos (147/9). For =z, y, z to be of the same sign, y must either lie
between 1 and 2 sin 10° or 0°34730, or between — 1 and — 2 cos 20° or
— 1'87938; these are the limits required.

A two-parameter solution of 2% 4 y* + 22 = R,

6. We shall now obtain the most general solution given by the
process sketched in section 4. We have to consider pencils of cubic
curves which have three-point contacts with (vi) at two points
collinear with one inflexion (0, — 1, 1), and another three-point
contact at a second inflexion (1, — 1, 0). Certain of these curves will
have nodes at the last point, and will enable us to express the
coordinates x, y, 2z, in terms of cubic functions of a parameter ¢ which,
substituted in (vi), will lead to an equation in ¢ of order nine
of the form

F(t) =K (2 + dt + e)3(t — b)2 (¢ — c).

It is convenient to use a letter @ to denote 2® + #® + 23 and to
work with

u=rx4+y+z;v=y+z, w=1x 4y,
rather than with «z, y, z. In terms of «, v, w, we find that
Q=+ ' + 2=+ 3vw(w+w—2u). .......... (xi)
Suppose that the two points of osculation collinear with
(0, — 1, 1) lie on the line u = pv; then the equation
Q@ — (u—pv)*=0

contains v as a factor; the remaining quadratic factor represents a
conic having three-point contact with @ = 0 at the two points
required. Multiplying this by w, the tangent at the second inflexion
(1, — 1, 0), we see that

3w__
[Q — (u—pop] L =0
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is a cubic curve (made up of a line and a conic) osculating @ = 0 at
the three required points, so that, as k varies, the equation

[Q — (u— po)T)— + k@ =0
gives us one of the pencils we have to consider. Expanding, we find
3w? (v+w—2u)+ 3pud w—3puvw + pPviw + kud + 3kvw (v+w—2u)=0,
and from this it is clear that the curve will have a node at the second
inflexion (1, — 1, 0) (at which » and w vanish) if 3k = — p3.

The curve of the pencil of cubics which will lead to a solution of
the given equation (i) is therefore

3[Q — (w— )] > —p?Q =0
or QBw —p*v)=3w(u —pv)3, .......... (xiiy

an unnecessary factor » occurring in the last. Expanded, the
equation is
v (9w? — 9puw — 3p3w? + 6p3 uw)—p*ud + 9put w—18uw? + Yu = 0.
In this we substitute # = fw and so express u, v, w as polynomials
in ¢, of orders not exceeding three, with a multiplier # in each for
convenience:
v=h(9 — 18f 4 9pi2 — p%¢?) ]
w=23h[(3p® — 2Pt + (P*—3)] } ... ... (xiii)
u = 3h[(3p* — 2p°) 1 4 (p° — 3) t]J

7. These equations are of the proper form, and contain two
parameters ¢ and p ; but they are complicated. To calculate @
it is best to use the result (xi), and this suggests certain simplifi-
cations. Thus we find

(Bw — p*v) = h (p*t — 3)3,
(u — pv) =h(p*t — 3) (p*t* — 6pt + 3p + 31),
Q = 9h*[(3p* — 2p*)t + (p*—3)] (p* ©® — 6pt + 3p + 31)%
Here @ has assumed a form to which the method used in Ryley’s
solution (and again in section 5) is applicable, namely a linear function

of ¢ multiplied by the cube of another function. We replace 2 by
a new multiplier g defined by

g = 3h (p*t* — 6pt + 3p + 3t);
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%, v, w, and from them =z, y, z, are expressed as rational fractions
in ¢ and p, each multiplied by the new multiplier g. With these
values of z, ¥, 2,

2+ g+ 2= 190 [(3p® — 2p0) ¢ + (5 — B)).

In order to make @ or x3 4 y3 + 2% have a given rational value R,
it is enough to give ¢ the value which makes the expression in square
brackets equal to 3R/g%. Substituting this value of ¢ throughout we
have values of z, ¥, 2 whose cubes have the sum R expressed in
terms of two parameters, p and g. Rational values of the parameters
give rational values of z, y, 2.

It is possible to present these equations in a better form. In
place of the parameter ¢ we may use s = p*t — 3; we may write p>h
for h, in order to avoid fractions, and use S to denote the quantity
in square brackets multiplied by three.

Then u=x+y+z=h(s+3)8;
v= y+z =h(EBS—s%;
w= xz+y =hp*S;
Q=2+ y¥+2° = 3h3p*S (S + s2)3;
where S=3[(8—2p)s+ (6 — 6p + p*].

But the interest of this result lies in the fact that a two-
parameter solution has been determined, rather than in the form
the solution takes. Every small convex area in the finite part
of the surface (1) contains points with rational coordinates (z, y, 2).
If any three positive numbers a, b, ¢ are chosen, values of «, ¥y, 2
satisfying (1) can be found for which the differences of z/a, y/b, z/c are
less than any assigned small number : (the same is almost always true
if one or more of a, b, ¢ are negative). But on the other hand
it must be noticed that the two-parameter solution is not a complete
solution: for all the values of z, y, z obtained are such that equation
(xii), or the expanded form of that equation which follows, is
satisfied by a rational value of p.
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