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Extension of Holomorphic Functions
From One Side of a Hypersurface

Luca Baracco

Abstract. We give a new proof of former results by G. Zampieri and the author on extension of holo-
morphic functions from one side €2 of a real hypersurface M of C" in the presence of an analytic disc
tangent to M, attached to {2 but not to M. Our method enables us to weaken the regularity assump-
tions both for the hypersurface and the disc.

1 Introduction

Let M beaCh® hypersurface of C" for 0 < o < 1, and €2 a domain of C” with bound-
ary M. We prove in Theorem 2.3 that the existence of an analytic disc A tangent to M
ata point z° € M N JA, C! up to the boundary, attached to Q but not to M, that is
satisfying A C Q but DA ¢ M, implies extension of holomorphic functions from
to a full neighborhood of z°. Also, if A is contained in 2 but not in M in any neigh-
borhood of z°%, then the above result yields extension of germs at z° of holomorphic
functions on €. In fact, let z; be a sequence of points of A which approach z° and
belong to 2 and not to M, and let Ay C A be a sequence of (smooth and small) discs
contained in A with z; € A(OAy), and which coincide with A in a neighborhood of
7 = 1. Define Ay as A restricted to Ay (which implies Ay C 2); then our subsequent
Theorem 2.3 applies, in particular, to this sequence of discs Ag.

We observe now that if M contains a complex hypersurface, say h = 0, then %
does not extend. In particular, one-sided discs through z° tangent to M are in fact
contained in M in a neighborhood of z°.

We can restate our theorem in terms of propagation of extendibility of holomor-
phic functions from one side of M to C" along a disc A whose boundary is contained
in M. In fact, let A be tangent to M at z° € 0A, and f be holomorphic in €2 and
extend holomorphically to a full neighborhood of another point z' € A. By a small
perturbation € of {2 which keeps 2 unchanged in a neighborhood of z° and such that
z' becomes a point of the interior of ), we enter in the assumptions of the subsequent
Theorem 2.3. Thus f extends holomorphically also to a neighborhood of z°. If A is a
“defective” disc, the above propagation principle is already contained in [1] and [10].
If A C M, and z° belongs to the interior of 4, it is the main result of [6] which is also
valid for submanifolds of any codimension, not necessarily for hypersurfaces. Note
that in this case A does not need to be small.

Our theorem is closely related to the results of [2] and [11] where the technique of
the infinitesimal deformation of the disc A is used. Instead, in the present paper, we
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use a method which is the “boundary version” of that in [7]. We only deal with the
disc A and its translations inward (2, and therefore avoid use of the implicit function
Theorem. This allows us to weaken the assumption of regularity of M (resp. A) from
C> (resp. C1®) to C1 (resp. C'). Also, this yields a simple and geometric proof.

2 Statement and Proof of the Main Theorem

Let 2 be a domain of C", z a point of 2, { B} the system of balls with center z, v a unit
vector in C", f a holomorphic function on 2. We denoteby A = {r € C: |7| < 1}
the standard discin C, and set A, = {r7 : 7 € A}.

Definition 2.1 (i) We set

1’;’3 = sup{ r: f extends holomorphically to
a neighborhood of Z + VA, forany z € B} .

(i) We also set
ri(z) = sgp r;’B.

It is clear that rif(z), z € (), is a lower semicontinuous function of z. We will make
an essential use of the following elementary remark. Let z € €2 and z° € 02 be a
pair of points with the property that the vector z° — z is normal to 0f2 at z°. We
write v = éi:; and §(z) = |z° — z|; thus §(2) is the distance of z from 99). In this

situation, for a holomorphic function f on :

if r7(z) > d(2), then f extends holomorphically to a full neighborhood of z°.

The proof is a consequence of the definition itself of r*(z). We discuss now in more
detail the properties of ri. We first show that it describes the convergence radius of
the Taylor expansion of f in the v-direction. In other terms we claim that

(2.1)  r{(&) = sup{r: |0 f(z)| < cklr~* for some B,Vz € B,Vk € N},

where 0, denotes the holomorphic derivative along the v-direction. In fact “<” is
clear by Cauchy’s inequalities. As for “>”, we denote by (z;, z’) the variables in C",
and suppose that the direction of v is that of the z;-axis. In a polydisc & + (A, X
A, x --+), f is the sum of a “double” series in z; — & and z/ — &’ that we may
rearrange as y_, ax(z')(z; — &1)F the coefficients ax(z") being holomorphic. If r is a
number as in the right side of (2.1), then the above series converges for z; € & + A,
and therefore defines a holomorphic function on € + (A, x A, X ---). This proves
that f is holomorphic in a neighborhood of z + (A, x {0} x {0}---)Vz € Bfora
ball B with center &; in particular rj”((f ) > r which proves our claim. We prove next
the following central statement (cf. also [7]):

Proposition 2.2 Let f be holomorphic in €); then log ry is plurisuperharmonic in

Q, that is, over any 1-dimensional disc contained in €, it stands above the harmonic
extension from the boundary.
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Proof Fix a point &,, consider nearby points &, and denote by S, discs with center
¢ contained in €2 approaching a limit disc S¢,. We will use the notation “m.v.ps,” to
denote the mean value along 9S¢; we have for any r < r along dS:

log|8; f(€)] < m.v.s, log |} f|

< logck! — km.v.ps, logr,

(2.2)

where the first inequality is clear because log |0 | s. is subharmonic, and the second
is a consequence of (2.1). With the notation ¢ := log r we then have

log r;ﬁB sup{t : log |0} f(€)| < logck! — kt V¢ € B}

v

(2.3) sup{t : t < m.v.ps logry V¢ € B}

V1£n€fB m.v.ys, log rr
where the central inequality follows from (2.2). It follows

logrf(&,) = suplogry” > liminfm.v.ps logry
. €

(2.4)

> m.v.ps,, logry,

where the first inequality follows from (2.3) and the second from Fatou’s Theorem.
|

Let A = A(7), 7 € A, be a small analytic disc in C", C! up to the boundary. This
means that A extends as a C! embedding of a neighborhood of A into C".

Theorem 2.3  Let 2 be a domain of C* with a C'* boundary M = 9 in a neigh-
borhood of a point z° of M, let A be a small disc C' up to the boundary, with z° € OA,
which satisfies

TeA C TpoM,
(2.5) 0A C Q,
OANQ # o

Let B be a ball with center z° which contains A; then holomorphic functions on Q N B
extend holomorphically to a fixed neighborhood of z°.

Proof We select a point z! € 0A N  and fix our notation with z° = A(1), z! =
A(—1). We also choose complex coordinates z = (z;,z’), z = x + iy in C" so that

z° = 0, M is defined by the equation

y1 = h(x;,z") with h(0,0) = 0 and dh(0,0) = 0,
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and (2 is the side of M defined by y; < h. For0 < r < 1,0 < 6 < 2m, denote by
7 = re'’ the point in the standard disc A. Let v := (i,0,...) be the unit exterior
normal to €2 at z°, and p the unit tangent vector parallel to 9,A(1). Choose a (2n—2)-
dimensional plane L C T, M transversal to i, decompose T,,M = Ry & L, and, for
small parameters 1 and 3, and for a vector A € L with |\| < 1, define

Ay = —nv+Bn(p+A) +A.

Denote by € the diameter of A, and take a holomorphic function f on 2 N B. Let ¢
be a local bound for the C!**-norm of M. For a constant o which depends on the
distance of z' to 92 and on neither 7 nor 3, we have

(2.6)
rio Appa(e?) = n(1 —cfn*)(1 - (eh)?) foranyfin [0,27],
r)’i ) A,,’,gﬁ,\(e"g) >0 for 6 in a neighborhood of 7.

Write n(0) := n(1 — ¢B7 %) (1 — (ef)?) and, for T € A, § € [0,27], denote by
P(7,0) the Poisson kernel. Evaluation at z = A, 5 (r) with r € [—1,1] close to 1

yields
2T T+e o
1ogr}(z)z/ P(r,@)logn(@)d0+/ P(r,e)log(—) a9
0 T—€ n
2T
(2.7) > log(n(1 — ¢8'"n™)) +/ P(r,0)log(1 — (¢0)?) dO

+ /W P(r,0) 1og( %) do.

Denote by J; and J; the first and second integral respectively in the second and third
lines of (2.7). Note that P(r,0) = m < ¢(07%)(1 — r). It follows that J; >

—e(1 —r)yandJ, > ¢ log(}])(l — r) for a suitable ¢; > 0. By this, (2.7) implies for
z=Ayp(r)

(2.8) Fi(z) = (1 — B ) (1 — el — 1)) (1 v log(%) (1- r)> ,

(provided that ¢; log(}l)(l — r) is small). Recall that A is C! up to the boundary

and tangent to M, and that M itself is C1“. We use the notation Ly = {Ay (1)
Vr € [—1,1]}. Itis clear that for any 7, 3, there is A such that I, 5, contains a point
zy 81 = 1,8 (ry,5,2) having all coordinates, but y;, which are 0. Now, for this point
ry,3,» must be proportional to 37. By this fact we can easily check that

(29) 6(27],{3,)\) < 77(1 - CZﬂz)a

for a suitable ¢, > 0. We notice that in order to get extension at z° = 0 it will suffice
to show that

(2.10) ri(zy.50) > 6(2y,80)-
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In turn, on account of (2.8), (2.9), it will suffice for (2.10) to show that

(2.11) Cz—lnlog( ) (1 —1)> B 4 en(l — 1) + B

1
n

Now, it is clear that by choosing # = 5!, (2.11) will be satisfied for sufficiently
small ) (which also implies, among other things, that ¢, log(%)(l — r) is small). This
proves (2.10) and implies holomorphic extension of f at z°. ]
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