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Abstract

We study the following model for a phylogenetic tree on n extant species: the origin
of the clade is a random time in the past whose (improper) distribution is uniform on
(0, ∞); thereafter, the process of extinctions and speciations is a continuous-time critical
branching process of constant rate, conditioned on there being the prescribed number n

of species at the present time. We study various mathematical properties of this model as
n → ∞: namely the time of origin and of the most recent common ancestor, the pattern
of divergence times within lineage trees, the time series of the number of species, the total
number of extinct species, the total number of species ancestral to the extant ones, and
the ‘local’ structure of the tree itself. We emphasize several mathematical techniques:
the association of walks with trees; a point process representation of lineage trees; and
Brownian limits.
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1. Introduction

There is a substantial literature on comparing data on different aspects of biodiversity or
macroevolution with the predictions of stochastic models. Available data range from time
series for the number of species to shapes of phylogenetic trees on extant species. While data-
motivated models are scientifically natural, a mathematical aesthetic suggests the following
approach: start with a stochastic model that serves as a ‘null hypothesis’ model, and compare
the properties of this pure-chance model with those derived from the data. Our focus will be on
formulating a model that does not incorporate specific conjectured biological hypotheses, and
on studying its mathematical properties. The use of such a model does not mean we believe
macroevolution really did proceed according to this particular model; rather, the ultimate goal
is to assess in what systematic way real phylogenetic trees differ from the predictions of a pure-
chance model. The model (Section 2) is neutral in the sense that speciations and extinctions
occur with equal probability. Placing a uniform prior on the time of origin of the process,
and conditioning to have a given number n of extant species, gives a model Tn for the past
macroevolution of a clade with n extant species that could in principle be compared with real
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Critical branching model 1095

data for such clades. Our results describe distributional properties of various aspects of the
tree Tn.

• The lineage tree, via exact formulae (Proposition 1), ‘global limits’ (Corollaries 1 and 2),
and ‘local limits’ (Corollaries 4 and 5).

• The time series of the number of species (Lemma 2), the maximum number of coexisting
species (Corollary 6), and the total number of extinct species (Corollary 7).

• The local limit structure of the complete phylogenetic tree (i.e. including extinct species),
relative to either a typical extant species (Proposition 4) or a typical extinct species
(Proposition 3).

• The joint distribution of the time of origin of the clade and the time of the most recent
common ancestor (Corollary 3), joint also with the number of species extant at the time
of the most recent common ancestor (Corollary 8).

• The number of extinct species ancestral to some extant species (Corollary 10).

Implicit in several formulae is that the model has high variability – several features may
vary wildly from one realization to another – and this suggests caution when arguing that some
given real-world phylogenetic tree could not have arisen by a chance process. We should
admit that the whole paradigm of studying n → ∞ asymptotics is rather unnatural, because
the model is biologically unrealistic for large n, but we can hope that the approximations
implicit in asymptotic results are qualitatively correct for smaller values of n. The authors’
website (www.stat.berkeley.edu/users/aldous/Research/Phylo/index.html) shows Monte Carlo
simulations for n = 8, 12, 20 with ten repetitions; these verify that numerical values are
broadly consistent with the asymptotic predictions, and vividly illustrate variability between
realizations.

In Section 6, we comment on other models in the literature.

2. Model and notation

Note 1. We use the traditional language of branching processes (individuals, children, births,
deaths) instead of the specific terms for evolution of species (species, daughter species, speci-
ations, extinctions).

Let T be a continuous-time critical branching process (CBP) starting with one individual.
In this process, each individual lives for an exponential time with rate λ, λ > 0, during which
it gives birth at times of an independent Poisson process with rate λ. After birth, individuals
behave independently of one another. We scale time so that λ = 1 and, thus, a time unit
represents the mean lifetime of an individual. Write NT (t) ≥ 0 for the number of individuals
alive at time t after the origin of T . A classical result [7, p. 480, Equation (10.4)] gives a
modified geometric distribution for this number:

P(NT (t) = 0) = t

1 + t
, P(NT (t) = n) = tn−1

(1 + t)n+1 , n ≥ 1. (1)

Write Tt,n for the process T originating at time t in the past and conditioned on having exactly
n individuals at the present time.
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Note 2. Within a process like Tt,n or Tn, we use the convention that ‘time s’ means time s

before the present. Thus, within Tt,n, the time parameter s decreases from t to 0, meaning that
time ‘increases’ from time t before present to the present time 0.

Let the time of origin of T have a prior that is uniform on (0, ∞). Then, for a fixed n ≥ 1,
let Tn denote the posterior distribution of T conditioned on having n individuals at the present
time. Rigorously,

P(Tn ∈ ·) =
∫ ∞

0 P(Tt,n ∈ ·) P(NT (t) = n) dt∫ ∞
0 P(NT (t) = n) dt

.

Using (1) and the calculus result
∫ ∞

0 sn−1/(1 + s)n+1 ds = 1/n, the distribution of Tn becomes

P(Tn ∈ ·) =
∫ ∞

0
P(Tt,n ∈ ·) ntn−1

(1 + t)n+1 dt. (2)

Within the random tree Tn, the ‘time of origin’T or
n is a random time and, by the formula above,

has density function

qn(t) = ntn−1

(1 + t)n+1 , t > 0. (3)

We refer to Tn and Tt,n as complete trees. In biological terminology, a complete tree records
the birth times of all the (extinct or extant) species in a clade, as well as the extinction times of
all the extinct species. A realization of a complete tree determines a realization of the lineage
tree of the extant species. This is the smallest subtree of the complete tree that contains all
the divergence times for pairs of lineages of extant species, without recording which ancestral
species contain the lineage. We let At,n and An denote the lineage trees of Tt,n and Tn,
respectively. The time parameter s within An decreases from the time T mrca

n of the most recent
common ancestor of the n extant species to the present time 0 (in biology, the lineage tree is
usually called the phylogenetic tree).

The continuous-time branching model Tt,n conditioned on having n extant individuals has
previously been explored in [17]. The technique of representing random trees as walks was used
to give an exact distribution for the lineage tree At,n (see Lemma 3 of [17]) via a convenient
‘point process representation’. It was also used to describe the distribution of the limit structure
of this tree (see Lemma 4 and Theorem 5 of [17]) via weak convergence of random walks
to Brownian motion. In the present paper we draw upon these results, in particular when
describing the distribution of the lineage tree An and its ‘global’ and ‘local’ limit structures. In
Section 3, we recall the result for the distribution of At,n from [17] and use it, together with the
distribution of the random time T or

n , to obtain the distribution of An. Later, in Section 5, we use
the representation [17] of the tree Tt,n by a contour process in order to derive the distributions
of various quantities associated with extinct species.

3. Point process representations of lineage trees

3.1. An exact description

The point process representation illustrated in Figure 1 is a useful exact description of the
lineage tree At,n. Consider an arbitrary lineage tree on n species. Draw this tree recursively
from the top down, at each lineage divergence point randomly choosing which branch is drawn
on the left and which on the right (see Figure 1, left-hand diagram). Label the extant species as
1, 2, . . . , n from left to right. Each divergence of lineages involves adjacent contiguous blocks
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Figure 1: The point process representation (right) of a lineage tree (left) on n = 10 species.

of species, say {i, i +1, . . . , j} and {j +1, j +2, . . . , k}, and occurs at some time s. The point
process representation consists of marks at coordinates (j + 1

2 , s) for each divergence.
The advantage of this method of representing the lineage tree is that we can clearly reconstruct

the tree from the coordinates {(i + 1
2 , si), 1 ≤ i ≤ n − 1} of the point process: each combined

lineage can be drawn upwards from the mark for its divergence as a vertical line. The distribution
of the point process thus specifies the distribution of the lineage tree.

Proposition 1. (Lemma 3 of [17].) Fix an n ≥ 2 and a t > 0. The point process

{(i + 1
2 , hi), 1 ≤ i ≤ n − 1},

where the (hi) are independent and identically distributed with density function

ft (s) = (1 + t−1)(1 + s)−2, 0 < s < t, (4)

represents the lineage tree At,n within the complete tree Tt,n.

By (2), the lineage tree An has a mixture representation

P(An ∈ ·) =
∫ ∞

0
P(At,n ∈ ·)qn(t) dt, (5)

where qn(t) is the density function (3) of T or
n . We can obtain exact formulae for various

attributes of An. Consider, for instance, the number of lineages at time s. Because each
divergence creates one extra lineage, it is clear that within At,n this number of lineages is
distributed as

1 + binomial(n − 1, F̄t (s)),

where

F̄t (s) =
∫ t

s

ft (u) du = t − s

t (1 + s)
.
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In the lineage tree An, the distribution of the number of lineages is the mixture of binomial
distributions implied by (5). The exact distribution of the time T mrca

n for An is

P(T mrca
n ≤ s) =

∫ ∞

0
(1 − F̄t (s))

n−1qn(t) dt

=
∫ s

0
qn(t) dt + n

(
s

1 + s

)n−1 ∫ ∞

s

(1 + t)−2 dt

=
∫ s

0
qn(t) dt + nsn−1

(1 + s)n
, s > 0.

Taking the derivative with respect to s shows that T mrca
n has density

fT mrca
n

(s) = n(n − 1)sn−2

(1 + s)n+1 , s > 0.

In particular,

E[T mrca
n ] =

∫ ∞

0
sfT mrca

n
(s) ds = (n − 1)

∫ ∞

0
qn(s) ds = n − 1. (6)

We thank a referee for pointing out this elegant formula. In this paper, we mainly focus on
asymptotic results rather than seeking more complicated exact formulae for other quantities. It
is useful to distinguish two kinds of asymptotics: global limits, which refer to asymptotics for
times of order n, and local limits, which refer to asymptotics for times of order 1.

3.2. The global limit point process

From (3), we calculate that if tn/n → t > 0, then

nqn(tn) = n2

(1 + tn)2

(
1 − 1

1 + tn

)n−1

→ t−2e−1/t .

The limit is the density function of the inverse exponential IE(1) distribution, that is, the
distribution of 1/ξ for a random variable ξ with an exponential(1) distribution. We summarize
this in the following lemma, where ‘

d−→’ denotes convergence in distribution.

Lemma 1. As n → ∞, n−1T or
n

d−→ T or, where the limit T or has an IE(1) distribution.

Now reconsider Figure 1. To obtain a global limit, we need to rescale both time and the
left-to-right positions of the marks by a factor of n so as to fit the latter into a unit interval
[0, 1]. Thus, the original point process of marks {(i + 1

2 , si), 1 ≤ i ≤ n − 1} is rescaled
to {((i + 1

2 )/n, si/n), 1 ≤ i ≤ n − 1}. Given Proposition 1, the relevant result is that
n2ftn(sn) → s−2 as sn/n → s > 0 and tn/n → t > 0. The following limit behavior is
intuitively clear.

Corollary 1. (Lemma 4 and Theorem 5 of [17].) Let tn/n → t > 0. The rescaled point
process {((i + 1

2 )/n, hi/n), 1 ≤ i ≤ n − 1} associated with the lineage tree Atn,n converges
in distribution to the Poisson point process π1,t whose intensity measure is ν(dl × ds) =
dls−2 ds1[0,1]×(0,t).

The limit process π1,t (illustrated in Figure 2) has an infinite number of points close to the
lower boundary, but weak convergence on the open interval (0, t) means convergence over
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Figure 2: The point process π1,t (right) represents the lineage tree of a ‘continuum tree’ of species (left).

regions away from this boundary. Figure 2 indicates visually how the Poisson point process
limit defines a limit random tree that is a kind of ‘continuum tree’ [2] with a lineage for each
real l ∈ (0, 1).

The mixture representation (5) and Corollary 1 immediately imply a global limit theorem
for An. To state it, let the random time T or have an IE(1) distribution. Define a Cox point
process π1 on (0, 1) × (0, ∞) as follows: given that T or = t , let π1 be a Poisson point process
with the law of π1,t .

Corollary 2. The rescaled point process {((i + 1
2 )/n, si/n), 1 ≤ i ≤ n − 1} associated with

the lineage tree An, considered jointly with T or
n , converges in distribution to the Cox point

process π1, considered jointly with T or.

Here is a brief application of this global limit theorem.

Corollary 3. The limit joint behavior of T or
n and T mrca

n is given by

(n−1T or
n , n−1T mrca

n )
d−→ (T or, T mrca),

where the limit law has the joint density

fT or,T mrca (t, s) = t−2s−2e−1/s, 0 < s < t.

The marginal density of the random time T mrca is

fT mrca (s) = s−3e−1/s, s > 0.

The limit joint distribution can alternatively be expressed as

(T or, T mrca)
d=

(
1

ξ1
,

1

ξ1 + ξ2

)
,

where ξ1 and ξ2 are exponential(1) independent, identically distributed random variables, and
‘

d=’ denotes equality in distribution.
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Proof. Corollary 2 implies the required convergence in distribution to the limit (T or, T mrca),
in which T mrca is defined as the maximum height (that is, maximum second coordinate) of any
point of π1. Given that T or = t , the process π1 is distributed as a Poisson point process π1,t

with intensity measure ν(dl × ds) = dls−2 ds1[0,1]×(0,t). Therefore, for the conditional law of
T mrca given T or = t , we have

P(T mrca ≤ s | T or = t) = P({π1,t ∩ [0, 1] × (s, t)} = ∅)

= exp

(
−

∫ t

s

u−2 du

)

= e1/t−1/s, 0 < s < t.

Hence,

P(T mrca ≤ s, T or ∈ dt) = e1/t−1/s P(T or ∈ dt) = t−2e−1/s dt, 0 < s < t,

implying the joint density formula. The remaining calculations are straightforward.

Note 3. It follows that E[T mrca] = 1, var[T mrca] = ∞, and E[T or] = var[T or] = ∞.
Different realizations of the lineage tree An vary greatly from one another.

3.3. The local limit point process

There is a different limit regime in which time is not rescaled. This limit tells us the local
structure of the lineage tree relative to a given typical species, where ‘local’ refers to lineages
merging with the given lineage within bounded time. Given Proposition 1, the relevant result
is that

ftn(s) → f (s) := (1 + s)−2, 0 < s < ∞, as tn → ∞.

Consider the point process on (Z+ 1
2 )× (0, ∞) consisting of points {(i + 1

2 , ηi), i ∈ Z}, where
(ηi)i∈Z are independent and identically distributed with density f (s) = (1 + s)−2. This point
process (illustrated in Figure 3) defines an infinite tree A∞ on an infinite set of lineages labeled
by Z.

Proposition 1 and the calculation above clearly imply the first assertion of the following
corollary; the second assertion follows from the mixture representation (5), because in the local
limit the mixing makes no difference.

Corollary 4. Let tn → ∞ and let Un be uniform random variables on {1, 2, . . . , n}, inde-
pendent of Atn,n. Write {(Un + i + 1

2 , s
Un+i

), i ∈ Z} for the point process associated with the
lineage tree Atn,n, centered at lineage Un, where sj = 0 for those j outside [1, n]. Then as
n → ∞, this point process converges in distribution to the point process {(i + 1

2 , ηi), i ∈ Z}
defining A∞. The same result holds for An.

Informally, the structure of A∞ around lineage 0 provides an asymptotic approximation to
the structure of An around a random lineage.

3.4. Some local calculations

We next give some elementary calculations within A∞ that reflect the approximate behavior
of the lineage trees An for large n. For a lineage at time s, we call the present (t = 0) number
of species descending from this lineage the size of the lineage. We call the n → ∞ limit of
n−1 × (number of lineages in An at time s) the density of lineages in A∞ at time s.
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Figure 3: A realization of a part of A∞ that approximates the local structure of An for large n (the two
main ancestral lineages diverged at around time t = 16).

Corollary 5. (Some calculations for A∞.) (a) The density of ancestral lineages at time s in
the past equals (1+ s)−1, and the size of a random lineage at time s has a geometric((1+ s)−1)

distribution.

(b) The rate of lineages merging as s increases (i.e. as time runs backwards) is m(s) = 2(1+s)−1

and, given that this event occurs at s for some lineage, the size of the lineage it merges with
has a geometric((1 + s)−1) distribution.

(c) As s decreases (i.e. as time runs forward), the rate at which a lineage of size k ≥ 1 branches
is bk(s) = (k − 1)(s(1 + s))−1 at time s, and the size of the lineage produced on the left of the
branch-point has a uniform distribution on {1, . . . , k − 1}.

Proof. (a) The density of ancestral lineages at time s in the past is just the density of branch-
points at times greater than s, given by

G(s) =
∫ ∞

s

f (u) du = (1 + s)−1.

Hence, the number of extant species descended from a ‘typical’ lineage at time s has a
geometric((1 + s)−1) distribution

ps(i) =
(

1

1 + s

)(
s

1 + s

)i−1

, i ≥ 1,

as this is the distribution of distances between branch-points at heights greater than s.

(b) As s increases (i.e. as time runs backwards), the probability of a lineage merging with
another lineage is

m(s) = 2
f (s)

G(s)
= 2

1 + s
.

This holds because such a merging occurs in [s, s + ds] when one of the two branch-points
separating the given lineage from its neighboring lineages, which must be at a height greater
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than or equal to s, occurs during [s, s + ds]; this event has probability f (s) ds/G(s) for each
branch-point. Moreover, if a lineage merges at s then (independent of the size of the first
lineage) the size of the second lineage has the geometric((1 + s)−1) distribution above.

(c) As s decreases (i.e. as time runs forwards), the unconditional rate of mergers of clades of
sizes k1 and k2 at time s (per unit time, relative to number of species) equals

G(s)(1 − G(s))k1−1f (s)(1 − G(s))k2−1G(s),

which we derive by considering the heights of branch-points required for this event to occur.
Similarly, the number of size-(k1 + k2) lineages at time s, relative to the number of species,
equals

G(s)(1 − G(s))k1+k2−1G(s).

The rate of splitting of a size-(k1 + k2) lineage into two lineages of sizes k1 and k2 therefore
equals

G(s)(1 − G(s))k1−1f (s)(1 − G(s))k2−1G(s)

G(s)(1 − G(s))k1+k2−1G(s)
= 1

s(1 + s)
.

Thus, if a lineage is of size k then at time s the stochastic rate of branching is bk(s) =
(k − 1)/[s(1 + s)]. Since the rate of splitting is independent of the choice of partition of k

into k1 and k2, the size of a left-hand side subclade lineage is uniform on {1, 2, . . . , k − 1}.

4. Time reversal and consequences

Recall that for a stationary Markov process, its time-reversal is also a stationary Markov
process. For a Markov process that is not stationary, or which is conditioned on a terminal
value, the time-reversal is typically inhomogeneous. Lemma 2, below, highlights a special
feature of our processes.

In the critical branching process underlying our model (see Section 2), the population size
is the continuous-time Markov chain with transition rates

qi,i+1 = qi,i−1 = i. (7)

Recall the definition of the complete tree Tn. Write {Nn(s), T or
n ≥ s ≥ 0} for the associated

process that counts the number of species at time s before present (regard this process as making
the transition 0 → 1 at time s = T or

n ).

Lemma 2. Let {N̂n(s), 0 ≤ s ≤ T 0
n } be the continuous-time chain with transition rates given

by (7) and N̂n(0) = n, run until the first hitting time T 0
n at state 0. Then

{Nn(s), T or
n ≥ s ≥ 0} d= {N̂n(s), 0 ≤ s ≤ T 0

n }
and, so, in particular, T or

n
d= T 0

n .

Proof. We will verify that {N̂n(s), 0 ≤ s ≤ T 0
n } is the time-reversal of the population size

process by checking probabilities of primitive events. Fix s0, . . . , sM with sM > sM−1 > · · · >

s1 > s0 = 0 and positive integers kM = 1, kM−1, . . . , k1 = n with |km − km−1| = 1. Set
kM+1 = 0. The event

{as s decreases, Nn(s) jumps from km+1 to km during [sm, sm + dsm]
(for all m, M ≥ m ≥ 1), and makes no other jumps}
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has measure

dsM ×
2∏

m=M

(e−km(sm−sm−1)km dsm−1) × e−k1s1 ,

where the first term, dsM , comes from the uniform Bayes prior. For the reversed process, the
event

{as s increases, N̂n(s) jumps from km to km+1 during [sm, sm + dsm]
(for all m, 1 ≤ m ≤ M), and makes no other jumps}

has probability
M∏

m=1

(e−km(sm−sm−1)km dsm).

By inspection, the first measure is exactly 1/n times the second probability, so, after condition-
ing, the probability measures are equal.

We now observe two simple consequences of this time-reversal identity. The process
{N̂n(s), 0 ≤ s ≤ T 0

n } is a martingale with steps of ±1 started at n and let run until 0 is hit.
Hence, by the exit place formula for such martingales,

P
(

max
0≤s≤T 0

n

N̂n(s) ≥ c
)

= n

c
, c ≥ n.

Lemma 2 therefore implies the following corollary.

Corollary 6. For the process {Nn(s), T or
n ≥ s ≥ 0},

P
(

max
T or

n ≥s≥0
Nn(s) ≥ c

)
= n

c
, c ≥ n.

Furthermore, every extinction within the process Tn corresponds to a downwards step in
Nn(s) as s decreases, and, hence, to an upwards step in N̂n(s) as s increases. The number of
such upward steps equals (Dn − n)/2, where Dn is the number of steps of the embedded jump
chain of N̂n(·), which is just a discrete-time simple symmetric random walk.

Corollary 7. Within the model Tn of a clade on n extant species, the total number Next
n of

extinct species is distributed in the same way as (Dn − n)/2, where Dn is the hitting time at 0
of a simple symmetric random walk started at n. In particular,

n−2Dn
d−→ 1

2τ1,

where τ1 is the first passage time from 1 to 0 of a standard Brownian motion with density
function

fτ1(x) = (2πx3)−1/2e−1/(2x), 0 < x < ∞.

The second assertion follows, of course, from the weak convergence of a simple random
walk to a Brownian motion.
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Figure 4: A realization of a tree Tt,n with n = 6 extant individuals (labeled {2, 4, 5, 12, 13, 14}), and its
contour process representation C(u).

5. Exploiting the contour process

The results so far answer some, but not all, questions we might ask about the complete tree
Tn and the lineage tree An. For instance, the rescaled limit as n → ∞ of the time-reversed
process {N̂n(s)} in Lemma 2 is the well-known Feller branching diffusion, which therefore is
the limit of the total population size process {Nn(s), T or

n ≥ s ≥ 0}. However, this does not tell
us anything about the relationship between {Nn(s)} and the lineage tree An. We might also
be interested in questions about the number of extinct species, for instance the total number or
the number alive at the time of the most recent common ancestor of the extant species. All of
these matters, as well as the local limit structure of the complete tree, can be studied using a
representation of a tree given by its contour process.

5.1. The contour process

For any deterministic population process in continuous time, starting at the birth of a single
individual there is a particular representation of its family history as a rooted planar tree
(illustrated in Figure 4). Each individual is represented by an edge whose length equals the
individual’s lifetime. The birth of an offspring corresponds to a branch-point in its parent’s
edge, and the length of the parent’s edge up to this branch-point equals the age of the parent at
this offspring’s birth time. From the branch-point, the offspring’s edge is drawn to the right of
the parent’s edge. (In Figure 4, the tree edges have been drawn as solid vertical lines and the
branch-points have been indicated by horizontal dotted lines.) If the total population is finite
then we can label the individuals in a ‘depth-first’ search order.

Associated with such a rooted planar tree is its contour process, defined as follows (this idea
goes back to Neveu and Pitman [14], and a recent survey is given in [16]). The contour process
C(u) is a continuous function giving the distance from the root at time u in a unit-speed, depth-
first walk around the tree. Such a walk starts at the root, and completely traverses each edge once
upwards and once downwards, following the depth-first order (intuitively, clockwise around
the edges of the tree), ending back at the root. The contour process consists of alternating line
segments of slopes +1 (‘rises’) and slopes −1 (‘falls’). The convention of unit speed implies
that heights in the contour process match the times in the population process; birth and death
times are respectively matched by the local minima and local maxima of the contour process.
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5.2. Contour process of a critical branching tree

Recall that T denotes the continuous-time critical branching process started with one
individual at time 0 and continued until extinction. The next result, due to Le Gall [11] and
Neveu and Pitman [14], gives a simple description of the contour process of T .

Proposition 2. In the contour process of T , the sequence of rises and falls

(ξ1, −ξ2, ξ3, −ξ4, . . . , ξM−1),

which excludes the last fall, has a distribution derived from a sequence (ξi)i≥1 of independent
exponential(1) variables, for

M := min{m : ξ1 − ξ2 + ξ3 − ξ4 + · · · − ξm < 0}.
We call this contour process (ξ1, −ξ2, . . . , ξM−1) an ERW excursion: an excursion of an

exponential random walk. Accordingly, we call the infinite sequence (ξ1, −ξ2, ξ3, −ξ4, . . . )

an ERW process. Note the brief proof of the following classical result.

Lemma 3. Let H be the maximum height in an ERW excursion, or, equivalently (by Proposi-
tion 2), the extinction time of T . Then P(H > h) = (1 + h)−1, 0 < h < ∞.

Proof. This follows directly from the law of the population size process of T given in (1).
The extinction time of T is greater than h if and only if the population size of T at time h is
strictly greater than 0, which by (1) has probability 1 − h(1 + h)−1 = (1 + h)−1.

Before proceeding to new results, let us give the proof, from [17], of Proposition 1, because
our arguments in subsequent sections will use similar ideas. Fix t > 0 and n ≥ 2. Condition
the contour process C(·) to have exactly n upcrossings over height t (see Figure 4). This gives
the contour process of the random tree (T +

t,n, say), which is the CBP conditioned on there being
exactly n individuals alive at time t . This T +

t,n is the same as our model Tt,n, except for the
convention regarding the direction of the time parameter and the fact that, in Tt,n, the process
terminates with the n individuals extant at the present time, whereas, in T +

t,n, the process of
descendants of these n individuals continues until extinction. The latter difference plays no
role in the following argument. The height of the minimum between each pair of successive
upcrossings in Figure 4 matches the divergence of lineages (i.e. the branch-point) of that pair of
extant individuals. Marking these heights at regular horizontal interval spacings gives the point
process At,n exactly as in Figure 1, except for a reflection of the vertical time-scale. Since C(·)
is strong Markov and stationary, the parts of an ERW excursion between a downcrossing of t and
the next upcrossing of t are mutually independent, and are distributed in exactly the same way as
the reflection of the original ERW excursion conditioned not to have height greater than t . Thus,
these heights of lineage divergence, when measured on the reflected time-scale (i.e. downwards
from t), are distributed in the same way as the maximum height H in Lemma 3 conditioned on
{H < t}. This conditioned distribution is the distribution (4), proving Proposition 1.

5.3. Species numbers at the time of most recent common ancestor and weak convergence
of the contour process

Recall that Nn(T
mrca
n ) denotes the number of species alive at the time of the most recent

common ancestor. In the contour process, the number of species at any time s after its origin is
the number of upcrossings (which equals the number of downcrossings) of the contour process
at height s. If the time since the origin of Tn is T or

n = t , then the contour process has n
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t

t − s

ut − s ut dt − sdt

Figure 5: The contour process: certain parts in the intervals [ut−s , ut ] and [dt , dt−s ] represent the number
of species alive at the time of the most recent common ancestor.

upcrossings and downcrossings at height t . If the time of the most recent common ancestor is
T mrca

n = s, then the maximal depth of the subexcursions below height t , measured away from
t , is s (see Figure 5). The lineage divergence of the most recent common ancestor is the lowest
local minimum between the first and last upcrossing of t and occurs at height t − s.

In the contour process, mark by us the horizontal coordinate of the first upcrossing of a
height s, and mark by ds the coordinate of the last downcrossing of this height. As shown
in Figure 5, there are no upcrossings or downcrossings of t − s before the first upcrossing of
t − s or after the last downcrossing of t − s. If t − s is the height of T mrca then there are
no up- or downcrossings of t − s between the first upcrossing of t and the last downcrossing
of t . Hence, Nn(T

mrca
n ) is the number of upcrossings of t − s between ut−s and ut plus the

number of downcrossings between dt and dt−s . Since the contour process is an ERW excursion
conditioned to have n upcrossings and downcrossings at height T or

n , we can now perform the
following calculation.

Lemma 4. Conditional on (T or
n , T mrca

n ) = (t, s), Nn(T
mrca
n ) is distributed as a sum of two

independent geometric(pn) random variables, where

pn = 1 − t − s

1 + t − s

s

1 + s
.

Proof. Since the contour process C(·) is strong Markov and stationary, the increment of the
process between the first upcrossings ut−s of t − s and ut of t , that is,

C(u) − (t − s), ut−s ≤ u ≤ ut ,

is distributed in the same way as an ERW process conditioned to reach height s before it
reaches depth −(t − s), and stopped when it first hits s. Since C(·) has the same law when its
u coordinate is run in reverse, the part of the contour process between the last downcrossings
dt of t − s and dt−s of t (when run backwards in the u coordinate), that is,

C(u) − (t − s), dt−s ≥ u ≥ dt ,
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is also distributed in the same way as an ERW process conditioned to reach height s before
it reaches a depth −(t − s), and stopped when it first hits s. Additionally, these two parts of
the contour process are independent. The probability that an ERW process reaches s before it
reaches −(t − s) is, by the law of maximum height H in Lemma 3,

P(H > s)

P(H > s) + P(H > t − s) − P(H > s) P(H > t − s)
= 1 + t − s

1 + t
.

The probability that an ERW process makes k upcrossings of 0 before it first hits s, provided
that its height stays below s and its depth above −(t − s), is

(P(H < t − s) P(H < s))k−1 P(H > s) =
(

t − s

1 + t − s

s

1 + s

)k−1 1

1 + s

for k = 1, 2, . . . . Hence, the number of upcrossings of t − s that C(u) makes during [ut−s , ut ]
has a

geometric

(
1 − t − s

1 + t − s

s

1 + s

)

distribution.

Since, by Corollary 3, (n−1T or
n , n−1T mrca

n )
d−→ (T or, T mrca), as n → ∞ we have

npn = 1 − T or
n − T mrca

n

1 + T or
n − T mrca

n

T mrca
n

1 + T mrca
n

d−→ 1

T or − T mrca + 1

T mrca .

Hence, the two geometric(pn) variables in Lemma 4, when rescaled by n−1, converge to
two independent exponential(λ(T or, T mrca)) variables, where λ(t, s) = (t − s)−1 + s−1.
Consequently, the conditional law of n−1Nn(T

mrca
n ) given (T or

n , T mrca
n ) converges to a gamma-

distributed variable with shape parameter 2 and scale parameter λ(T or, T mrca). Combining this
with the result of Corollary 3 establishes assertion (8) of the following corollary.

Corollary 8. The joint limit behavior of T or
n , T mrca

n , and Nn(T
mrca) is given by

(n−1T or
n , n−1T mrca, n−1Nn(T

mrca
n ))

d−→ (T or, T mrca, Nmrca),

where the limit has the joint density

fT or,T mrca,Nmrca (t, s, r) = t−2s−2λ(t, s)2r exp

(
−1

s
− λ(t, s)r

)

= (t − s)−2s−4r exp

(
−1

s
− tr

s(t − s)

)
, 0 < s < t, 0 < r. (8)

The marginal density of Nmrca is

fNmrca (r) = 2(1 + r)−3, r > 0.

The marginal density formula follows from (8) via a calculus exercise.

Note 4. Observe that E[Nmrca] = 1 and var[Nmrca] = ∞, further indicating the high variability
between tree realizations in our model.

Note 5. In the limit tn/n → t ∈ (0, ∞), after rescaling the contour process of Ttn,n (illustrated
in Figure 5) converges to a Brownian excursion conditioned on the total local time (i.e. the
occupation measure) at height t being equal to 1. Results like Corollary 8 may be reinterpreted
as providing exact formulae for quantities defined in terms of such conditioned Brownian
excursions.
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5.4. Extinct species

Textbooks on evolution often contain comments to the effect that [15, p. 24] ‘the probability
that a given fossil is actually part of an ancestral lineage [of some extant species] is actually rather
remote’. Using our model allows several calculations relevant to this issue to be performed.

Consider some species v originating at time h before the present. Proposition 3, below, will
verify the intuitively natural fact that the process of descendants of v is, in the n → ∞ limit,
just the unconditioned CBP T . Given this result, the chance that some descendant of v (or v

itself) is extant at the present time is just the chance of its descendant tree T surviving for at
least time h. By Lemma 3, this is precisely (1+h)−1, from which we have the following result.

Corollary 9. For a species alive at time h before the present, the chance that some of its
descendant species (or the species itself) is extant tends to 1/(1 + h) as n → ∞, with h fixed.

Next consider the total number Nanc
n of species ancestral to the n extant ones. In this number

we include every species in Tn that has an extant species as an ultimate descendant, but exclude
the extant species themselves. We know from Lemma 2 that the number of species at time h is
Nn(h) ≈ n, for h = o(n), and from Corollary 3 that the time of origin T or

n is of order O(n).
Thus, informally, Corollary 9 leads us to expect that

E[Nanc
n ] ≈

∫ O(n)

0

n

1 + h
dh ≈ n log n.

In Corollary 10, we will prove a precise result for Nanc
n based on the following lemma.

Lemma 5. Conditional on T or
n = t , the total number of ancestral individuals Nanc

n in Tn

satisfies

Nanc
n

d−→
n∑

i=1

Xi,

where the random variables Xi, 1 ≤ i ≤ n, are independent, X1 has a Poisson(t) distribution,
and X2, . . . , Xn have the law

P(Xi = k) =
∫ t

0

e−ssk

k! ft (s) ds, k ≥ 0,

with ft (·) as in (4).

Proof. Label the extant individuals {1, 2, . . . , n} from left to right as they appear in the
contour process. Let Xi be the number of ancestors of the ith extant individual, without
including any of those previously counted in Xj , j < i.

Suppose that T or = t ; then the ancestry of the extant individuals is described by the part of
the contour process C(·) below height t . Recall that the part of C(·) below t consists of n − 1
independent subexcursions below t , which we label ei, 1 ≤ i ≤ n − 1, and the parts of C(·)
before the first upcrossing and after the last downcrossing of t ; we label the former part e0,R

(see Figure 6).
Let hi, 1 ≤ i ≤ n − 1, be the depths below t of the subexcursions ei , meaning that t − hi

are the heights of the lowest points of ei . These heights match the times of lineage divergence
of extant individuals. Their law is given by (4). Now partition the excursions ei at their lowest
points and let ei,R, 1 ≤ i ≤ n − 1, denote the parts on the right. Figure 6 then shows that
the ancestors of the first extant individual correspond in e0,R to the levels of constancy of the
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Figure 6: Ancestral lineages of the extant individuals (labeled {1, 2, 3, 4, 5, 6}) are matched in the contour
process by the levels of constancy of the processes ςi−1,R, 1 ≤ i ≤ n.

process ς0,R(u) = infv≥u(e0,R(v)). These levels of constancy of ς0,R match the times of
lineage divergence of the ancestors of the first individual. Similarly, for the ith, 2 ≤ i ≤ n,
extant individual, Figure 6 shows that the additional ancestors of individual i (excluding those
appearing as ancestors of extant individuals j < i) correspond in ei−1,R to the levels of
constancy of the process ςi−1,R(u) = infv≥u(ei−1,R(v)).

Thus, the number of ancestors Xi of the ith extant individual equals the number of levels
of constancy of the process ςi−1,R(·). It is clear that e0,R is distributed in the same way as an
ERW process conditioned to hit t before 0 and stopped the first time it does so. It is less obvious
that, given hi , ei,R is distributed in the same way as an ERW process conditioned to reach hi

before 0 and stopped the first time it does so (see Lemma 6 of [17]). For such an ERW process,
the levels of constancy of its future infimum process form a Poisson process restricted to the
set [0, t] for e0,R and the set [0, hi] for ei−1,R, 2 ≤ i ≤ n. This can easily be seen for levels of
constancy of the past supremum process of a conditioned ERW process (again see Lemma 6
of [17]), and the time reversibility of ERW excursions implies the rest. Hence, the number of
ancestors of the first extant individual is Poisson(t) distributed, and the number of additional
ancestors of the extant individuals i, 2 ≤ i ≤ n, is Poisson(hi) distributed. Combining this
with the distributions (4) of the depths hi proves the claim.

Corollary 10. As n → ∞, we have Nanc
n /(n log n)

p−→ 1, where ‘
p−→’ denotes convergence in

probability.

Proof. Fix a sequence (tn) such that tn/n → t ∈ (0, ∞). Corollary 3 shows that n−1T or
n

has a distributional limit on (0, ∞), so it suffices to prove that Nanc
n /(n log n)

p−→ 1 conditional
on {T or

n = tn}.
We prove this using the representation Nanc

n = ∑n
i=1 Xi from Lemma 5, and throughout

the argument we condition on {T or
n = tn}. Note that the contribution to the sum from X1 is

negligible (because X1 has a Poisson(tn) distribution), so we may assume that X1 has the same
distribution as the Xi, 2 ≤ i ≤ n. We now calculate

E[X2] =
∫ tn

0
sftn(s) ds ∼

∫ tn

0
s(1 + s)−2 ds ∼ log tn ∼ log n.

https://doi.org/10.1239/aap/1134587755 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587755


1110 D. ALDOUS AND L. POPOVIC

A similar calculation gives var[X2] = O(n). Therefore,

E[Nanc
n ] ∼ n log n, var[Nanc

n ] = O(n2),

and the desired result, Nanc
n /(n log n)

p−→ 1, follows via Chebyshev’s inequality.

5.5. Local limit structure of the complete tree

We can also use the contour process to derive local limit results for the complete tree Tn that
are analogous to those of Corollary 4 for the lineage tree An. We show below that the local
structure of Tn relative to a given typical individual converges to the local structure relative to
the root of an infinite tree that can be easily defined from a CBP tree. There are two versions of
such results, depending on whether the typical individual is chosen as a random extant species,
or as a random species from the entire history of the clade.

Let i be an individual in the complete tree Tn, with birth time b(i), say. Within this section,
our convention for the time parameter in Tn is that it increases as time increases. For σ > 0, let
T̃n(i, [b(i) − σ, b(i) + σ ]) denote the subtree of Tn comprised of all the individuals j whose
birth times are in the interval [b(i) − σ, b(i) + σ ] and for whom the divergence times of their
lineages from that of i are in the interval [b(i) − σ, b(i) + σ ] (see Figure 7). We call i the
distinguished individual in T̃n(i, [b(i) − σ, b(i) + σ ]).

We now describe an infinite random tree T̃ derived from the CBP. Take a distinguished
individual born at time 0 and let the tree of its descendants be distributed in the same way
as a CBP tree T . Let the parent of this individual have an exponential(1) age at time 0
and an independent exponential(1) lifetime after time 0. In turn, let the grandparent have an
exponential(1) age at the birth of the parent and an independent exponential(1) lifetime after
that birth time, and so on for the other ancestors. Let each of the ancestors have other children
at the times of a rate-1 Poisson process, and let the trees of such children and their descendants
be distributed in the same way as independent CBP trees.

From Proposition 2, recall the construction of a CBP tree T from the ERW excursion
(ξ1, −ξ2, ξ3, . . . ). It is easy to check that, given a two-sided ERW process

(. . . , −ξ−2, ξ−1, −ξ0, ξ1, −ξ2, ξ3, . . . ),

an analogous construction produces the infinite tree T̃ . Write T̃ [−σ, σ ] for the subtree of T
comprised of those individuals j whose birth times are in the interval [−σ, σ ], and for whom
the divergence times of their lineages from that of the distinguished individual are in the interval
[−σ, σ ]. Note that

T̃ [−σ, σ ] is determined by (ξi, M− ≤ i ≤ M+). (9)

The sequence
(ξM− , −ξM−+1, . . . ,−ξ0, ξ1, . . . , ξM+−1, −ξM+)

is the excursion of the two-sided ERW process above height −σ .
The following proposition shows the convergence of the local structure of Tn, relative to a

random (most likely extinct) individual, to the local structure of T̃ .

Proposition 3. Let In denote a uniform random species from the clade Tn. Then, as n → ∞
for fixed σ > 0,

T̃n(In, [b(In) − σ, b(i) + σ ]) d−→ T̃ [−σ, σ ].
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Figure 7: The local structure of the complete tree, relative to the individual i.

Note 6. The underlying notion of convergence of finite trees is the natural one, which can be
formalized in several equivalent ways, e.g. via a point process representation.

Proof of Proposition 3. We outline the proof, omitting small details. Write (ξi, i ≥ 1) for
the ERW process. Fix an integer m ≥ 2. Let θm,N be the empirical distribution of the N

2m-vectors
{(ξ2i+1, ξ2i+2, . . . , ξ2i+2m), 0 ≤ i ≤ N − 1}.

Then θm,N is a random probability distribution and (by the Glivenko–Cantelli theorem on R2m)
converges in probability, as N → ∞, to the nonrandom probability distribution

µm = dist(ξ1, . . . , ξ2m)

(where dist(· · · ) denotes distribution). By large deviation theory (see [4, Section 6.3, pp. 272–
278]) this convergence remains true conditional on events AN for which 1/ P(AN) = O(βN)

for some β > 1.
To prove the proposition, recall from Lemma 1 that T or

n is of order n. We can therefore fix
a sequence (tn) such that tn/n → t ∈ (0, ∞); it is sufficient to prove the proposition for Ttn,n.
Also fix integers Nn such that Nn/n2 → v ∈ (0, ∞). Let ANn be the event that an ERW process
has an excursion above 0 with exactly Nn rises and falls, and that this excursion has exactly
n upcrossings of level tn (here n2 is the correct scaling for the number of rises and falls of an
excursion with n upcrossings of level tn). Conditioned on this event, the ERW excursion is the
contour process of a random tree T +

tn,n,Nn
, which is the tree Ttn,n continued until extinction –

that is, conditioned to have a total number of individuals equal to Nn. Let us first prove the
proposition for T +

tn,n,Nn
.

We can show that the probability P(ANn) decreases no faster than polynomially in 1/Nn.
Hence, by the ‘large deviation’ result mentioned earlier, the empirical distribution θm,Nn of
2m-tuples conditioned on ANn converges to µm. This implies the weaker result that, for Jn

uniform on {2, 4, 6, . . . , 2Nn},
(ξJn−m+1, . . . , ξJn, . . . , ξJn+m)

d−→ µm, (10)

where the left-hand side is conditioned on ANn . However, this implies that, relative to a uniform
random individual In in T +

tn,n,Nn
, any aspect of the ‘local structure’ of the tree that is determined
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by the segment of the contour process of length 2m centered on that individual will converge
in distribution to the same aspect of the local structure of T̃ . By taking m to be large and
appealing to (9), we see that the proposition holds for T +

tn,n,Nn
.

To complete the proof, it suffices to show that the proposition holds for the stopped tree
Ttn,n,Nn . Unfortunately, this does not follow directly from the unstopped case, because a
nonnegligible fraction of all individuals in T +

tn,n,Nn
will be descendants of the n individuals

alive at time tn after the origin. Instead, fix a pair of small numbers δ1 and δ2, 0 < δ1 < δ2,
and consider the segments of the contour process C+ of T +

tn,n,Nn
defined as follows:

• s1 is the segment of C+ ending at the first upcrossing of (1 − δ1)tn;

• s2 is the segment of C+ extending from the subsequent downcrossing of (1 − δ2)tn to
the next upcrossing of (1 − δ1)tn;

• s3 is the segment of C+ extending from the subsequent downcrossing of (1 − δ2)tn to
the next upcrossing of (1 − δ1)tn;

• si, i = 4, . . . , N − 1, are defined similarly;

• sN is the segment of C+ beginning at the final downcrossing of tn.

Conditional on the event ANn , there is some conditional distribution of starting and ending
positions for each segment. Given these positions, each segment is distributed in the same
way as an ERW process conditioned on having the first upcrossing of a certain level occur
after a prescribed number of steps. The number of the segments is stochastically bounded as
n → ∞, meaning that the probability of the conditioning event for each segment is still only
polynomially small in 1/(length of the segment). Thus, separately for each segment, we can
show, as above, that the contour process satisfies (10) for Jn uniform on that segment. Since,
in the n → ∞ limit, these segments comprise a proportion 1 − ε(δ1, δ2) of the entire contour
process of Ttn,n,Nn , where ε → 0 as δ1, δ2 → 0, we can deduce the proposition for the stopped
process Ttn,n,Nn , completing the proof.

We now state the parallel local limit result for Tn relative to a random extant individual,
omitting a similar proof. In this setting, the relevant limit infinite tree, which we again call T̃ ,
is the following variation of the T̃ above. The distinguished individual has an exponential(1)
age at time 0. Its ancestors and their descendants are all as described above, except that now
the infinite tree T̃ is stopped at time 0.

Proposition 4. Let In denote a uniform random extant species from the clade Tn. Then, as
n → ∞ for fixed σ > 0,

T̃n(In, [−σ, 0]) d−→ T̃ [−σ, 0].
We can now perform exact calculations of probabilities for the distinguished individual in

T̃ that represent the n → ∞ asymptotic results for a random extant individual in Tn. Here is a
simple example of possible calculations within T̃ .

Corollary 11. For the distinguished individual in T̃ ,

(a) the probability that its parent is extant equals 1
2 , and

(b) the probability that at least one of its ancestors is extant equals 1 − e−1.
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Proof. (a) The probability that the parent of the distinguished individual is alive at time 0 is
simply P(ξ1 < ξ2), where ξ1 is the age of the distinguished individual and ξ2 is the subsequent
lifetime of its parent after the birth. Because ξ1 and ξ2 are independent exponential(1) random
times, we have P(ξ1 < ξ2) = 1

2 by symmetry.

(b) To calculate the probability that no ancestor of the distinguished individual is still alive, we
need only note that the times at which some ancestor originates form a rate-1 Poisson process,
and that an ancestor originating at time s before present has a chance equal to e−s to be extant
at present. Therefore, the number of extant ancestors has a Poisson distribution with mean

∫ ∞

0
(e−s × 1) ds = 1

and, thus, takes the value 0 with probability e−1.

6. Final notes

Note 7. There are two well-known other models that, like ours, are simple in the specific sense
of having no scale-free parameters. A basic model for speciations without extinctions is theYule
process [19], which is the continuous-time pure-birth process with constant rate. The Moran
model [6, Section 3.3, pp. 84–89], the basic neutral model used in population genetics, can also
be applied to macroevolution [9]; this model involves a process of uniform random speciations
and extinctions in a population of fixed size. In the large population limit, this model run
backwards in rescaled time has the continuous-time coalescent model as its lineage tree (see
[12] for a recent survey). The essentially different aspect of our model is that species numbers
are allowed to fluctuate freely, permitting a much broader range of quantities to be studied.
Biologists have studied more elaborate models, mostly in one of two categories. Exponential
growth models are exemplified by the linear birth–death chain model for species numbers,
where the transition numbers are λi = λi and µi = µi. This leads to a model [13] with three
parameters, λ, µ, and t∗, where t∗ is time of origin of the clade. Logistic stochastic models
posit a logistic-shaped curve for species numbers, and also require three or four parameters for
their specification. In contrast, it is the simplicity of a one-parameter model, and the desire
to avoid the particular biology presumptions underlying exponential growth or logistic-type
models, that motivate our particular model.

Note 8. As already mentioned, our model of Tn and An has considerable variability between
realizations. This variability is partly an artefact of the uniform prior on the time of origin of
the process, but it serves a useful purpose in emphasizing that radically different appearances
of real-world trees might logically be just chance variation without biological significance.
Wollenberg et al. [18] studied a model similar to ours (critical branching conditioned on n

extant species) via simulation, but handled the issue of the time of origin in a different way, by
taking for it the deterministic time tn that is the maximum likelihood estimator of the time of
origin. This assumption understates variability.

Note 9. Our model is qualitatively similar (in the sense of orders of magnitude) to the Moran
model for all quantities which can be studied in that model. Our results involving local weak
limits, in Sections 3.3 and 3.4, are exactly the same as in a continuized Moran model, because
our model converges (in the n → ∞ limit) to the continuized Moran model over size-o(n) time
intervals extending backwards from the present.
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Note 10. Branching processes conditioned on the total population have been studied exten-
sively [5]. Conditioning on population size n at time t after origination occurs implicitly
in works such as [8], but our device of having a uniform prior for the origination time has
apparently not been studied before. It would be mathematically natural to study the quantities
in this paper with our equal-rates linear birth–death process replaced by the Yule process or by
the unequal-rates linear process. A referee has observed that many of the results in this paper
have parallels for the Yule process, albeit with different orders of magnitude. For instance,
E[T mrca

n ] ∼ log n and T mrca
n − log n has a distributional limit with density exp(−2s − e−s).

Note 11. Neutral models like ours are unrealistic for large clades, by the following reasoning.
For an n-species clade, in our model its time of origin is of order n time units before the present,
as shown in Corollary 3. The time unit represents the mean species lifetime, typically estimated
to be a few million years. Thus, our model predicts the origin of an n-species clade to be at
least n million years ago, which is known from fossil data be an overestimate for most clades
of size n ≥ 100.

Note 12. The local point process limit in Corollary 4 is a simple instance of a general notion
of local weak convergence of graphical structures associated with point processes on R

d or
abstract spaces; see [3] for more sophisticated examples. In particular, Proposition 3 fits the
general setting of asymptotic fringe distributions, which exist for many different models of
random tree [1].

Note 13. A sequel [10] will treat phylogenetic trees on higher order taxa, emphasizing how the
choice of classification scheme may affect the distribution of tree shape.
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