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Abstract
There is a current ‘theory crisis’ in language acquisition research, resulting from fragmen-
tation both at the level of the approaches and the linguistic level studied. We identify a need
for integrative approaches that go beyond these limitations, and propose to analyse the
strengths and weaknesses of current theoretical approaches of language acquisition. In
particular, we advocate that language learning simulations, if they integrate realistic input
and multiple levels of language, have the potential to contribute significantly to our
understanding of language acquisition. We then review recent results obtained through
such language learning simulations. Finally, we propose some guidelines for the community
to build better simulations.

Keywords: Language acquisition; computational modelling; phonetic learning; word learning; phonetic
categories

What is needed and why?

Theory in crisis

The field of language acquisition is prolific, with an extensive range of high-quality
research published every year. However, there has been surprisingly slow progress in
solving some long-standing controversies regarding the basic mechanisms that underlie
language acquisition. For instance, do infants learn language primarily from extracting
statistics over speech inputs (Romberg & Saffran, 2010; Saffran & Kirkham, 2018), from
examining cross-situational correlations over multisensory inputs (Smith & Yu, 2008;
Suanda, Mugwanya & Namy, 2014; Yu & Smith, 2017; Zhang, Chen & Yu, 2019), or by
relying on social interactions and feedback (Tomasello, 2003; Tsuji, Cristia & Dupoux,
2021; Yu & Ballard, 2007)? Do they learn by leveraging discrete linguistic categories or
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continuous sensory representations (Kuhl et al., 2008; McMurray, 2021)? Do they rely on
language-specific or domain-general learning mechanisms (Elman, Bates & Johnson,
1996; Karmiloff-Smith, 1994; Pinker, 1994)? Such a lack of headwaymay be due in part to
the ‘replication crisis’: the experimental study of human cognition in general and infant
cognition, in particular, is inherently noisy and difficult (Frank, Bergelson, Bergmann,
Cristia, Floccia, Gervain, Hamlin, Hannon, Kline & Levelt, 2017), slowing down cumu-
lative progress. Here, we explore the possibility that there is, in addition, a ‘theory crisis’.
To say it bluntly, perhaps, current theories have shortcomings that prevent us from even
finding the right experimental setup to make progress on basic questions about learning
mechanisms.

Several papers have already been devoted to the theory crisis in psychology in general;
psychological theories have been claimed to bemere statistical model fitting (Fried, 2020),
too descriptive or fragmented (Muthukrishna & Henrich, 2019), or to not contribute in
cumulative theory building (McPhetres et al., 2021). In developmental psychology,
Kachergis, Marchman, and Frank (2021) called for a ‘standard model’ that would allow
integration of results in a cumulative fashion. In this paper, we explore the possibility
proposed in Dupoux (2018) that recent advances in machine learning could help address
the theory crisis through systems that realistically simulate how infants learn language in
their natural environment. Such learning simulations are computer models that would
ideally learn from similar inputs as the ones available to infants (raw sensory data), and
reproduce the broad spectrum of outcome measures as obtained in laboratory experi-
ments or corpus studies. To the extent that these new computer models are powerful
enough to address the complexity and variability of data available to infants during
language development, they could help us make progress in some of the aforementioned
controversies. At best, such learning simulations can provide proof of principle that a
given hypothesis (e.g., the statistical learning hypothesis) can account for learning
outcomes as observed in infants. In addition, they can help us go beyond said long-
standing controversies by providing new insights into the learning process and awealth of
associated quantitative predictions.

In this paper, we first discuss how these new types of learning simulations are
complementary to more familiar theoretical approaches in cognitive development and
argue that they provide one step towards the needed cumulative integrative theories or
standardmodels.We then present STELA, a recent learning simulation implementing the
hypothesis that infants are statistical learners, and show how it provides insights into
some long-standing controversies.

Varieties of theories in language acquisition

The theoretical landscape of language development is vast and complex. Even if one
focuses on early language development, there are wild varieties of theoretical approaches
that differ not only in scope (the range of phenomena they cover) but also in style (verbal,
statistical, formal, computational). Here, far from making a comprehensive survey of
these approaches, we attempt to classify them into types and sort them along dimensions
that outline their respective strengths and weaknesses with regard to addressing basic
questions/controversies about learning mechanisms. Familiar types are verbal frame-
works (among others: The competition model: MacWhinney & MacWhinney, 1987;
WRAPSA: Jusczyk, 1993; Usage-based theory: Tomasello, 2005; NML-e: Kuhl et al., 2008;
PRIMIR: Werker & Curtin, 2005), which weave a narrative around a large body of
experimental research using verbally defined concepts, sometimes complemented by
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box-and-arrow schemas (e.g., the ScALA framework from Tsuji et al., 2021). Correl-
ational approaches (e.g., Fernald, Marchman & Weisleder, 2013; Hart & Risley, 1995;
Swingley & Humphrey, 2018) aim to identify the main variables that predict language
development outcomes through statistical models. Formal models (e.g., Jain, Osherson,
Royer & Sharma, 1999; Tesar & Smolensky, 2000) and computational models (e.g., Brent,
1997) aim to study how algorithms can learn language through mathematical proofs or
empirical study of the learning outcomes. All theoretical approaches of early language
development recognise that infants receive inputs from their environment, and have a
learning mechanism, which produces a linguistic competence that can be accessed
through outcome measures. The differences between these theoretical approaches lie in
the simplifying assumptions and degree of specifications theymake about inputs, learning
mechanisms and outcomemeasures.We distinguish four dimensions or axes to sort these
theoretical approaches: Causal versus Correlational, Quantitative versus Qualitative,
Realistic versus Abstract, and Broad Scope versus Narrow Scope.

Causal/Correlational
A theory is causal when it provides a specification/implementation of the learning
mechanism underlying language acquisition; it is correlational when it focuses on the
input/outcome relationship without specifying a learning mechanism. A correlational
model can outline the important factors that drive learning and therefore provide insights
into the development of learning mechanisms. However, only a causal model can provide
proof of principle that a postulated learning mechanism is sufficient to reproduce a
developmental outcome given an input. As a result, to the extent that they can be
effectively implemented, causal models are better positioned to resolve disagreements
about learning mechanisms than correlational models.

Quantitative/Qualitative
A theory is quantitative if it can produce numerical outcomes that can be compared to
human performance. It is qualitative when it produces predictions about the possible
presence of a significant effect without a numerical prediction about its strength.
Qualitative models are useful to inspire novel experimental paradigms, and provide
insights about learning mechanisms, but are hard to refute and difficult to compare to
one another. Quantitative theories make very precise predictions and can be compared to
one another by computing the degree of fit of their predictions against some observed
outcome. As a result, they are better positioned to solve disagreements about learning
mechanisms than qualitative theories.

Realistic/Abstract
A theory is realistic when its model of the environment is as close as possible to the
actual sensory/motor environment of the child. It is abstract when the environment is
specified through synthetic data, or human/categorical annotations of observed envir-
onments (e.g., textual transcriptions). Abstract theories are useful because they enable a
high degree of control and interpretability and provide insights into what type of input
information can yield particular outcomes. However, they cannot prove that their
conclusions apply to real-world data as perceived by infants and are therefore not very
informative when it comes to solving long-standing controversies. Realistic theories, in
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contrast, to the extent that they can be effectively implemented, are better positioned:
because they directly reproduce the learning outcomes associated with a given input and
learning mechanism.

Broad/Narrow Scope
A theory has a broad scope if it encompasses not one single linguistic level (phonetic,
morphological, syntactic, semantic, etc.) or phenomenon but several at once. Narrow
Scope theories are useful in focusing on learning specific representations, assuming all
other representations are fixed. However, many controversies about learning mechan-
isms arise because of co-dependencies between linguistic levels, making it problematic to
assume all levels are fixed except one. Being able to account for how infants can learn
jointly all of these levels is at the heart of solving so-called ‘bootstrapping’ problems that
are integral to language learning.

In Table 1, we position some familiar theoretical approaches in terms of these four
axes. This characterisation may seem overly simplistic or reductionist, but we hope it will
help outline the specific contribution of learning simulations. Verbal frameworks typic-
ally have a broad scope and embrace the complexities of the child’s real environment.
They are causal to the extent that they mention specific learning principles but are not on
the quantitative side. They are still the single most influential theoretical approach for
infant language learning, providing insight into large quantities of experimental results.
However, they resist empirical refutations or amendments because of their qualitative
nature. Correlational models are on the quantitative side and integrate many variables
and levels. When informed by a corpus of infant/caretaker interactions, they can reveal
the relationships between input quality, quantity, and language outcome (Fernald et al.,
2013; Hart & Risley, 1995). However, because they are not causal and rely on abstract
variables derived from the input, they cannot directly speak to learning mechanisms.
Computational/formal models (henceforth called learning simulations) are both causal
and quantitative, but their ability to significantly impact controversies about learning
mechanisms depends on the breadth of their scope and their degree of realism or
abstraction. We discuss such models in more detail in the next section.

A brief history of learning simulations

For a long time, scientists with various backgrounds, from formal linguistics to develop-
mental psychology and artificial intelligence, have contemplated the possibility of build-
ing mathematical models or computer simulations of language learning in infants. The
hope was that building a simulated ersatz of the infant would reveal the formal conditions

Table 1. Four dimensions along which theoretical approaches of language acquisition can be sorted

Properties Verbal Framework Correlation Model Learning Simulation

Causal ✗ / ✔ ✗ ✔

Quantitative ✗ ✔ ✔

Realistic ✗ ✗ ✗ $ ✔

Broad Scope ✗ ✔ ✗ $ ✔
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for learning (Pinker, 1979), would allow us to better formulate hypotheses about how
infants actually learn (Frank, 2011;Meltzoff, Kuhl,Movellan& Sejnowski, 2009) or would
yield machines that learn in a graceful and robust fashion (Turing, 1950). Here again, the
diversity of the proposed models is too large to be reviewed (see Dupoux, 2018, for an
attempt). Instead, we classify the approaches based on the dimensions which we claim are
central to answering key questions about learning mechanism: realism and scope.

As illustrated in Figure 1, all learning simulations consist of three components: a
model of the environment, a model of the learner, and a model of the outcome measure.
The model of the environment specifies the type of inputs/interactions available to the
learner. The learner updates itself using a learning algorithm based on its interaction
with the environment. The outcome measures of the learner are measured after
exposure to speech. Where learning simulations differ is how they implement these three
components.

Focusing onAI-inspiredmodels, themost visible trend historically has been on how to
implement the learner. Early models (e.g., Anderson, 1975; Kelley, 1967) were rule-based.
The second phase was probabilisticmodels (e.g., Brent, 1996; deMarcken, 1996), followed
by connectionist and deep learning models (Brown et al., 2020; Elman, 1990), each phase
replacing hand-wired components withmore andmore powerful learning systems. As far
as we are concerned, the way in which the learner is implemented is irrelevant. What
counts is whether the learning mechanism actually reproduces the learning outcome or

Figure 1. General outline of a realistic learning simulation (centre) in relation to real infants (left) and traditional
theoretical approaches (right). 1. Verbal frameworks inspire and help set up the entire language learning
simulation by describing the environment, learner, and outcome models; 2. Corpus studies of children’s input
help us build realistic models of the environment. In the best case, the model of the environment is a subset of a
real environment, obtained through child-centred long-form recordings, for instance; 3. Machine learning provides
effective artificial language learners. The learner model is relatively unconstrained as learning mechanisms used
by the real learner (i.e., infants) remain largely unobservable; 4. Correlational models describe how the input
should relate to the outcome measures; 5. Experimental and corpus studies of children’s outcomes show how we
can evaluate learning outcomes of the artificial learner. The real versus predicted outcome measures allow us to
compare humans tomachines and provide new predictions for correlational models that relate input to outcomes
in infants.
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not, given infants’ input1. More relevant to our argument, another trend can be seen
regarding the model of the environment, moving from synthetic data (e.g., Elman, 1990;
Vallabha, McClelland, Pons, Werker & Amano, 2007) to transcribed corpora (e.g.,
Bernard et al., 2020) and, more recently, to raw audio and images or video recordings
(Räsänen &Khorrami, 2019; Schatz, Feldman, Goldwater, Cao &Dupoux, 2021). Finally,
the first models were focused on learning a single linguistic level (e.g., phonetic categories:
Vallabha et al., 2007; word forms: Brent, 1999; word meanings: Roy & Pentland, 2002;
syntax: Pearl & Sprouse, 2013), and more recent approaches would learn several levels
jointly (phonemes and words: Elsner, Goldwater & Eisenstein, 2012; syntax and seman-
tics: Abend, Kwiatkowski, Smith, Goldwater, Steedman, 2017; phonetics, words and
syntax: Nguyen et al., 2020).

In other words, thanks to recent progress in machine learning and AI (Bommasani
et al., 2021), learning models that are simultaneously of broad scope and able to ingest
realistic data are around the corner. Obviously, a complete model that would feature
maximal scope (integrating all relevant input and output modalities for language and
communication) and maximal realism (using sensory data indistinguishable from what
infants experience) is still out of reach. In the next section, we examine STELA, a recently
proposed model (Lavechin, de Seyssel et al., 2022c) and argue that even though it is
limited both on scope and realism, this work can help us make nontrivial progress on
some of the long-standing controversies regarding language learning mechanisms.

Before moving on, let us clarify that we are not claiming that broad-scope realistic
simulations are the only valuable approach. Narrow-scope abstract models still have
valuable contributions to make (e.g., Frank, Goodman & Tenenbaum, 2009; Kachergis
et al., 2021). First, contrary to many realistic and broad-scope models, abstract and
narrow models are interpretable and therefore allow building bridges with verbal frame-
works. They are also more tractable and can be easily modified and experimented on in a
way which is more difficult with larger models. Finally, one can view abstract learning
simulations as “control” experiments: by comparing an abstract and a realistic learning
simulation implementing a similar learning mechanism, we can gain knowledge on the
role of specific abstractions made by the learner.

What has been achieved so far?

Among the competing hypotheses regarding the learning mechanisms that underlie early
language learning, the one that seems the most natural to approach with learning
simulations is the statistical learning hypothesis (Pelucchi, Hay & Saffran, 2009; Saffran,
Aslin & Newport, 1996). It posits that infants learn at least some linguistic levels
(phonetic, lexical and morphosyntactic) through a statistical or distributional analysis
of their language inputs. The idea has a long history (Rumelhart, McClelland & Mac-
Whinney, 1987; Skinner, 1957) and has generated many controversies (Chomsky, 2013;
Fodor & Pylyshyn, 1988) and mathematical investigation (Gold, 1967; Jain et al., 1999).
But it is also the simplest hypothesis to implement in a learning simulation. If one equates
language input to the auditory modality, the corresponding learning simulation would
simplify the environment to audio recordings, and the learner to a probabilistic model

1Many developmental scientists worry about the so-called ‘psychological plausibility’ of these various
kinds of models. Following Frank (2014), we believe that issues of plausibility have either to be formulated as
outcome measures that the model should reproduce, or should be disregarded.
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that accumulates statistics paying no attention to other modalities or context, nor
interacting with its environment.

Here, we present recent work on simulating a statistical learner for language acqui-
sition (Lavechin et al., 2022b; Lavechin, de Seyssel et al., 2022c). We present the
simplifying assumptions made in these simulations and reflect on how simulated learners
compare to infants. Then, we go over different use cases of such a simulation by showing
how some of the skills the simulated learner has acquired through exposure can help shed
light on some long-standing controversies in our understanding of language acquisition
in infants.

We focus on a high-level description of this simulation as we believe it makes it easier
to appreciate its lessons. However, readers interested in the technical details can refer to
the original paper (Lavechin, de Seyssel et al., 2022c).Wewill also list specific research use
cases that the framework helped deepen. By doing so, we illustrate concretely how such
realistic learning simulations can help future research, both in terms of proof of feasibility
and inspiration for research.

Introducing STELA

Lavechin, de Seyssel et al. (2022c) introduced STELA (STatistical learning of Early
Language Acquisition), a language learning simulation that tackles the problem of
discovering structure in the continuous, untranscribed, and unsegmented raw audio
signal. As said above, the scope of this simulation is restricted to the statistical learning
hypothesis, where infants learn passively and uniquely by extracting statistical cues from
what they hear (see Table 2). In this section, we present themodel of the environment, the
model of the learner, and the model of the outcome measures used in STELA.

The environment
STELA specifies the environment as raw audio speech recordings. For this to remain
relevant, we need to restrict the quantity of speech within a plausible range of data.
Current estimates of cumulative speech experiences by one year of age vary from around
60 hours (Cristia, Dupoux, Gurven & Stieglitz, 2019) to approximately 1,000 hours
(Cristia, 2022). In STELA, the data comes either from open-source audiobooks with
quantities varying from 50 to 3,200 hours covering the observed range. Admittedly, the
infant’s language environment is different from audiobooks. On the one hand,

Table 2. Non-exhaustive list of language learning assumptions for infants and whether they are included
within the STELA simulation

Assumption STELA

Infants are statistical learners (Bulf, Johnson & Valenza, 2011; Romberg & Saffran, 2010;
Saffran et al., 1996)

✔

Quantity of speech input predicts language outcome (Newman, Rowe & Ratner, 2016) ✔

Modalities other than speech can be useful in language learning (Abu-Zhaya, Seidl,
Tincoff & Cristia, 2017; Seidl, Tincoff, Baker & Cristia, 2015).

❌

Infants learn by interacting with peers – reinforcement learning (Kuhl, Tsao & Liu, 2003;
Nelson, 2007; Snow, 1989; Yu, Ballard & Aslin, 2005)

❌
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audiobooks contain clearly articulated speech (read speech) and relatively good audio
conditions, potentially facilitating learning for the model compared to the spontaneous
and noisy speech available to infants (see Lavechin et al., 2022b). On the other hand,
audiobooks may use larger vocabularies and more complex sentences than infants’
input, potentially putting the model in a more challenging situation than infants
(Gleitman, Newport & Gleitman, 1984). Nevertheless, this type of input is in the range
of what infants could plausibly hear or overhear and is relatively easier to access in
large quantities across languages than long-form recordings. Therefore, they are a
good starting point, offering controlled conditions and replicability for the deployment
and analysis of such simulations. Long-form recordings represent the extreme in
realism that can be achieved in such simulations, but they are less accessible than
audiobooks due to privacy concerns (Lavechin, de Seyssel, Gautheron, Dupoux &
Cristia, 2022a).

The learner
Elman (1990) was perhaps the first to introduce a practical implementation of a system
that learns non-trivial linguistic representations by extracting regularities from language
inputs: a simple recurrent neural network trained to predict future words or characters
based on past ones. Since then, this idea has been expanded withmore complex and larger
neural networks trained on increasingly larger datasets. The resulting so-called “language
models” can be viewed as models of the probability distribution of sentences and have
been shown to generalise beyond the sentences in the training set (Baroni, 2020), reaching
near human performances on many language tasks (Liu, He, Chen & Gao, 2019). One
major limitation of thesemodels – asmodels of the infant learner – is that they only take as
input words or characters, which are not entities accessible to a learning infant. However,
recent breakthroughs in representation learning have made it possible to expand these
models to work with raw audio inputs (Borsos et al., 2022; Dunbar et al., 2021; Lakhotia
et al., 2021). In a nutshell, these so-called ‘Generative Spoken Language Models’ replace
text with their own discrete representations learnt from the audio and learn a probabilistic
model of speech directly from raw inputs.

In Figure 2a, we present the model used in STELA, which has been selected from the
class of Generative Spoken LanguageModels (Dunbar et al., 2021) for its simplicity. From
a high-level perspective, the learner can be described as the combination of two compo-
nents, which are named according to the current practices in machine learning 1) an
‘acoustic model’ and 2) a ‘language model’2. The acoustic model is fed with raw, continu-
ous waveforms and trained using a form of predictive coding. It learns a vector repre-
sentation for each slice of 10ms of signal by attempting to predict each of the twelve
upcoming slices based on past ones, yielding a prediction over a 120ms time window. An
exciting outcome of such a learning procedure is that the model learns representations
that successfully abstract away from acoustic details and encode phonetic information. In
STELA, we discretise these representations using clustering, yielding a discrete code each
10ms, which is passed onto the language model. This model is similar to Elman’s

2Although the term ‘languagemodel’ can sound counterintuitive in the context of phonological and lexical
acquisition, as no language-related or language-specific heuristics are integrated into themodel, which learns
on its own to discover structures in the speech input, we view it from the machine learning point of view,
where a language model is simply an algorithm which learns to predict, from a sequential input, the next
representation (let it be text, speech or other) based on the previous representations.
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recurrent language model, only using an improved architecture (LSTMs) and more
parameters. This model is trained to predict the next code based on past ones. Because
the model’s output is not a single code, but a probability distribution over all the discrete
codes, one can compute the probability of an utterance as the product of the conditional
probabilities of each successive code (see Appendix A).

The outcome measures
Several types of outcomemeasures are used in infant development. Some are provided by
caregivers (like the Child Development Inventory, or CDI: Fenson, 2007), who assess
whether a word is known or produced by the child, some are linked to the production of
the child as attested through transcription of naturalistic corpora (mean length of
utterance such as used in Miller & Chapman, 1981 for instance), and some are obtained
via in-lab experiments. Here we concentrate on the last type of measure. In principle, a
maximally broad language learning simulation would include all linguistic and non-
linguistic components (attention, memory, eye movement, etc.) and the artificial learner
could just be virtually seated in a virtual lab and be subjected to the same experiments as
real babies (Leibo et al., 2018). Here, STELA only simulates a subpart of infants’ linguistic
competence and therefore has to specify a special add-on module to generate the
equivalent of experimental outcome measures. Fortunately, experimental paradigms in
infants are relatively simple and can be sorted into two main types: discrimination
experiments and preference experiments3, yielding two types of add-on modules.

Discrimination experiments can vary in how they are conducted in the lab (ABX, AXB,
AX, etc.). Still, they all rely on the ability of the learner to compute a perceptual distance
between two stimuli (such as ‘bit’ versus ‘bet’). An add-on for ABXdiscriminationwill just
need to (a) extract a representation of a stimulus from the learner (typically the activation
pattern of some layer) and (b) compute a distance over two representations (typically, the
normalised dot product, or the angle between the vectors). In STELA (Lavechin, de

Figure 2. Overview of the STELA learner and outcome measures. a. (left): model of the learner; b. (right): add-on
models for two types of outcome measures.

3This is a non-exhaustive list. Some experiments use a more complex design where infants are familiarised
to some materials (for instance, an artificial language) and then tested using preference or discrimination
metrics. This would require the learner to memorise or learn from the familiarisation phase, which has not
been implemented in STELA so far.
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Seyssel et al., 2022c), this is used to measure phonetic knowledge through amachine ABX
sound discrimination task (Schatz et al., 2013) in which the learner has to choose two
occurrences of, e.g., ‘bop’ as being closer than one occurrence of ‘bop’ and one occurrence
of ‘bip’. The test is done over thousands of trials and over all possible contrasts of
phonemes4.

Preference experiments rely on the ability to compute a ‘preference’ or ‘probability’
associated with an input stimulus. Most learning algorithms learn by minimising an
objective function, such as the error made in predicting the future based on the past. We
can use the same objective function and apply it to test stimuli: if the stimulus is well
represented or considered probable by the model, then the error should be low. Totally
novel or unexpected stimuli should give a high error.

In STELA, this is used through the spot-the-word task developed in Nguyen et al.
(2020). Here, themodel receives a spokenword (e.g., ‘apple’) and a spoken non-word (e.g.,
‘attle’) matched for syllabic and phonotactic structure. We then look at the model’s
probability of generating both words. The model is considered correct for the trial if the
probability of generating the correct word is higher than the non-word. The same logic
can be applied at the syntactic level using pairs of grammatical and ungrammatical
sentences (i.e., ‘the brother learns’ versus ‘the brothers learns’), in which the model has
to assign a higher probability to the grammatical sentence.

In the next section, we present case studies illustrating how meeting the four above-
mentioned properties in a single simulation can help us make theoretical advances.

Results

Learning simulations can either be used as “proof of concept” for particular hypotheses
about learningmechanisms or to offer novel predictions, never tested experimentally. Here,
we focus on the first use case by addressing three long-standing controversies on language
learningmechanisms as applied to the phonetic and lexical levels. In each instance, we use a
design which enables us to conduct experiments that are both developmental (obtained by
training the same learner on increasing quantity of speech, from50 hours up to 3200 hours)
and cross-linguistic (obtained by training and testing the models on two languages, French
and English, deriving scores for the native and non-native language).

Could infants rely exclusively on statistical learning over speech inputs to bootstrap into
language?
One of the major conceptual difficulties in accounting for early language acquisition is
understanding how the young learner can learn several interdependent linguistic levels
simultaneously and gradually. Statistical learning (Saffran et al., 1996) seems a good
hypothesis to address this, since it posits that infants gather information about the
distribution of sounds. This would naturally yield gradual learning. As for simultaneous
learning across levels, it could rest on the idea that probabilities can be gathered at several
levels of descriptions simultaneously. Now, the evidence in favour of statistical learning is

4It is worth pointing out at this point that the sound contrasts presented in this task are extracted from read
speech across many different contexts, while stimuli used in laboratory experiments are more controlled.
Potential coarticulation effects make themachine sound discrimination task harder than typical in-lab phone
discrimination tasks.
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itself debated. Experimental evidence in infants only rests on simplified artificial languages
(synthetic stimuli, small number of sounds), and it is not clear that this would translate to
audio data in which speech sounds are highly variable according to phonetic context,
speaker, speaking style and rate, in addition to being potentially contaminated by non-
speech background sounds.

In Figure 3, we highlight a few key results obtained by STELA when presented with raw
audio from audiobooks (Lavechin, de Seyssel et al., 2022c) and tested at the phonetic level
(ABX discrimination) and lexical level (spot-the-word) using the tasks presented in a
previous section. The results clearly show above-chance performance on native test stimuli
and gradual and parallel learning at both phonetic and lexical levels, with the system being
able to discriminate sounds better, and prefer words over nonwords more, as more data is
presented to themodel. This improvement is weaker when tested on a non-native language
(actually, not present at all for the lexical task). Further tests (not shown in Figure 3) using a
syntactic task (which is also carried out on the language model component presented in
Figure 2) in which the system has to show a preference for legal versus illegal sentences
revealed much weaker learning. Only the model trained on the largest quantity of speech
available (that is, 3200 hours) was able to show preference on an adjective-noun order task
(‘the nice rabbit’ versus ‘the rabbit nice’), with a slightly-above-chance 55% accuracy.

In brief, the STELA simulation suggests that raw speech input only, combined with
statistical learning, and more precisely predictive learning, is: 1) sufficient to bootstrap the
phonetic, the lexical and only very weakly the syntactic levels; 2) sufficient to reproduce the
gradual and overlapping developmental trajectory observed in infants at the phonetic and
lexical levels5. It is the first time a simulation reproduces the gradual andmultilevel learning
observed in infants from audio signals, at least when audiobooks are used as input.

Figure 3. Phonetic (left) and Lexical (right) scores for native and non-native input at different quantities of training
data. Phonetic score is expressed in terms of ABX accuracy, obtained by the discrete representations for native and
non-native inputs. Lexical score is expressed in terms of accuracy on the spot-the-word task, on the high frequency
words for native and non-native inputs. Error bars represent standard errors computed across mutually exclusive
training sets. Two-way ANOVAs with factors of nativeness and training language were carried out for each quantity
of speech. Significance scores indicatewhether the nativemodels are better than the non-native ones. Significance
was only computed when enough data points were available to run sensical comparisons. Significance levels: na:
not applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001. Figure taken from Lavechin, de Seyssel et al.
(2022c).

5Larger models, trained with more audio data are able to pass more complex syntactic tests, and show the
beginning of semantic abilities as well (Dunbar et al., 2021), suggesting that the structure of the model can
itself learn at several levels beyond phonetic and lexical levels.
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Do infants learn and perceive language in terms of linguistic categories?
A second debate concerns whether linguistic categories (phones, words) are necessary
building blocks in early language acquisition. On the one hand, linguistic theories
describe adult competence in terms of such categories. On the other hand, these categories
are language-dependent and therefore need to be learned by infants, who have only access
to continuous sensory information at the beginning. Schatz et al. (2021) recently pro-
posed a learning simulation of phonetic learning from raw audio signals based on a
probabilistic model using Mixtures of Gaussians. While reproducing observed native
advantage effects in phonetic discrimination between Japanese and English phonemes,
the learner used in this simulation did not learn phonemes or units that could be described
linguistically. These results suggest that phonetic learning can occur without the existence
of phonetic categories.

The STELA simulation reproduces this conclusion using a totally different learning
algorithm, supporting once again the idea that phonetic categories are not necessary for
phonetic learning (see also Feldman, Goldwater, Dupoux& Schatz, 2022). To dive further
into this, it is interesting to reflect on how the acoustic model behaves during training
concerning the duration of the learnt representations. Pre-exposure (i.e., before themodel
has received any input) speech is represented within the model as a string of random
units. As the model receives speech, it learns to structure this discrete representation:
discrete units start repeating themselves, and the sound discrimination accuracy
increases. An analysis of the duration of the discrete learnt units revealed that the latter
are too short to correspond to phones (43ms for the learnt units, versus 90ms for a typical
English phone), similarly to what has been found in Schatz et al. (2021). An example of
how the discovered units compare to the original phones is presented in Figure 4, where
units are clearly shorter than the phones. More surprisingly, the more speech the model
receives, the lower the duration of the discrete units. It is essential to note that no
constraint is applied to the duration of these units. The model could, in principle,
converge to phone-length discrete units, but does no such thing. In other words, the
model does not converge to phone-like representations, yet it can still pass phonetic,
lexical and, to a certain extent, syntactic tests for which phoneme representations are still
often considered a prerequisite6.

Figure 4. An example spectrogram of an English utterance, along with the corresponding phonemes (top tier) and
the units discovered by a STELA model trained on 3200 hours of English. Transcription: “The valley was filled”

6Probing experiments using linear separation revealed however that the representations learned by the
acoustic model become more and more structured according to phonetic dimensions like phonetic category
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In STELA, it is also possible to ask the question of linguistic categories at higher
linguistic levels. Surprisingly, even though the model can distinguish words from non-
words, we could not find an indication that the model represents words as such, or would
represent the boundaries between words. Yet, the continuous activations found in the
hidden layers of the recurrent model contained some approximate linguistic information,
as a trained linear classifier was able to classify test words into function versus content
words or verb versus adjective/adverb versus noun better than chance, and the separation
increased with more input data. These results show that, although the model does not
learn discrete and interpretable linguistic categories internally, linguistic information
increasingly structures the learnt representations (for more in-depth analyses of the types
of units yielded by such models, see de Seyssel, Lavechin, Adi, Dupoux & Wisniewski,
2022; Nguyen, Sagot & Dupoux, 2022; Sicherman & Adi, 2023). Thus, our simulation
promotes the view that linguistic categories could be the end product of learning, not their
prerequisite.

Can statistical learning alone account for early phonetic acquisition from ecological
audio?
One of the largest controversies in language learning orbits around the poverty of the
stimulus argument (Chomsky, 1980). This argument states that the input available to
infants is too scarce and too noisy to warrant language learning through a general-
purpose learning algorithm. Therefore, only a learning algorithm with strong inductive
biases would be able to reproduce human language learning. For a long time, this
controversy has remained unsolved for lack of learning algorithms that can work even
on rather simple inputs. With STELA, at last, we are able to address this controversy, at
the level of phonetic and lexical learning. The preceding sections show that a relatively
general-purpose system based on predictive coding is able to learn at both levels when fed
with audiobooks, but this kind of input may not be realistic enough to correspond to the
learning problem faced by infants. Indeed, the audio environment of infants, first of all,
contains a majority of non-speech noises, and the little amount of speech that is heard
may be under-articulated, reverberated and absorbed by the surrounding obstacles in the
environment, and overlaid with various background noises. Could the relatively generic
learner of STELA handle such noisy inputs?

One way in which one can revisit this simplifying assumption is by using child-centred
long-form recordings, i.e., daylong recordings collected via child-worn microphones as
people go about their everyday activities. Lavechin et al. (2022b) exposed the STELA
contrastive predictive coding algorithm to such ecological recordings of children’s
language experiences and found that the discrimination gap between the native and
the non-nativemodels vanishes. It is only when supplemented with inductive biases in the
form of filtering and augmentation mechanisms (restricting learning to speech parts,
taking into account speaker invariance, and making the system resistant to reverberant
noise) that the model could exhibit some form of perceptual attunement again (see
Figure 5). In addition to this result, Lavechin et al. (2022b) showed that, even in the

(vowels, fricatives, approximants, plosives, etc.), place of articulation for consonants (bilabial, labiodental,
dental, etc.), and voicing (voiced or voiceless) as a function of amount of input data. This suggests that the
model is learning some phonetic structure from the data even though it is not learning interpretable
categories like phonemes.
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presence of inductive biases, the learning speed of the learner was still negatively impacted
by the presence of additive noise and reverberation in the training set and that this loss
could not be recovered by adding more data.

Given the sparse, variable and noisy nature of the speech overheard by children, this
simulation suggests that a statistical learning algorithm alone might not be sufficient to
account for early phonetic acquisition. Given that linguistic input represents a small
fraction of the audio environment of the child, and that even speech is itself overlapped
with non-speech signals, any statistical learning algorithm will devote its resources to
discovering the structure of the entire audio, thereby failing to capture the structure of
speech sounds.

The three types of inductive biases that were introduced in this study are plausible and
independently motivated by experimental evidence in infants: infants show an early
preference for attending to speech versus non-speech sounds, and it is plausible that they
would learn preferentially on such sounds. In addition, there is evidence that infants
distinguish speakers and associate speakers to their voices at an early age; it is therefore
plausible that their learning algorithm would be speaker-specific. Finally, the human
learner has the benefit of an auditory system that has been fine-tuned bymillions of years
of evolution to accurately perceive sound sources in complex auditory scenes, and it is
plausible that learning operates not on raw sensory data, but rather on sensory streams
organised according to source and therefore resist additive noise and reverberation. It is
important to note, however, that the inductive biases we implemented are not sufficient;

Figure 5. Panel (a) shows native discrimination accuracy, as measured in an ABX discrimination task, obtained by
American English and Metropolitan French CPC models (both models are evaluated on phonemes of their native
languages). Panel (b) shows native advantage, computed as the average relative difference of the native model
and the non-native model, obtained by the same pairs of models (a positive native advantage indicates that the
native model is better at discriminating native sounds than the non-native model). Figure adapted from Lavechin
et al. (2022b).
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as subsequent testing at the lexical level showed that, evenwith them, no lexical learning is
evidenced in STELA when fed with long-form recordings. This indicates that, as far as
phonetic and lexical learning is concerned, some form of poverty of the stimulus
argument is valid, and that generic learning algorithms (at least the ones we tested) need
to be supplemented with strong inductive biases.

In brief

We showed that realistic learning simulations could help address some of the key
controversies within language acquisition. For instance, STELA shows that statistical
learning can be sufficient to reproduce some key findings in infants (phonetic attune-
ment, preference for words over nonwords) from raw audio inputs in the total absence of
multimodal grounding or social feedback. It also shows that such learning patterns can
arise in the total absence of interpretable linguistic categories. However, it also shows that
it has to be supplemented with inductive biases in order to deal with the noise present in
naturalistic recordings that are representative of what infants really hear. Of course, these
findings are only theoretical results: and, as such, can demonstrate that mechanism A is
sufficient (or not needed) to observe outcome B. Whether infants really use similar
mechanisms remains to be further established.

What lies ahead?

So far, we have presented evidence that learning simulations, when scaled to incorporate
realistic inputs and to model more than one linguistic level, can address some long-
standing controversies regarding learning mechanisms in infants. However, our demon-
stration was limited to testing one hypothetical learning mechanism: statistical learning,
and a particularly narrow version of it that is restricted to audio inputs. While STELA
could perhaps be counted as the first successful learning simulation of early language
acquisition in infants when trained on audiobook data, it struggles to learnwith ecological
data, even with inductive biases. This suggests two directions of future work: (1) improv-
ing STELA with more inductive biases; (2) build a model that incorporates other learning
mechanisms (e.g., cross-situational learning, social feedback, etc.). Either way, there is
work to be done for both the psycholinguistic and AI communities, which we review
below.

Guidelines for psycholinguistics and AI communities

Modelling the environment
Concerning the learning environment, we believe that one challenge that lies ahead
consists of collecting and characterising more ecological data. As demonstrated above,
results are quite different when models are presented with audiobooks or long-form
recordings. We foresee that moving towards more naturalistic training sets will increase
the impact and relevance of language learning models.

As data is the crux of any language learning simulation, we believe constant efforts
must be put in place to collect and share ecological learning environments. On this front,
we would like to highlight important initiatives such as the privacy-preserving sharing
platforms for long-form audio recordings (VanDam et al., 2016) or video data (Simon,
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Gordon, Steiger & Gilmore, 2015), and the DARCLE (DAylong Recordings of Children’s
Language Environments, DARCLE.org, n.d.) community. We believe these initiatives
must become standard practices as they can transform our understanding of language
development by enabling incremental and reproducible science and fueling language
learning simulations with realistic data.

In addition, most of what we know concerning language development comes from
Western, Educated, Industrialised, Rich, and Democratic (WEIRD) populations
(Henrich, Heine & Norenzayan, 2010; Scaff, 2019), and this bias toward WEIRD
populations reflects in the type of data computational modellers have access
to. Current large-scale audio datasets – whether they contain child-centred recordings
or audiobooks – are primarily collected in American English (Kearns, 2014; VanDam
et al., 2016). We believe this represents a significant limitation for language realistic
learning simulations that can – and should – be run considering diverse socioeconomic
and cultural backgrounds. Doing so would help us extract and understand universal
constants taking place in the course of language development.

Finally, another challenge is to enrich the nature of the data provided to the learner by
incorporating ecologically collected multimodal data, in order to address the importance
of cross-situational learning in real life. Also, quantifying the nature and prevalence of
social feedback (some of which is nonverbal) is very important as a first step towards
building interactive models of the learning environment (Tsuji et al., 2021)

Modelling the learner
One key challenge on the learner side relates to the quantity of data needed to reach a
certain level of linguistic performance. Today’s most performant text-based language
models are trained on roughly one thousand times the amount of linguistic input afforded
to a typical child (Warstadt & Bowman, 2022). Therefore, current language models are
confronted with a data efficiency problem that is doomed to be even more critical when
learning from the raw audio, where other sources of variations have to be considered
(speaker’s identity, speech rate, acoustic conditions, etc.). Future research should focus on
implementing algorithms that can reach human-like performances with the same input
data available to an infant – that is, that can map the input and the output measures to
those of the modelled human.

Related to this question is the challenge of improving perceptual constancy (on the
difficulty of obtaining speaker-invariant representations, see van Niekerk, Nortje, Baas &
Kamper, 2021) for state-of-the-art learners of audio representations. As stated above,
speech sounds, words and sentences can be realised in numerous ways depending on the
speaker’s identity, the speech rate, or the acoustic environment. This problem is bypassed
when considering the text as input, although text brings other simplifying assumptions
irrelevant in the context of language acquisition. We believe normalising audio repre-
sentations along all dimensions irrelevant to language represents one crucial step to
bridging the performance gap between audio-based and text-based language models.

Finally, it is important to develop learners that go beyond the statistical learning
hypothesis (Erickson & Thiessen, 2015; Romberg & Saffran, 2010; Saffran et al., 1996).
Comparing this hypothesis with alternative ones (cross-modal grounding, social con-
structivism, etc.) will require developing learners with other learning mechanisms to play
a more critical role. Reinforcement learning may, for instance, integrate social and
interactive rewards, whereas supervised learning may integrate corrective feedback from
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caregivers. Admittedly, integrating multiple learning mechanisms and modalities in a
single learning simulation requires collaborative work across fields, as has been analysed
in Tsuji et al., 2021.

Modelling the outcome measures
The ultimate test of any language learning simulation is the comparison to humans.
Dupoux (2018) proposed to aim at cognitive indistinguishability in that setup: “a human
andmachine are cognitively indistinguishable with respect to a given set of cognitive tests
when they yield numerically overlapping results when run on these tests”. This critically
assumes that cognitive tests that can be applied to the infant and the learner alike are
available.

This is not an easy task, andmuchmore can be done in this regard. As discussed above,
outcome measures come in several flavours. Laboratory experiments require infants to
cooperate with the setting, which is not a given. As a result, the outcome measures are
loaded with non-linguistic factors. Infants’ performance depends on various factors that
most simulations do not currently consider (e.g., memory or fatigue). This problem is
even worse when considering babies for which measures are noisier (but see Blandón,
Cristia & Räsänen, 2021, who propose evaluations against meta-analyses). This meas-
urement noise needs to be integrated into the outcome model before direct comparisons
between infants and simulations can be done. We refer to this problem as the calibration
problem. Some outcome measures are more ecological, and extracted directly from the
speech of infants. This requires a learner that can also speak, which has not yet been
developed. Other measures, like the CDI, depend on the judgement of a caretaker, which
here again needs to be modelled specifically. Ultimately, the calibration of measures
extracted from themachine to those extracted from the human (or vice versa) will have to
be dealt with one measure at a time.

Similarly to HomeBank (VanDam et al., 2016) or Databrary (Simon et al., 2015), we
believe both the AI and the psycholinguistics communities would greatly benefit from a
privacy-preserving platform to share stimuli – as well as responses – used in psychology
experiments. Such a platform would allow researchers to 1) re-use stimuli as new
hypotheses arise; 2) revisit stimuli – or responses – to control for confounding factors,
or in the context of meta-analytic studies; and 3) create benchmarks that aim at
comparing humans and machines. Concerning the last point, we believe there are still
too few works that directly compare human and machine performance on a common
benchmark (but see Millet & Dunbar, 2020 for a sound discrimination capability study).
A stimuli-sharing platform would accelerate collaborative works across the AI and the
psycholinguistics community and could also extend to other domains of psychology
(including decision-making or social experiments, for instance).

Conclusion

The article’s main aim was to provide an extensive description of an emerging theoretical
approach in the field of language acquisition: learning simulations, and especially realistic
and broad-scope learning simulations. We proposed four criteria we believe are essential
for such a simulation to address the current theory crisis and act as a cumulative and
unifying theory of language acquisition. We then presented STELA, one such simulation,
and showed how it could help shed light on long-standing controversies. Realistic
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learning simulations can – and should – integrate the large body of knowledge acquired by
the different approaches that comprise the field of language acquisition. Such realistic
learning simulations are by nomeans replacements for other approaches, as all are needed
to reach a unified theoretical landscape. Indeed, verbal frameworks can inspire the design
of artificial learners, computational models can provide hands-on algorithms, statistical
models can exhibit relationships between input and learning outcomes, and corpus
studies help describe the characteristics of language environments. Of course, there
remain challenges ahead of us to build more complete realistic learning simulations,
and we dedicated the last section to address some of them.
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Appendix A: How to derive a probability from a Language Model?

Head-turn preference experiments (Nelson et al., 1995) provide a wealth of results
regarding the type of stimuli infants prefer to listen to. However, mechanisms underlying
this preference remain unobservable. Computational modelling provides complementary
information by assessing hypotheses about  statistical information might be used to
exhibit similar preference patterns as those exhibited by infants, or what underlying
information processing problem is being solved. Language models, and probabilistic
models in general, offer a natural way to extract a preference measure from an artificial
learner: a stimulus A is preferred to a stimulus B if A is more probable than B.

But how does one compute the probability of a stimulus from a LanguageModel? First,
the waveform goes through the AcousticModel which returns a discrete representation of
the audio: q1,q2…,qT . Then, the Language Model, which has been trained to predict the
next discrete unit of a sequence given its past context, assigns a probability to the discrete
sequence using the following chain-rule:

P q1,…,qT
� �

= Π
T

t = 1
P qtjq1,…,qt�1

� �

We compute the logarithm of the resulting probability which has the effect of
increasing the difference between probabilities assigned to a minimal pair of stimuli (e.
g., a word and a non-word that differ in a single phoneme). The logarithm is then
normalised by the length of the input stimuli to enforce the model to not show a constant
preference for the longest stimuli.
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Appendix B: Overview of the learner used in STELA

Figure A1. Model of the learner used in STELA. The Acoustic model is composed of a convolutional encoder which
delivers a vector of continuous values zt every 10ms. This is sent to a recurrent network aggregator that integrates
context and delivers vectors with the same time step. Contrastive Predictive Coding is trained to predict the
outputs of the encoder in the near-future (up to 120 ms). The output of the aggregator is sent to a K-means
algorithm that discretise the continuous representations ct into qt. Then, a language model (long-short term
memory (LSTM) network) is trained to predict the next qt unit based on past ones.
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