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Abstract

Let 7'(S) be the Teichmiiller space of a hyperbolic Riemann surface S. Suppose that u is an extremal
Beltrami differential at a given point 7 of 7(S) and {¢,} is a Hamilton sequence for u. It is an open
problem whether the sequence {¢,} is always a Hamilton sequence for all extremal differentials in 7.
S. Wu [‘Hamilton sequences for extremal quasiconformal mappings of the unit disk’, Sci. China Ser. A 42
(1999), 1033-1042] gave a positive answer to this problem in the case where S is the unit disc. In this
paper, we show that it is also true when § is a doubly-connected domain.
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1. Introduction

Let S be a Riemann surface whose universal covering surface is the unit disc {z€ C:
|z] < 1}, and let S be represented by a Fuchsian group I' acting on A as S = A/T". Let
QC(S) be the space of all quasiconformal mappings f from R to a variable Riemann
surface f(S). The Teichmiiller space T'(S) is the space of these mappings factored
by an equivalence relation. A quasiconformal mapping f in QC(S) can be lifted to a
quasiconformal mapping f from A onto itself. Two mappings, f and g, are equivalent
(and therefore their Beltrami differentials are called equivalent) if there exist lifts f, g
of f, g such that f agrees with g on dA. Let [f] or [u] denote the equivalence class of a
quasiconformal mapping f in QC(S ), where u is the Beltrami differential of f. Since
the Beltrami differential 4 uniquely determines the mapping f up to postcomposition
by a conformal mapping, the Teichmiiller space 7'(S) may be represented as the space
of equivalence classes of Beltrami differentials ¢ in the unit ball M(S) of the space
L>(S). The equivalence class of the Beltrami differential zero is the basepoint of
T(S).
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Given f € QC(S), let u € be the Beltrami differential of f. We define

ko([u]) = inf{|Vlleo = v € [}

A quasiconformal mapping f of S onto f(§) is said to be extremal in its class [f] if
its Beltrami differential u is extremal in [u], that is, ||u|| = ko([u]). Note that [u] may
contain more than one extremal element.

Let AT’) denote the Banach space of holomorphic quadratic differentials ¢ on

S = A/T with L'-norm
llglls = ff lp(2)| dx dy < .
s

Let A (I') denote the unit sphere of A(l'). In particular, we denote by A(1) the the
Banach space of integrable holomorphic quadratic differentials on A.

The following theorem due to Hamilton, KruSkal, Reich and Strebel is a
characterisation of extremal quasiconformal mappings (see [2]).

THEOREM A. A quasiconformal mapping [ of S is extremal if and only if its Beltrami
differential u has a so-called Hamilton sequence {¢, : ¢, € A (')} such that

lim ‘ f fS U(Da(2) dx dy| = [l

It is known that there exists at least a common Hamilton sequence formed by
Strebel differentials for all extremal differentials in [u] (see [1, 3]). Suppose u is an
extremal Beltrami differential in its class [u] and {¢,} is a Hamilton sequence for .
The following question was posed by Li in [3].

ProBrLEM. Is the sequence {¢,} always a Hamilton sequence for all extremal
differentials in [u]?

The problem is of interest only when 7(S) is infinite-dimensional. Up to now, we
have an affirmative answer, given by Wu [5], only when § = A.

THeOREM B. Let [u] be in T(A) where u is an extremal differential. Then a Hamilton
sequence {¢,} for u is a Hamilton sequence for all extremal differentials in [u].

The aim of this paper is to show that the answer is also positive when S is a
doubly-connected domain. Up to conformal mappings, we may assume that S is either
A* = A\{0} or a ring domain U, ={z€ C: 1 <|z| < r} for some r > 1.

TueoreM 1.1. Let S be a doubly-connected domain in the complex plane. Suppose
that u is an extremal Beltrami differential at a point T of T(S) and {¢,} is a Hamilton
sequence for u. Then the sequence {¢,} is a Hamilton sequence for all extremal
differentials in 1.
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2. Proof of Theorem 1.1

Let S =A/T be a doubly-connected domain. Suppose that f, g € [f] are two
extremal quasiconformal mappings from § onto f(S), g(S), respectively. Let u and
v be the Beltrami differentials of f and g, respectively. Let f and g be their lifts
such that fsa = glaa; accordingly, let z and v be the lifts of u, v, that is, they are the
Beltrami differentials of f, g, respectively. Since the covering transformation group
I" is an Abelian group generated by a conformal self-mapping of A, f and g are still
extremal in the class [f] by [4, Theorem 1].

It is well known that the lift i of u satisfies (as does V) the I'-invariance condition

(woyy/y =p forallyerl.
Let ¢ be an element of A(I") and 5(z) dz? be the lift of ¢. Then 5 satisfies

QY @P =¢(z), yel,zeA.

On the other hand, there exists a holomorphic quadratic differential ®(z) dz* € A(1)
such that the Poincaré series of @,

Ore() = ) eI P,

yel
is equal to 5 (see [2, Ch. 4, Theorem 3]). For every ¢ € A;(I'), define
1(¢) = inf{[|®l| : Or® = §, D € A(1)).

Since I' is also an infinite cyclic group, [4, Lemma 3] tells us that I(¢) = 1 for all
¢ € A ().

Now, assuming that {¢, : ¢, € A;(I")} is a Hamilton sequence for u, we need to
prove that

lim ‘ f fs WDu(2) dx dy‘ = Wl = ko([12).

Let Q be a fundamental region for I" in A. Let En dz? be the lift of ¢,. Then

f fs m2)pn(2) dx dy = f fg (2)$n(z) dx dy. 2.1)

Since I(¢,) = 1, we can choose ®,(z) dz* € A(1) such that Or®, = ¢, and

1

Dyl = 1 + 0(—) as 11— oo, 2.2)
n

We easily derive

[ 7p@dxay=Y, [[ ooy @P dxa

yell

= Z f f ()P, (2) dx dy = f f 1(2)P,(z) dx dy.
YQ) A

yell

2.3)
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Thus, combining (2.1)—(2.3),

lalle = lim f f U6, dxdy = lim f fA ) (2) dx dy
) n(z)
=1
PR ff HO T,

which indicates that {®,(z)/||®,|[»} is a Hamilton sequence for . Furthermore, by
Theorem B, it is also a Hamilton sequence for v. Therefore, by the same reasoning as
in deriving (2.3),

IMleo = lim ff (2) ) dx dy = lim ff 2@, (z) dx dy
n—e0 1Dalla
= lim Z ff V2)®D,(z) dx dy = hm Z H W)@, (Y)Y (2)]* dx dy
e 7Q)

yel' yell

= lim f f 2)Pn(z) dx dy = lim f f v(2)pn(2) dx dy,
n—oo Q n—oo S

that is, {¢,} is also a Hamilton sequence for v. This completes the proof of
Theorem 1.1.
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