
ANZIAM J. 58(2017), 306–313
doi:10.1017/S1446181117000190

PARALLEL MACHINE SCHEDULING WITH JOB
DELIVERY COORDINATION

J. M. DONG1, X. S. WANG2, L. L. WANG3 and J. L. HU) 1

(Received 30 June, 2016; accepted 15 October, 2016; first published online 25 May 2017)

Abstract

We analyse a parallel (identical) machine scheduling problem with job delivery to
a single customer. For this problem, each job needs to be processed on m parallel
machines non-pre-emptively and then transported to a customer by one vehicle with
a limited physical capacity. The optimization goal is to minimize the makespan, the
time at which all the jobs are processed and delivered and the vehicle returns to the
machine. We present an approximation algorithm with a tight worst-case performance
ratio of 7/3 − 1/m for the general case, m ≥ 3.

2010 Mathematics subject classification: primary 90B35; secondary 90C27.

Keywords and phrases: scheduling, job delivery, bin packing, approximation algorithm.

1. Introduction

Coordinated production–transportation scheduling problems have received much
attention from both industry and academic researchers. In this paper, we consider the
scheduling problem in a parallel machine environment, in which jobs finished on the
parallel machines need to be delivered to a customer by a single vehicle with a limited
load capacity. And, the vehicle has to return to the machine for another shipment after
it delivers a shipment to the customer. The goal is to minimize the makespan, that
is, the time at which all the jobs are processed and delivered to the customer and the
vehicle returns to the machine.

Our target scheduling problem is formally described as follows. We are given m
parallel (identical) machines and a set of jobs J = {J1, J2, . . . , Jn} to be processed on
the machines. Each job J j has a non-pre-emptive processing time p j on the machine

1School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China;
e-mail: djm226@163.com, hujlhz@163.com.
2Department of Commodity, Yongan Futures Co. Ltd, Hangzhou 310000, China;
e-mail: xueshi1989@126.com.
3College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
e-mail: liangzi@hdu.edu.cn.
c© Australian Mathematical Society 2017, Serial-fee code 1446-1811/2017 $16.00

306

https://doi.org/10.1017/S1446181117000190 Published online by Cambridge University Press

http://orcid.org/0000-0002-1396-4357
http://orcid.org/0000-0003-0763-536X
mailto:djm226@163.com
mailto:hujlhz@163.com
mailto:xueshi1989@126.com
mailto:liangzi@hdu.edu.cn
https://doi.org/10.1017/S1446181117000190


[2] Parallel machine scheduling with job delivery coordination 307

and a physical size s j. The finished jobs are to be delivered to a customer by a single
vehicle and they can be transported by the vehicle in batches. The size s j of the job J j

represents its fractional space requirement on the vehicle and a batch is valid only if the
total size of the jobs therein does not exceed 1. The vehicle takes a constant time T for
a round trip between the machine and the customer. The objective is to minimize the
makespan Cmax. This problem can be denoted as (Pm→ D, k = 1 | v = 1, c = 1 | Cmax),
where “Pm→ D, k = 1” states that the jobs are first processed on m parallel machines
and then delivered to one customer; “v = 1, c = 1” means that only a vehicle of capacity
1 is employed to deliver the jobs; the last term states the objective being the makespan
Cmax. As the problem is NP-hard, we focus on polynomial time approximation
algorithms. We use the worst-case performance ratio to estimate such algorithms. In
general, for an instance I of a minimization NP-hard problem, let CH(I) and C∗(I)
denote, respectively, the objective value generated by an approximation algorithm
H and the optimal value. The worst-case ratio of H is defined by the largest ratio
CH(I)/C∗(I) for any I. If an algorithm has a worst-case ratio of ρ, then we call it the
ρ-approximation.

When m = 1, that is, when jobs are first processed on a single machine, Chang
and Lee [1] showed that the problem is NP-hard and presented a 5/3-approximation
algorithm. He et al. [4] presented an improved 53/35-approximation algorithm,
while Zhong et al. [8] presented an improved (3/2 + ε)-approximation algorithm. Lu
and Yuan [5] designed a best possible 3/2-approximation algorithm. When m = 2,
that is, when jobs are first processed on two parallel (identical) machines, Chang
and Lee [1] also presented an approximation algorithm with worst-case performance
ratio 2; Zhong et al. [8] presented an improved 5/3-approximation algorithm. Later,
Su et al. [7] presented an improved 8/5-approximation algorithm.

In this paper, we study the target problem (Pm→ D, k = 1 | v = 1, c = 1 | Cmax). We
present an approximation algorithm for the general case when m ≥ 3. The algorithm
has a tight worst-case performance ratio of 7/3 − 1/m. Note that the target problem
in the general case when m ≥ 3 has not been studied formally in the literature, and it
cannot be easily solved by applying the similar methods of dealing with the special
cases, m ≤ 2. Thus, this (7/3 − 1/m)-approximation algorithm is the first of such
results on this type of approximation algorithm.

Since the bin-packing problem is an important component problem inside the target
problem during the job delivery stage, to reduce the number of shipments, we will
employ the classical algorithm first-fit decreasing (FFD) for the bin-packing problem.
In the algorithm FFD, the jobs are sorted into a nonincreasing order of the size, and in
this order a job is placed into the lowest indexed batch to which it fits, or otherwise a
new batch is created for the job. We use b′ to denote the minimum number of batches
required in the bin-packing instance associated with the target problem; and let bFFD

denote the number of batches in the bin-packing solution generated by the algorithm
FFD. Let b∗ denote the number of batches in an optimal schedule to the target
problem. The algorithm FFD has a tight absolute worst-case performance guarantee
of bFFD ≤ 3b′/2 [6] and a tight asymptotic worst-case performance guarantee of

https://doi.org/10.1017/S1446181117000190 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000190


308 J. M. Dong et al. [3]

bFFD ≤ 11b′/9 + 6/9 [2]. Clearly, b′ ≤ b∗. We conclude that

bFFD ≤ min{ 32 b∗, 11
9 b∗ + 6

9 }. (1.1)

2. Approximation algorithm and proof of the worst-case performance ratio

We show in this section that the target problem (Pm→ D, k = 1 | v = 1, c = 1 | Cmax),
in the general case of m ≥ 3, admits a (7/3 − 1/m)-approximation algorithm, which
may be described as follows.

Algorithm 1 H1

Step 1. Use FFD to pack the jobs of J by their sizes into batches.
1.1. Let k1 be the total number of resulting batches, denoted as B1, B2, . . . , Bk1 .
1.2. Calculate the sum of processing times for jobs in Bi and denote it by Pi

for i = 1, 2, . . . , k1.
1.3. Re-index the batches such that P1 ≤ P2 ≤ · · · ≤ Pk1 .

Step 2. Sort the jobs within each batch into a nonincreasing order of the processing
time.

2.1. Starting with B1, assign each job in Bi to a machine with the least amount
of work so far (list scheduling rule [3]) for i = 1, 2, . . . , k1.

Step 3. Deliver a finished batch as early as possible. If multiple batches have finished
when the vehicle becomes available, deliver the batch with the smallest index.

We denote this approximation algorithm as H1. The achieved schedule by the
algorithm is denoted as π1 = 〈B1, B2, . . . , Bk1〉, which is a sequence of job batches.
Note that only after all of the jobs of a batch are finished can the batch be said to be
finished and ready for transportation to its customer. The makespan of the schedule π1

is denoted as Cπ1
max. Let ρi denote the latest completion time on the machine of the jobs

assigned to Bi. Thus, by H1,

Cπ1
max = max

1≤i≤k1

{ρi + (k1 − i + 1)T }. (2.1)

Next we estimate the makespan of an optimal schedule for the target problem,
denoted as C∗max. Let k∗ denote the number of batches in the optimal schedule. For
simplicity, the sum of the processing times of all jobs inJ is denoted as P, and let pmax

denote the largest processing time of the jobs among J . Without loss of generality,
we assume that jobs are processed consecutively on each machine. Secondly, since we
have only one transporter, and the processing of all jobs on the m parallel machines
needs at least max{P/m, pmax} times, we have the lower bound

C∗max ≥ max
{ P

m
+ T, k∗T, pmax + T

}
. (2.2)

https://doi.org/10.1017/S1446181117000190 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000190


[4] Parallel machine scheduling with job delivery coordination 309

Lemma 2.1. For the schedule π1,

ρi ≤
iP

mk1
+

m − 1
m

min{pmax, Pi}

for every i = 1, 2, . . . , k1.

Proof. Assume that the last job in batch Bi is Jl. Since batches are sequenced in
nondecreasing order of P j for all j, we get

∑i
j=1 P j ≤ iP/k1. Since the list scheduling

rule assigns the current job to the first available machine at the earliest possible time,
and the jobs in each batch are assigned to machines by this rule in the algorithm,

ρi ≤

∑i
j=1 P j − pl

m
+ pl ≤

iP
mk1

+
m − 1

m
pl ≤

iP
mk1

+
m − 1

m
min{pmax, Pi},

where the last inequality holds due to pl ≤ min{pmax, Pi}. This completes the proof. �

Consequently, using Lemma 2.1 and equations (2.1)–(2.2), we conclude that

Cπ1
max

C∗max
=

max1≤i≤k1{ρi + (k1 − i + 1)T }
C∗max

≤
max1≤i≤k1{(m − 1)pmax/m + iP/mk1 + (k1 − i + 1)T }

C∗max

≤
m − 1

m
+

max1≤i≤k1{iP/mk1 + iT/k1 + (k1 − i + 1 − (m − 1)/m − i/k1)T }
C∗max

≤
m − 1

m
+ max

1≤i≤k1

{ i
k1

+
k1 − i + 1 − (m − 1)/m − i/k1

k∗

}
.

Therefore,
Cπ1

max

C∗max
≤

m − 1
m

+ max
1≤i≤k1

{ i
k1

+
k1 + 1/m − i − i/k1

k∗

}
. (2.3)

Lemma 2.2. If k1 ≤ k∗, then Cπ1
max/C∗max ≤ 7/3 − 1/m.

Proof. If k1 < k∗, then

max
1≤i≤k1

{ i
k1

+
k1 + 1/m − i − i/k1

k∗

}
=

k2
1 + (k∗ − k1 − 1)k1 + k1/m

k1k∗
< 1,

since k∗ − k1 − 1 ≥ 0 and m ≥ 3. Consequently, equation (2.3) reduces to Cπ1
max/C∗max ≤

2 − 1/m.
If k1 = k∗, then

max
1≤i≤k1

{ i
k1

+
k1 + 1/m − i − i/k1

k∗

}
= max

1≤i≤k1

{k1 − i/k1 + 1/m
k1

}
≤ 1 −

1
k2

1

+
1
k1
≤

4
3
,

since m ≥ 3. Consequently, equation (2.3) becomes Cπ1
max/C∗max ≤ 7/3 − 1/m.

Thus, we have Cπ1
max/C∗max ≤ 7/3 − 1/m, which proves the lemma. �

Lemma 2.3. If k1 > k∗ and k∗ ≤ 5, then Cπ1
max/C∗max ≤ 7/3 − 1/m.

https://doi.org/10.1017/S1446181117000190 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000190


310 J. M. Dong et al. [5]

Proof. If k1 > k∗, we have k∗ ≥ 2 by equation (1.1). We consider the following two
cases.

Case 1. Let k∗ = 2. From equation (1.1), we have k1 = 3; thus, equation (2.3) becomes

Cπ1
max

C∗max
≤

m − 1
m

+ max
1≤i≤3

{ i
3

+
3 − 4i/3 + 1/m

2

}
≤

m − 1
m

+
4
3

=
7
3
−

1
m
,

where the second inequality holds due to m ≥ 3.

Case 2. Let 3 ≤ k∗ ≤ 5. From equation (1.1), we have k1 = k∗ + 1. When (k∗, k1) =

(3, 4), equation (2.3) becomes

Cπ1
max

C∗max
≤

m − 1
m

+ max
1≤i≤4

{ i
4

+
4 − 5i/4 + 1/m

3

}
=

41
18
−

1
m
,

where the last inequality holds due to m ≥ 3. Similarly, when (k∗, k1) = (4, 5) or
(k∗, k1) = (5, 6), it follows that

Cπ1
max

C∗max
≤

67
30
−

1
m

or
Cπ1

max

C∗max
≤

11
5
−

1
m
.

Thus, we always have Cπ1
max/C∗max ≤ 7/3 − 1/m, which completes the proof. �

Lemma 2.4. If k1 > k∗ and 6 ≤ k∗ ≤ 9, then Cπ1
max/C∗max ≤ 7/3 − 1/m.

Proof. If 6 ≤ k∗ ≤ 9, from equation (1.1), we have k1 ≤ k∗ + 2. When k1 = k∗ + 1,
equation (2.3) becomes

Cπ1
max

C∗max
≤

m − 1
m

+ max
1≤i≤k1

{k1 − i/k1 + 1/m
k∗

}
=

m − 1
m

+
k1 − 1/k1 + 1/m

k∗
≤

20
9
−

1
m
,

where the first inequality holds due to k1 > k∗ and the last inequality holds due to
k1 = k∗ + 1, k∗ ≥ 6 and m ≥ 3. When k1 = k∗ + 2, we consider the following two cases.

Case 1. (m ≥ 4) Since k1 = k∗ + 2, 6 ≤ k∗ ≤ 9 and m ≥ 4, equation (2.3) becomes

Cπ1
max

C∗max
≤

m − 1
m

+ max
1≤i≤k1

{k2
1 + (k∗ − k1 − 1)i + k1/m

k1k∗

}
=

m − 1
m

+
(k∗ + 2)2 − 3 + (k∗ + 2)/m

(k∗ + 2)k∗

≤
m − 1

m
+

(k∗ + 2)2

(k∗ + 2)k∗

≤
7
3
−

1
m
.

Case 2. (m = 3) From equation (2.1), we further distinguish the following three sub-
cases according to the value of Cπ1

max.

https://doi.org/10.1017/S1446181117000190 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000190


[6] Parallel machine scheduling with job delivery coordination 311

Case 2.1. Cπ1
max = ρk1 + T . It follows from Lemma 2.1 and equation (2.2) that

Cπ1
max

C∗max
≤

p/m + (2/3)pmax + T
C∗max

≤
5
3
.

Case 2.2. Cπ1
max = ρk1−1 + 2T . From Lemma 2.1,

ρk1−1 ≤

∑k1−1
j=1 P j

3
+

2
3

min{pmax, Pk1−1}.

Consequently, using Pk1−1 ≤ Pk1 and equation (2.2),

Cπ1
max

C∗max
≤

(∑k1−1
j=1 P j

)
/3 + (2/3) min{pmax, Pk1−1} + 2T

C∗max

≤

(∑k1−1
j=1 P j + Pk1−1 + pmax

)/
3 + 2T

C∗max

≤

(∑k1−1
j=1 P j + Pk1 + pmax

)/
3 + 2T

C∗max

=
(P + pmax)/3 + 2T

C∗max

≤ 2.

Case 2.3. Cπ1
max = max1≤i≤k1−2{ρi + (k1 − i + 1)T }. From Lemma 2.1, ρi ≤ (

∑i
j=1 P j)/3

+ 2Pi/3. Also, since P1 ≤ P2 ≤ · · · ≤ Pk1 ,
i∑

j=1

P j + 2Pi ≤

i+2∑
j=1

P j ≤ (i + 2)
P
k1

when i ≤ k1 − 2. Consequently, using equation (2.2), k1 = k∗ + 2 and 6 ≤ k∗ ≤ 9 yields

Cπ1
max

C∗max
≤

max1≤i≤k1−2

{( i∑
j=1

P j

)
/3 + 2Pi/3 + (k1 − i + 1)T

}
C∗max

≤ max
1≤i≤k1−2

{ (i + 2)P/3k1 + (k1 − i + 1)T
C∗max

}
≤ max

1≤i≤k1−2

{ (i + 2)P/3k1 + (i + 2)T/k1

(P/3) + T
+

(k1 − i + 1)T − (i + 2)T/k1

k∗T

}
= max

1≤i≤k1−2

{ i + 2
k1

+
k1 − i + 1 − (i + 2)/k1

k∗

}
=

(k∗ + 2)2 + 3k∗ − 3
k∗(k∗ + 2)

< 2.

In summary, we always have Cπ1
max/C∗max ≤ 7/3 − 1/m, which proves the lemma. �

https://doi.org/10.1017/S1446181117000190 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000190


312 J. M. Dong et al. [7]

Table 1. An instance I of the problem (Pm→ D, k = 1 | v = 1, c = 1 | Cmax) with m = 3 and T = 1.

Job index j 1 2 3 4 5 6

Processing time p j ε ε ε 1 1 1
Size s j 31/60 29/120 29/120 1/3 1/3 9/40

Lemma 2.5. If k1 > k∗ and k∗ ≥ 10, then

Cπ1
max

C∗max
≤

209
90
−

1
m
.

Proof. Inequality (2.3) changes to

Cπ1
max

C∗max
≤

m − 1
m

+ max
1≤i≤k1

{k1 − i/k1 + 1/m
k∗

}
≤

m − 1
m

+
11k∗/9 + 6/9 + 1/3

k∗
≤

209
90
−

1
m
.

Here the first inequality holds due to k1 > k∗, the second inequality holds due to
equation (1.1) and m ≥ 3 and the last inequality holds due to k∗ ≥ 10. This proves
the lemma. �

Theorem 2.6. For the problem (Pm→ D, k = 1 | v = 1, c = 1 | Cmax), in the general
case of m ≥ 3, the algorithm H1 is a (7/3 − 1/m)-approximation.

Proof. We prove the theorem by considering all feasible combinations of k∗ and k1

satisfying equation (1.1). All four of the different combinations of k∗ and k1 have been
separately dealt with in Lemmas 2.2–2.5. The maximum ratio between the makespan
achieved by the algorithm H1 and the optimal makespan C∗max among the four lemmas
is 7/3 − 1/m, which completes the proof. �

In addition, we present an instance I of the problem (Pm→ D, k = 1 | v = 1, c = 1 |
Cmax) in Table 1 to show that the performance ratio 7/3 − 1/m of the algorithm H1

is tight. In the instance I, there are six jobs, three machines and one vehicle with a
capacity of 1. A round trip between the machine and the customer is 1 (that is, T = 1).

The six jobs in the instance I can be formed into two batches; B∗1 = {J1, J2, J3} and
B∗2 = {J4, J5, J6}. Since the processing times of the batches are P∗1 = 3ε and P∗2 = 3, by
setting the job batch processing order as 〈B∗1, B

∗
2〉, we achieve a makespan 2 + 2ε when

ε > 0 is sufficiently small. In fact, observe that this is actually an optimal schedule,
that is, C∗max = 2 + ε.

On the other hand, the six jobs in the instance I can be formed into three batches
B1 = {J6}, B2 = {J1, J4} and B3 = {J5, J2, J3} by algorithm H1 and π1 = 〈B1, B2, B3〉.
Since P1 = 1, P2 = 1 + ε and P3 = 1 + 2ε, we have ρ1 = 1, ρ2 = 1 and ρ3 = 1 + ε.
Consequently, by equation (2.1), we have Cπ1

max = 4. It follows that the performance
ratio of the algorithm H1 on the instance I is 4/(2 + ε)→ 2 when ε → 0.

https://doi.org/10.1017/S1446181117000190 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000190


[8] Parallel machine scheduling with job delivery coordination 313

3. Conclusions

In this paper, we studied a parallel machine scheduling problem with the finished
job delivery to a single customer, (Pm→ D, k = 1 | v = 1, c = 1 | Cmax). We presented
an algorithm with a tight bound of 7/3 − 1/m for the general case when m ≥ 3. It would
be interesting to see whether the problem admits a better approximation algorithm, for
example, by using a better bin-packing algorithm or finding some relationship between
the job size and its processing times on the parallel machines. In addition, it is worth
extending the results to the problem of m uniform machines, which can be denoted as
(Qm→ D, k = 1 | v = 1, c = 1 | Cmax), and has not been studied even when m = 2.

Acknowledgements

J. M. Dong is supported by the National Natural Science Foundation of China
Grant No. 11501512 and the Science Foundation of Zhejiang Sci-Tech University
(ZSTU) Grant No. 13062171-Y; J. L. Hu is supported by the National Natural Science
Foundation of China Grant No. 11471286; and L. L. Wang is supported by the
National Natural Science Foundation of China Grant No. 61503109.

References
[1] Y.-C. Chang and C.-Y. Lee, “Machine scheduling with job delivery coordination”, European J. Oper.

Res. 158 (2004) 470–487; doi:10.1016/S0377-2217(03)00364-3.
[2] G. Dósa, R. Li, X. Han and Zs. Tuza, “Tight absolute bound for first fit decreasing bin-packing:

FFD(L) ≤ (11/9)OPT(L) + 6/9”, Theoret. Comput. Sci. 510 (2013) 13–61;
doi:10.1016/j.tcs.2013.09.007.

[3] R. L. Graham, “Bounds for certain multiprocessing anomalies”, Bell Syst. Tech. J. 45 (1966)
1563–1581; doi:10.1002/j.1538-7305.1966.tb01709.x.

[4] Y. He, W. Y. Zhong and H. Gu, “Improved algorithms for two single machine scheduling problems”,
Theoret. Comput. Sci. 363 (2006) 257–265; doi:10.1016/j.tcs.2006.04.014.

[5] L. F. Lu and J. J. Yuan, “Single machine scheduling with job delivery to minimize makespan”,
Asia-Pac. J. Oper. Res. 25 (2008) 1–10; doi:10.1142/S0217595908001596.

[6] D. Simchi-Levi, “New worst-case results for the bin packing problem”, Naval Res. Logist. 41 (1994)
579–585; doi:10.1002/1520-6750(199406)41:4<579::AID-NAV3220410409>3.0.CO;2-G.

[7] C.-S. Su, J. C.-H. Pan and T.-S. Hsu, “A new heuristic algorithm for the machine scheduling problem
with job delivery coordination”, Theoret. Comput. Sci. 410 (2009) 2581–2591;
doi:10.1016/j.tcs.2009.02.019.

[8] W. Y. Zhong, G. Dósa and Z. Y. Tan, “On the machine scheduling problem with job delivery
coordination”, European J. Oper. Res. 182 (2007) 1057–1072; doi:10.1016/j.ejor.2006.09.059.

https://doi.org/10.1017/S1446181117000190 Published online by Cambridge University Press

https://doi.org/10.1016/S0377-2217(03)00364-3
https://doi.org/10.1016/j.tcs.2013.09.007
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1016/j.tcs.2006.04.014
https://doi.org/10.1142/S0217595908001596
http://dx.doi.org/10.1002/1520-6750(199406)41:4<579::AID-NAV3220410409>3.0.CO;2-G
https://doi.org/10.1016/j.tcs.2009.02.019
https://doi.org/10.1016/j.ejor.2006.09.059
https://doi.org/10.1017/S1446181117000190

	Introduction
	Approximation algorithm and proof of the worst-case performance ratio
	Conclusions
	References

