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Abstract
A boundary-value problem for cell growth leads to an eigenvalue problem. In this
paper some properties of the eigenfunctions are studied. The first eigenfunction is a
probability density function and is of importance in the cell growth model. We sharpen
an earlier uniqueness result and show that the distribution is unimodal. We then show
that the higher eigenfunctions have nested zeros. We show that the eigenfunctions are
not mutually orthogonal, but that there are certain orthogonality relations that effectively
partition the set of eigenfunctions into two sets.
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1. Introduction

The pantograph equation is

y′(x)+ by(x)= λy(αx),

where b, λ and α are constants. This equation arises in several applications such as
light absorption in the Milky Way [2], a ruin problem [17], the collection of current
from an electric train [15, 27] and cell growth [18, 20]. Versions of this equation
for the retarded case (|α|< 1) were studied earlier in the context of q-equations (see
[1, 14]). The analysis of solutions to the pantograph equation and the asymptotics of
solutions as x→∞ is given in detail by Kato and McLeod [23] and also Iserles [22].
Complex versions of this equation were studied by Derfel and Iserles [13], among
others, and using the work of Oberg [26] and Fredrickson [16], the behaviour of
solutions in the complex plane was linked via complex dynamics to the existence of
natural boundaries [25, 29, 30].
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The pantograph equation has been generalized in several ways. Heard [21] studied
the equation with the functional argument αx replaced by the argument xα , and the
complex version of this modified equation was studied in [28]. Second-order versions
of the pantograph equation were studied in [24, 32, 33], and a matrix version was
considered by Carr and Dyson [8]. More recently, attention has turned to pantograph
equations with several functional arguments (see [7, 9]).

The pantograph equation is closely linked with problems in probability. Derfel [12]
developed probability-based methods for studying and interpreting this equation. The
applications to light absorption, the ruin problem and cell growth all require that the
solution y be a probability density function (pdf).

The original cell growth problem posed by Hall and Wake [18] is a boundary-value
problem involving the pantograph equation

y′(x)+ by(x)= bαy(αx),

where b > 0 and α > 1. The solution is required to satisfy

lim
x→0+

y(x)= 0, lim
x→∞

y(x)= 0, (1.1)

and since y must also be a pdf, it is also required that y(x)≥ 0 for all x ≥ 0, and that∫
∞

0
y(x) dx = 1. (1.2)

Hall and Wake [18] showed that this boundary-value problem is well posed: there
exists a unique pdf solution. Da Costa et al. [11] showed that the solution must
be unimodal. Properties of solutions have also been studied by Chang and Jau [10]
and Begg [5]. The model has been applied to tumour growth [3] and the growth
of plankton [4]. Recently, a multicompartment age-distribution model has been
developed by Begg et al. [6].

The original cell growth model was extended by Hall and Wake [19] to include the
case of exponential growth. In particular, the pantograph equation was generalized to
the form

y′(x)+ bxn y(x)= bαn+1xn y(αx),

where n is a nonnegative integer, and it was shown that there is a unique pdf solution to
the associated boundary-value problem. It is of interest to note that the condition y ≥ 0
for x ≥ 0 is nowhere imposed in the analysis of Hall and Wake for either boundary-
value problem. Indeed, it was shown that the positivity of y is a consequence.

The boundary-value problem can be recast as the eigenvalue problem

y′(x)+ bxn y(x)= λαnxn y(αx), (1.3)

where b > 0, α > 1 are constants, n is a nonnegative integer, and λ is a nonzero
eigenvalue parameter. The normalizing condition (1.2) is still imposed, but the
requirement of positivity for solutions is dropped. This problem was studied in [31],
where it was shown that there exists an infinite set of eigenvalues, {λm}, and a
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corresponding set of eigenfunctions, {ym}. The first eigenfunction in this analysis
corresponds to the pdf solutions obtained by Hall and Wake [18, 19]. The eigenvalues
are given by

λm = bαm(n+1)+1, (1.4)

for m = 0, 1, 2, . . . , and the eigenfunctions are given by

ym(x)= Km

(
e−bxn+1/(n+1)

+

∞∑
k=1

pk(λm)e
−bαk(n+1)xn+1/(n+1)

)
, (1.5)

where

Km = (n + 1)
(

b

n + 1

)1/(n+1)(
0

(
1

n + 1

))−1 ∞∏
k=0

(
1−

1

bα(k−m)(n+1)+1

)−1

(1.6)

and

pk(λm)=
(−1)kαkm(n+1)

α(n+1)k(k−1)/2
∏k

j=1(1− α
−(n+1) j )

. (1.7)

In this paper we study some of the properties of these eigenfunctions, particularly
the zeros and the location of relative extrema. We show that in some respects, such
as the distribution of zeros for eigenfunctions, the problem behaves like the classical
singular Sturm–Liouville problem. In other respects, however, the problem differs.
The eigenfunctions, for instance, do not form a mutually orthogonal set under the
weight function analogous to that for the Sturm–Liouville problem. Intriguingly, the
eigenfunctions do satisfy certain orthogonality relations that partition them into two
classes.

The first eigenfunction y0 is of particular interest because it corresponds to a pdf in
the cell growth model [19]. In the next section, we sharpen the uniqueness result given
in [19, 31] for this case. We then study analytically the shape of the solution and show
that the distribution must be unimodal. Some of the results of Section 2 can be adapted
to prove similar results for the higher eigenfunctions. In Section 3 we study properties
of the higher eigenfunctions, including the zeros and orthogonality relations.

2. The first eigenfunction

Let λ= λ0 = bα. It was shown in [31] (and in [19]) that the series (1.5) defining
the first eigenfunction y0 is a pdf that solves the boundary-value problem. In fact, it
was shown that y0(x) > 0 for all x > 0. It was also shown that if the class of solutions
is limited to functions y such that∫

∞

0
xn y(x) dx <∞, (2.1)

then the solution y0 is unique. The cell growth problem, however, makes sense without
condition (2.1). Indeed, condition (1.2) is the only integrability condition that can
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be imposed naturally from this model, and this raises the question of whether there
are pdf solutions to the boundary-value problem that do not satisfy (2.1). Here, we
are concerned with classical solutions to the problem that are at least continuously
differentiable on (0,∞) and continuous on [0,∞). The next result sharpens the
earlier uniqueness results and shows that any nonnegative solution to the boundary-
value problem must satisfy condition (2.1), and that the Dirichlet series solution (1.5)
is therefore unique.

THEOREM 2.1. Let λ= bα. Then there exists a unique solution to the boundary-value
problem (1.3) subject to (1.2) that is nonnegative on [0,∞).

PROOF. Equation (1.3) with λ= bα can be integrated to get

y(x)= b
∫ αx

x
ξn y(ξ) dξ. (2.2)

Note that the condition y(x)→ 0 as x→∞ implies that

lim
x→∞

∫ αx

x
ξn y(ξ) dξ = 0,

but this relation does not yield the Cauchy criterion.
Suppose that y is a nonnegative solution to the boundary-value problem.

Condition (1.2) implies that y ∈ L1
[0,∞), and integrating (2.2) from 0 to∞ gives∫

∞

0
y(ξ) dξ = b

∫
∞

0

∫ αξ

ξ

τ n y(τ ) dτ dξ.

Since y is nonnegative, the double integral must be absolutely convergent. Fubini’s
theorem shows that the order of integration can be changed; hence,∫

∞

0
y(ξ) dξ = b

∫
∞

0

∫ τ

τ/α

τ n y(τ ) dξ dτ = b
∫
∞

0

(
1−

1
α

)
τ n+1 y(τ ) dτ.

Condition (1.2) therefore shows that∫
∞

0
xn+1 y(x) dx =

α

b(α − 1)
,

and the comparison test thus shows that condition (2.1) must be satisfied. The
uniqueness of the solution thus follows by [31, Theorem 3.2]. 2

The remainder of this section is devoted to showing analytically that the probability
distribution y0 is unimodal. This result is also useful for studying the zeros of higher
eigenfunctions. We note that even for the simplest case (n = 0), the unimodal character
of the distribution has yet to be established, although the graphs of solutions strongly
suggest the result (see [18, 19]). The proof is somewhat lengthy and we break it
down into smaller, more digestible lemmas. We show a stronger result, namely that
y′(x)= 0 has a unique positive solution.
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LEMMA 2.2. The equation
y′0(x)= 0 (2.3)

has a finite number of positive solutions.

PROOF. We show first that the zeros of y0 on [0,∞)must be isolated. The function y0
can be regarded as a complex-valued function of a complex variable z. The Dirichlet
series that defines y0(z) is uniformly convergent in any compact subset of the half
plane 50 = {z : Re(z) > 0}. Weierstrass’ theorem shows that y0 is holomorphic in
50; consequently, y′0 is also holomorphic in 50. Conditions (1.1) and (1.2) preclude
y0 from being a constant function, and therefore y′0 is not identically zero in 50. The
identity theorem implies that the zeros of y′0 must be isolated, so that in particular the
zeros of y′0 that occur on the positive real axis must be isolated.

The above argument does not include the origin since y′0 need not be holomorphic
there. It may be that the origin is a limit point for zeros of y′0. To eliminate this
possibility, we note that y0(x) > 0 for all x > 0, and y(0)= 0. The function y′0 is
continuous on [0,∞), and hence there must be a number x1 > 0 such that y′0(x) > 0
for all x ∈ (0, x1). All the zeros of y′0 on [0,∞) must therefore be isolated.

Equation (1.5) shows that the derivative of the solution y0 is

y′0(x)=−bK0xn
(

e−bxn+1/(n+1)
+

∞∑
k=1

gk(x)

)
,

where b > 0, K0 > 0 and

gk(x)= O(e−bαk(n+1)xn+1/(n+1))

as x→∞. We thus have

y′0(x)∼−bK0xne−bxn+1/(n+1)

as x→∞, and consequently there is an x̂ > 0 such that y′0(x) < 0 for all x > x̂ . The
positive zeros of y′0 must therefore lie in the interval [0, x̂]. Since there are no limit
points for zeros in this interval, the Bolzano–Weierstrass theorem implies that the
number of zeros must be finite. The function y0 is smooth and positive on (0,∞), and
condition (1.1) implies that y0 must have at least one local maximum in this interval.
Therefore, there is at least one positive solution to equation (2.3). 2

LEMMA 2.3. Suppose that equation (2.3) has at least two positive solutions. Then
there is a solution ξ to equation (2.3) such that ξ > M1, where M1 denotes the smallest
positive value at which y0 has a local maximum.

PROOF. Lemma 2.2 shows that any positive solutions to equation (2.3) must be
isolated and that y0 must have at least one local maximum; consequently, there is a
smallest positive value M1 at which y0 has a local maximum. If x > 0 and y′0(x)= 0,
then equation (1.3) implies that

y0(x)= α
n+1 y0(αx). (2.4)
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Differentiating equation (1.3) gives

y′′0 (x)+ b(n − 1)xn−1(y0(x)− α
n+1 y0(αx))= bxn(αn+2 y′0(αx)− y′0(x)),

and equation (2.4) implies that

y′′0 (x)= bαn+2xn y′0(αx). (2.5)

Suppose that there are two positive solutions to equation (2.3). Then there is an
η 6= M1 such that y′0(η)= 0. If η > M1, then let ξ = η. Suppose that 0< η < M1.
The definition of M1 precludes any local extrema in (0, M1); hence, y′′0 (η)= 0.
Equation (2.5) shows that y′0(αη)= 0. Since y0 is positive for all x > 0 and α > 1,
equation (2.4) implies y0(η) > y0(αη); consequently, there must be a local maximum
between η and αη. Given that η < M1, we have αη > M1, so that we can choose
ξ = αη. 2

LEMMA 2.4. Suppose that y0 has a local maximum at M and that there is a solution
ξ to equation (2.3) such that ξ > M. Then there is an m > M at which y0 has a local
minimum.

PROOF. We first show that there is a τ > M such that y′0(τ )= 0 and y′′0 (τ ) 6= 0.
Suppose that there is no such point. Then y′0(ξ)= y′′0 (ξ)= 0, and equation (2.5)
implies that y′0(αξ)= 0. Therefore y′0(αξ)= y′′0 (αξ)= 0, so that y′0(α

2ξ)= 0. It
is clear that this argument can be repeated to establish an infinite sequence {αkξ} of
points that are solutions to equation (2.3). This, however, contradicts Lemma 2.2. So
there must be a τ > M such that y′0(τ )= 0 and y′′0 (τ ) 6= 0.

If y′′0 (τ ) > 0, then we can take m = τ . If y′′0 (τ ) < 0, then τ corresponds to a local
maximum and hence there must be a local minimum at some point m between M
and τ . 2

THEOREM 2.5. There exists a unique positive solution to equation (2.3). In
particular, the probability distribution function y0 is unimodal.

PROOF. Suppose that equation (2.3) has at least two positive solutions. Lemma 2.3
implies that there is a ξ1 > M1 that solves equation (2.3). Lemma 2.4 thus implies
that y0 has a local minimum at some point m1 > M1. Since y0 is positive and goes
to zero as x→∞, there must be another local maximum beyond m1. Let M2 denote
the closest point beyond m1 at which y0 has a local maximum. Then y′′0 (m1)≥ 0
and y′′0 (M2)≤ 0. Equation (2.5) implies that y′0(αm1)≥ 0 and y′0(αM2)≤ 0. The
continuity of y′0 thus indicates that there is a solution ξ2 to equation (2.3) in the interval
[αm1, αM2]. Equation (2.4), however, gives y0(m1) > y0(αm1), and therefore y0
must have a local maximum between m1 and αm1. The definition of M2 implies
that M2 < αm1; consequently, ξ2 > M2.

Lemma 2.4 can now be applied to M2 and ξ2 to establish the existence of another
local minimum at some point m2 > M2, and the argument used above can be applied to
show that there is another local maximum at some point M3 > m2 and a point ξ3 > M3
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that solves equation (2.3). It is clear that we can repeat this argument to establish the
existence of an infinite sequence {ξk} of points that are solutions to equation (2.3)
such that ξk→∞ as k→∞. The existence of such a sequence, however, contradicts
Lemma 2.2. We thus conclude that equation (2.3) has a unique positive solution. 2

The above result shows that y0 has a unique local maximum in (0,∞). The next
result gives bounds for the location of this maximum.

THEOREM 2.6. Let M denote the position of the maximum for y0 in (0,∞). Then

ν ≤ M ≤ αν, (2.6)

where

ν =

(
n + 1

b(αn+1 − 1)

)1/(n+1)

.

PROOF. Equation (2.2) gives

y0(M)= b
∫ αM

M
ξn y0(ξ) dξ ;

consequently,

y0(M)≤ by0(M)
∫ αM

M
ξn dξ = by0(M)(α

n+1
− 1)

Mn+1

n + 1
.

We thus get ν ≤ M . Since y0 is unimodal, y0(M/α)≤ y0(x) for all x ∈ [M/α, M].
Equation (2.2) therefore yields

y0

(
M

α

)
= b

∫ αM

M
ξn y0(ξ) dξ ≥ by0

(
M

α

)(
1−

1

αn+1

)
Mn+1

n + 1
,

which gives M ≤ αν. 2

3. Higher eigenfunctions

In this section we look at some elementary properties of the eigenfunctions ym for
m ≥ 1. We first show that the set of eigenfunctions is linearly independent, and then
we study the distribution of zeros and orthogonality properties.

THEOREM 3.1. The set {ym} is linearly independent.

PROOF. Suppose that the set is linearly dependent. Then there exist m ∈ N ∪ {0},
N ∈ N, mk ∈ N ∪ {0} and βk ∈ R, k = 1, 2, . . . , N , such that m 6= mk for all k, at
least one of the βk is nonzero, and

ym(x)=
N∑

k=1

βk ymk (x).
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Substituting the above expression into equation (1.3) with λ= λm gives

y′m(x)+ bxn ym(x)= λmα
nxn ym(αx)= λmα

nxn
N∑

k=1

βk ymk (αx),

and the definition of ymk gives

y′m(x)+ bxn ym(x)=
N∑

k=1

βk(y
′
mk
(x)+ bxn ymk (x))=

N∑
k=1

βkλmkα
nxn ymk (αx);

consequently,
N∑

k=1

βk(λm − λmk )ymk (x)= 0.

Now, λm − λmk 6= 0 for all k, and at least one of the βk is nonzero. We thus conclude
that the set {ymk } is linearly dependent. The above argument can be repeated N − 1
times to show that there is an m j , 1≤ j ≤ N , such that ym(x)= Bym j (x), where
B 6= 0. This now yields

B(λm − λm j )ym j (x)= 0.

Since ym j is not identically zero, we conclude that ym cannot be represented as a finite
linear combination of other eigenfunctions. 2

We now turn to the zeros of the eigenfunctions. Let δ1 be the operator defined by

δ1 y(x)=
∫
∞

x
ξn y(ξ) dξ.

The operator δ1 was introduced in [31] as a tool to prove uniqueness of the
eigenfunctions among a class of rapidly decaying functions. The eigenfunctions are
closely related through this operator.

THEOREM 3.2. For all m ≥ 1 and x ≥ 0,

−xn ym(x)=
Km

bKm−1
y′m−1(x). (3.1)

PROOF. The eigenfunctions are defined by the Dirichlet series in equation (1.5). The
uniform convergence of this series indicates that it can be integrated term by term. We
thus get

δ1 ym(x)=
Km

b

(
e−bxn+1/(n+1)

+

∞∑
k=1

pk(λm)

αk(n+1)
e−bαk(n+1)xn+1/(n+1)

)
.

Equations (1.4) and (1.7) yield

pk(λm)

αk(n+1)
= pk(λm−1),
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and therefore

δ1 ym(x)=
Km

bKm−1
ym−1(x). (3.2)

Differentiating both sides of equation (3.2) gives equation (3.1). 2

Equation (3.1) and Theorem 2.5 imply that y1 has only one positive zero. Let z1,1
denote this zero. Then y1(x) > 0 for x ∈ (0, z1,1), and y1(x) < 0 for x ∈ (z1,1,∞);
hence, y1 must have a local maximum in (0, z1,1) and a local minimum in (z1,1,∞).
This means that y2 must have a zero in each of these intervals. It may be, however,
that y1 has other local extrema, each of which would correspond to a zero for y2. The
next result precludes this possibility.

THEOREM 3.3. There exist precisely two positive solutions to y2(x)= 0. Let z2,1 and
z2,2 denote these solutions, with z2,1 < z2,2. Then

0< z2,1 <
z1,1

α
< z1,1 < z2,2. (3.3)

PROOF. The proof is along very similar lines to that of Theorem 2.5. In fact, the
arguments leading up to Theorem 2.5 can be applied to y1 to show that y′1(x)= 0 has
only one solution in (z1,1,∞). We thus focus on the zeros of y′1 in (0, z1,1).

The function y1 must have at least one local maximum in (0, z1,1). Let M1,1 be the
smallest value in this interval at which y1 has a local maximum. Suppose that there is a
pointw 6= M1,1 in this interval such that y′(w)= 0. For any x > 0 such that y′(x)= 0,
the analogues of equations (2.4) and (2.5) are

y1(x) = α
2(n+1)y1(αx), (3.4)

y′′1 (x) = bα2n+3 y′1(αx). (3.5)

In particular, y1(w) > 0 and therefore, by equation (3.4), y1(αw) > 0. We thus have
that αw < z1,1. The arguments used to establish Lemma 2.3 can be used to show that
there is a ξ > M1,1 such that y′(ξ)= 0, and the construction in the proof of Lemma 2.4
can then be used to establish the existence of a local minimum between M1,1 and z1,1.

Without loss of generality, we can assume that w corresponds to the largest
value in (0, z1,1) such that y1 has a local minimum. Equation (3.4) implies that
y1(w) > y(αw) > 0; hence, there is a local maximum at some point σ ∈ (w, αw). The
definition of w implies that σ must correspond to the largest value in (0, z1,1) at which
y1 has a local maximum. Since w corresponds to a local minimum, equation (3.5)
implies that y′1(αw)≥ 0. Similarly, we have y′1(ασ)≥ 0, so that y′1 must have a zero
at some point τ ∈ (αw, ασ). There are no local extrema in this interval and therefore
y′′1 (τ )= 0 so that, by equation (3.5), y′1(τ )= 0. We can repeat this argument any
number of times to get a sequence {αkτ } such that y′1(α

kτ)= 0 and αkτ < z1,1. For k
sufficiently large, however, αkτ > z1,1. This contradiction shows that y′(x) has only
one zero z2,1 = M1,1 in (0, z1,1). Since αz2,1 < z1,1 we have z2,1 < z1,1/α. Finally,
note that if y′1(z1,1)= 0, then equation (1.3) implies that y1(αz1,1)= 0 and therefore,
by Theorem 3.2, y′0 has at least two zeros, which contradicts Theorem 2.5. 2
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It is clear that the above arguments can be modified to show, for example, that y3
has precisely three positive zeros z3,1, z3,2, z3,3, and if z3,1 < z3,2 < z3,3, then

z3,1 <
z2,1

α
< z2,1 < z3,2 <

z2,2

α
< z2,2 < z3,3,

and that the pattern continues throughout the higher eigenfunctions. In summary, the
following result can be established.

THEOREM 3.4. The function ym , where m ≥ 1, has precisely m positive zeros.
These zeros correspond to local extrema for ym−1. The zeros of two consecutive
eigenfunctions are nested: if zm−1,1, zm−1,2, . . . , zm−1,m−1 and zm,1, zm,2, . . . , zm,m
denote the zeros of ym−1 and ym respectively, each arranged in ascending magnitude,
then

zm,1 < zm−1,1 < zm,2 < zm−1,2 < · · ·< zm,m−1 < zm−1,m−1 < zm,m .

Moreover, for j = 1, 2, . . . , m − 1,

zm, j <
zm−1, j

α
.

The above theorem shows that the position of the j th zero decreases rapidly as m
increases. In particular, for m > 1, the position of the first zero of ym satisfies

zm,1 <
z1,1

αm−1 .

Since z1,1 = M in Theorem 2.6,

zm,1 <
ν

αm−2 .

Sturm–Liouville problems in Hilbert spaces produce orthogonal families of
eigenfunctions, and it is natural to enquire whether the eigenfunctions defined by
equation (1.5) are orthogonal. For the boundary-value problem (1.3) subject to (1.2),
the weight function for the inner product is xn . Define the inner product by

〈 f, g〉 =
∫
∞

0
xn f (x)g(x) dx .

Note that, for all n, m ≥ 0, ym is a smooth function for x ≥ 0. Evidently,

ym(x)∼ Kme−bxn+1/(n+1)

as x→∞; hence,
y2

m(x)∼ K 2
me−2bxn+1/(n+1)

as x→∞. We thus see that
〈ym, ym〉<∞,
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so that the eigenfunctions can be regarded as elements of the real (weighted) Hilbert
space L2([0,∞), xn dx). Similar arguments show that

〈ym, y j 〉<∞,

for all m, j ≥ 0.
It turns out that the eigenfunctions do not form a mutually orthogonal family under

the above inner product; nonetheless, there are certain orthogonality relations that
partition the eigenfunctions into two sets.

THEOREM 3.5. For all m ≥ 0,

〈ym, ym+1〉 = 0, (3.6)

〈ym, ym+2〉 6= 0. (3.7)

PROOF. We first establish relation (3.6). Let u = ym and dv = xn ym+1 dx . Then
du = y′m and v =−δ1 ym+1; hence integration by parts yields

〈ym, ym+1〉 =

∫
∞

0
y′m(x)δ1 ym+1(x) dx,

where the boundary terms vanish by condition (1.1). Equation (3.2) gives

〈ym, ym+1〉 =
Km+1

bKm

∫
∞

0
y′m(x)ym(x) dx =

Km+1

2bKm
y2

m(x)

∣∣∣∣∞
0
= 0.

Relation (3.7) follows similarly. Let u = ym and dv = xn ym+2 dx . Then

du = y′m dx =−
bKm

Km+1
xn ym+1 dx

and

v =−δ1 ym+2 =−
Km+1

bKm
ym+1;

hence

〈ym, ym+2〉 = −
Km+1

bKm
ym(x)ym+1(x)

∣∣∣∣∞
0
−

∫
∞

0
xn y2

m+1(x) dx

= −

∫
∞

0
xn y2

m+1(x) dx 6= 0. 2

COROLLARY 3.6. For all m ≥ 0, if j ∈ N is odd, then

〈ym, ym+ j 〉 = 0;

if j ∈ N is even, then
〈ym, ym+ j 〉 6= 0.
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PROOF. Integration by parts gives

〈ym, ym+ j 〉 = −
Km Km+ j

Km+1Km+ j−1
〈ym, ym+ j−1〉. (3.8)

If j = 2k + 1, then the above relation can be applied k times to get

〈ym, ym+ j 〉 =3m, j 〈ym+k, ym+ j−k〉 =3m, j 〈ym+k, ym+k+1〉 = 0,

where 3m, j is a nonzero constant formed by the constants Ki . If j = 2k, then
relation (3.8) can be applied k times to get

〈ym, ym+ j 〉 = 3̂m, j 〈ym+k, ym+k〉,

where 3̂m, j is also a nonzero constant formed by the constants Ki . The above relation
shows that 〈ym, ym+ j 〉 6= 0. 2
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