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The energetically independent linear wave and geostrophic (vortex) solutions are shown
to be a complete basis for velocity and density variables (u, v,w, p) in a rotating
non-hydrostatic Boussinesq fluid with arbitrary stratification and non-periodic vertical
boundaries. This work extends the familiar wave-vortex decomposition for triply periodic
domains with constant stratification. As a consequence of the decomposition, the fluid
can be unambiguously separated into decoupled linear wave and geostrophic components
at each instant in time, without the need for temporal filtering. The fluid can then be
diagnosed for temporal changes in wave and geostrophic coefficients at each unique
wavenumber and mode, including those that inevitably occur due to nonlinear interactions.
We demonstrate that this methodology can be used to determine which physical
interactions cause the transfer of energy between modes by projecting the nonlinear
equations of motion onto the wave-vortex basis. In the particular example given, we
show that an eddy in geostrophic balance superimposed with inertial oscillations at the
surface transfers energy from the inertial oscillations to internal gravity wave modes. This
approach can be applied more generally to determine which mechanisms are involved in
energy transfers between wave and vortices, including their respective scales. Finally,
we show that the nonlinear equations of motion expressed in a wave-vortex basis are
computationally efficient for certain problems. In cases where stratification profiles vary
strongly with depth, this approach may be an attractive alternative to traditional spectral
models for rotating Boussinesq flow.
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1. Introduction

The linearized rotating Boussinesq equations admit two solution types — inertia—gravity
waves and geostrophic (vortex) motions. The wave and geostrophic solutions form the
foundation for how we understand and interpret ocean and atmosphere observations in a
wide variety of contexts. These two types of linear motion are predictive in the sense that
knowledge of the solution at one time enables knowledge of the solution for all time. Such
solutions thus guide our intuition for how the ocean evolves, while deviations from those
predictions also serve as a direct measurement of nonlinearity. For these reasons, a great
deal of effort goes into separating fluid motions into these two types of solutions.

Wave and vortex solutions can be separated in the frequency—wavenumber domain by
utilizing the dispersion relation of the linear wave solutions, a method well suited to model
output (e.g. Savage et al. 2017; Torres et al. 2018). With more sparse in situ observations,
other methods have been developed to make this same separation; however, these typically
require additional statistical assumptions to overcome the limitations of sparse sampling
(Lien & Miiller 1992; Biihler, Callies & Ferrari 2014; Lien & Sanford 2019; Oscroft
et al. 2021). In idealized Boussinesq models with triply periodic domains and constant
stratification, such a decomposition can be made unambiguously at each instant in time
(Bartello 1995; Smith & Waleffe 2002; Waite & Bartello 2006). For each resolved
wavenumber the decomposition splits the flow into two inertia—gravity waves (A1), with
frequencies that lie between the Coriolis, fp, and the buoyancy frequency, N; and a
zero-frequency, geostrophic solution (Ap), which accounts for all linear potential vorticity
(PV). Thus, the wave-vortex decomposition is a linear transformation that projects the
variables (u, v, p) onto an equivalent representation (A4, A_, Ag) of two wave and one
vortex mode without loss of information. Note, because the transformation uses vertical
eigenmodes that guarantee the continuity equation is satisfied, the vertical velocity, w, is
redundant and not needed in the transformation. Furthermore, the inverse transformation
can recover both w and pressure from the wave-vortex components (A, A_, Ayp).

Aside from being an alternative and compact representation of the dynamical variables,
the wave-vortex decomposition has a number of applications. Unlike other spectral
representations of fluid flow, the wave-vortex projection is useful because it projects
directly onto solutions of the equations of motion, including, as shown in this manuscript,
in the case of arbitrary stratification. Each wave and vortex solution is energetically
independent and coefficients of the projection are thus physically meaningful, directly
encoding the amplitude and phase of the unique wave and geostrophic solutions. For
example, applying the wave-vortex projection to output from a perfectly linear wave model
will show no changes in amplitude and phase over time, while in contrast, a nonlinear
wavelike process will have amplitude and phase that become decorrelated with time.
Alternatively, for flows that bear no resemblance to the linear solutions, the projection
may not be meaningful — thus the interpretation of the components as representations of
wave and geostrophic components is ultimately problem specific.

One of the simplest diagnostics utilizing the wave-vortex decomposition is assessing
how total energy shifts between inertial, internal gravity waves and geostrophic solutions.
The physical mechanisms that transfer energy between wave-vortex modes can further be
diagnosed by projecting the nonlinear equations of motion into wave-vortex space. This
approach was used by Lelong & Riley (1991) and Bartello (1995) to diagnose transfer
in the turbulence cascade, and also, for example, by Arbic et al. (2012) to diagnose
energy transfers across modes and wavenumbers in quasi-geostrophic turbulence. With the
nonlinear equations of motion projected onto the wave-vortex modes, it is also possible
to create a series of reduced-interaction models, as has been done for triply periodic
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Figure 1. Buoyancy frequency as a function of depth for a location in the Eastern Mediterranean Sea. Black
dots indicate regularly spaced grid points, while horizontal lines are the roots (Gauss quadrature points) of
the 19th internal mode. Note that the vertical scale changes at 150 m depth and the deep buoyancy frequency
decreases to order 10=3 cycles per hour (c.p.h.) below ~900 m.

domains (Remmel 2010; Remmel, Smith & Sukhatme 2010; Hernandez-Duefias, Smith
& Stechmann 2014). These models are reduced versions of the equations of motions that
restrict interactions between certain modes. For example, restricting interactions between
only PV modes results in the quasi-geostrophic equations, while restricting interactions
between only wave modes results in an extension of the weak wave turbulence model
(Remmel 2010).

While the aforementioned studies have addressed and utilized the wave-vortex
decomposition for the case of constant stratification, typical stratification profiles in the
ocean often resemble an exponential-like function, as shown in figure 1. A computational
challenge that arises when solving the equations of motion on a regular grid with such
stratification is that, while the grid resolution (black dots in the figure) is more than
adequate at depth, rapid variations near the surface are not resolved, even with large
numbers of grid points (257 in this case). To address this limitation, in this manuscript
we extend the wave-vortex decomposition for Boussinesq flows to arbitrary non-constant
stratification. This involves solving an eigenvalue problem (EVP) to obtain the vertical
dependence (Early, Lelong & Smith 2020), rather than Fourier mode expansions in the
three spatial directions as in the case of constant stratification. We begin in §§ 2 and 3 with
the linearized equations of motion and their solutions. Section 4 then details the projection
onto the vertical modes, while § 5 shows the decomposition itself.
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In §6 we provide an example application in which we diagnose the results of the
Cyprus eddy studied by Lelong, Cuypers & Bouruet-Aubertot (2020), in which an eddy in
geostrophic balance superimposed with inertial oscillations at the surface transfers energy
from the inertial oscillations to generate internal gravity waves. The present decomposition
is performed at each instant in time using the same model output, and is shown to
agree with the temporal filtering based method used in the original study. Results of the
present analysis show that advection of geostrophic vorticity by the inertial oscillations
accounts for all the energy transfer from the inertial oscillations to internal gravity waves,
confirming the hypothesis in the original study.

Section 7 discusses the implications of these results and addresses general challenges
encountered in numerical modelling, including the important implications that, in cases
of variable stratification, regularly spaced grids may only resolve a small fraction of
the physically relevant vertical modes, and as such, it may be more computationally
efficient to integrate the nonlinear equations of motion in wave-vortex space than in
physical space. Finally, § 8 offers some concluding remarks. Appendix A shows how
the results are simplified for constant stratification, and appendix B details the numerical
implementation. The projection of the nonlinear equations of motion onto the wave-vortex
modes is documented in appendix C.

2. Background

The linearized, unforced, inviscid equations of motion for fluid velocity u(x,y, z, 1),
v(x,y,z,1), w(x,y, z, t), on an f-plane are

1

diu — fov = ——0wp (2.1a)
Lo
1
v + fou = ——0yp (2.1b)
00
1 P
ow=——0p—g— (2.1¢)
£0 £0
Oy + 0yv + 9w =0 (2.1d)
dp +wid;p = 0. (2.1e)

Here, p(x,y,z,t) and p(x,y,z,t) are perturbation pressure and density, respectively,
defined such that total pressure p(x,V,z,t) = po(z) + p(x,y,z,t) and total density
Prot(X, ¥, 2, 1) = po + p(2) + p(x,y, z, 1) where 9:po(2) = —g(po + p(z)). All variables in
(2.1a)—~(2.1¢) are functions of x, y, z and ¢, except p, which is only a function of z.
We use the usual definition of buoyancy frequency, N*(z) = —(g/p0)d.p. Throughout
this manuscript we use the linear approximation to isopycnal displacement n = —p/p;
rather than density anomaly. With this notation (2.1¢) becomes w = 9d;n and (2.1c) can be
similarly rewritten.

We assume boundaries are periodic in the horizontal, (x, y), and bounded in the vertical,
z. The lower boundary is assumed flat at z = —D with free slip and w(—D) = 0, and no
density anomaly, p(—D) = 0. Similarly, the upper boundary is taken to be a free-slip rigid
lid with w(0) = 0 and also no density anomaly, p(0) = 0.

The depth-integrated energy densities of the flow are

0 0 0
HKE = | / W +v?)dz, VKE=1 / w?dz, PE=1 / N*n*dz, (2.2a—c)
-D -D -D
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where HKE, VKE and PE are the horizontal kinetic energy, vertical kinetic energy and
potential energy per unit mass, respectively. The other conserved quantity of interest is the
quantity typically identified as quasi-geostrophic PV,

PV = 0,0 — dyu — fodon (2.3)

which can be directly derived from the linear equations (2.1a)—(2.1¢), or found as the linear
approximation to the available potential vorticity (APV) as defined by Wagner & Young
(2015).

It is noteworthy that linearized Ertel PV does not correspond to a useful quantity in this
model — it is neither conserved nor time independent for the internal gravity wave solutions
(see (3.23)). Linearized Ertel PV is

(§ + /}fo) -V pror
Prot

1 i
~ (£%p2 + fopz + fopz) . (2.5)

Ertel PV = (2.4)

where ¢ is vorticity and ¢* = d,v — dyu is its vertical component. Notable is that linear
Ertel PV per (2.5) does not equal the conserved PV quantity (2.3) — the primary difficulty
being that 9,7 is not proportional to d,p/p, for non-constant stratification. Applying the
total derivative to (2.5) results in

d I _ _
g Ertel PV) ~ 0 (Pe0L™ + fodipz + fowbyz) (2.6)

which is not a conservation equation, but a balance between three terms: local changes in
the vertical component of vorticity, local changes in the vertical gradient of the density
anomaly and the vertical advection of the background density gradient. The connection
between (2.6) and the conserved PV (2.3) is found using the thermodynamic equation
(2.1e) and re-arranging, which reproduces (2.3),

dg(Ertel PV) ~ P 0 (;Z + foi <§>> (2.7)
t £0 0z Pz

up to a scaling factor. The key difference between quasi-geostrophic PV (2.3) and linear
Ertel PV (2.5) is that the latter neglects vertical advection of the background density
gradient. In the present context then, APV as defined in Wagner & Young (2015) is the
relevant conserved quantity.

3. Wave-vortex solutions
Solutions to (2.1a)—(2.1e) are assumed to take the separable form

fOy, 20 =Y 3@ expitke + ) Fiu(2) + c.c., 3.1)
Jjkl
for u, v, p and
g, y, 2,0 = Y 3@ exp(itkx + ) Gu(2) + c.c., (3.2)
Jjki

for w and n. This presumes a Fourier basis satisfying the periodic boundary conditions in
x, y and real-valued functions Fjy(z), Gju(z) satisfying the vertical boundary problem.
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The summation is over all wavenumbers k, [, but also over eigenmodes j from the
bases {Fji(z)} and {Gji;(2)}, indicated with subscripts to emphasize their dependence on
wavenumbers k and /. The coefficients ]E-kl(t), gjki (1) are complex, encoding both amplitude
and phase. The ‘c.c.” refers to the complex conjugate, which contains half the power of the
real-valued solutions, but no new information. Although the wave-vortex decomposition
is performed at fixed time in the time domain f?k[(t), it is useful to express solutions in
the frequency domain, in which case we denote the variables with °, e.g. ﬁkl(t) = f,-kl elor
Finally, we will often drop the subscripts jk/ entirely, and simply work with the coefficients
at a fixed j, k and /.

Using the thermodynamic equation (2.1e) to replace w with 7;, solutions to (2.1a)—(2.1d)
must satisfy

A

it — fob = —ik 2 (3.3a)
00
o . D
iwv + fou = —il— (3.3b)
£0
2 2\~ i]
(N —w ) iG=—LoF (3.3¢)
£0
(ikit +il0) F = —iwnd.G. (3.3d)

We now examine all possible solutions to these equations of motion by considering
zero and non-zero frequency, as well as zero and non-zero horizontal wavenumbers. The
vertical structure is treated in detail for each solution.

3.1. Geostrophic solutions, w = 0, +P2=0
Geostrophic solutions require a horizontal density anomaly, and because there is no
mean vertical or horizontal density anomaly by definition, there are no mean geostrophic
currents in this model. Any mean density anomaly should be subsumed into the definition
of the mean density p.

3.2. Geostrophic solutions, v = 0, K+12>0

Geostrophic solutions have no time variation, and the thermodynamic equation therefore
implies that w = 0. Assuming non-zero horizontal wavenumber k> + > > 0, the equations
of motion (3.3a)—(3.3d) reduce to

A

—fob = —ik -, (3.4a)
Lo
foir = —itZ, (3.4b)
£0
NG, = —Lo.F,, (3.4c)
£0
(ikit +il0) Fy = 0, (3.4d)

where Fg(z), G4(z) denote the geostrophic vertical structure functions. The only equation
of consequence for the vertical structure is (3.4¢). With no vertical velocity, the rigid lid
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boundary conditions place no constraint on F,(z), G,4(z). The decision to disallow density
anomalies at the boundaries implies that G,(z) is an odd function, and therefore Fy(2) is
an even function. Although gravity g does not enter into (3.4) without a free surface, it is
still convenient to set the separation constant in (3.4¢) such that p = ppgn and N?G, =
—g0.Fg, with G4(0) = G4z(—D) = 0 at the boundaries. This allows the amplitude of the
solution to be expressed in terms of sea-surface height, analogous to typical notation for
geostrophic motions.
The geostrophic solution, or vortex solution, is given by,

—i}%ng(z)
Zg _Ao] g e 4+ cc (3.5)
S 1f—kFg(z) R :
Ng 0
G (2)

where Ag is a complex-valued amplitude containing the phase information, and 6y = kx +
ly.

As a consequence of only having one constraint connecting Fg(z) and Gg(z), there is
no preferred set of vertical basis functions for the geostrophic solution. Any complete
basis can be used to represent the geostrophic solution. However, near-geostrophic
theories with a different choice of scalings, such as quasi-geostrophy (QG; e.g. see
Pedlosky (1987)), have non-zero vertical velocities and therefore still require that
three-dimensional continuity be satisfied. To maintain continuity we take (3.3d) and set the
separation constant to £, such that F(z) = hd,G(z) for all z. This additional requirement,

combined with the hydrostatic vertical momentum condition N°G = —gd,F, results in two
Sturm—Liouville eigenvalue problems for hydrostatic (HS) vertical modes,
2 HS 2
o _ N —G» (3.6)
dz? gh

with boundary conditions G'5(0) = G#5(—D) = 0 or,

d [ 1 dFf 1
—=—L|=——F (3.7)
dz \ N2 dz gh

with 3,FH5(0) = 3,F"S(—D) = 0 where j is the mode number and eigenvalue h; is the
equivalent depth. It follows directly from Sturm-Liouville theory that the vertical modes
resulting from the HS EVPs satisfy the orthogonality conditions

1 0
§/DN2(z)G{’SGj’.’S dz = &y, (3.8)

and

/ FISFIS dz = hsy, (3.9)
-D

where we have implicitly normalized the amplitude of the modes. The 1/g normalization
in (3.8) arises naturally when using a free-surface boundary condition, and is kept here for
consistency.

The importance of the {GHS (z)} and {F 5 (7)) bases are twofold. First, Sturm—Liouville

theory guarantees that they are complete and therefore capable of representing any
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function. Second, the specific relationship between these modes is such that both
continuity and the linearized vertical momentum equation are satisfied. In practice, this
means that they often reflect the vertical structure of various linear solutions. It is in
this sense that {GJ.HS (z)} and {FJHS (z)} are ‘preferred’ bases for representing certain flows,
including quasi-geostrophy and hydrostatic linear internal waves.

The horizontal kinetic energy and potential energy of the geostrophic solution (3.5) as a
function of depth are found by averaging over time and horizontally, including the energy
from the complex conjugate,

A% 82 2 0 2
HKE, = —=K [ F:(z)dz (3.10)
8 4f02 _D 8
A(2) 0 2 2
PE, = 7 /_DN (z)Gg(z) dz, (3.11)

where K> = k> 4 I?. Vertical kinetic energy is identically zero. If we use the hydrostatic
normal modes F]HS , G]HS then depth-integrated horizontal kinetic energy reduces to

HKE, = (A%/4)(g2hj/ fOZ)K2 and depth-integrated potential energy reduces to PE, =

A3/ 9s.
The linearized potential vorticity is,
Aog 2 Jo dF,(2) i’
PV, = 2f (K Fo(2) — — (]W i e +c.c., (3.12)
as is traditionally written, or simply
2 HS [\ A6
PV, = — th( WK+ 3) S @) e + e, (3.13)

after using the hydrostatic modes and (3.7) to rewrite F,. These expressions are exactly
the potential vorticity identified in the quasi-geostrophic potential vorticity equation. In
contrast, the Ertel PV is,

Aofo

Ertel PV, = % |:PVg — —— (9;:Inp;) G(2) elfo + f0:| +c.c., (3.14)
0

which does not correctly account for changes in the density gradient (see also Wagner &
Young 2015).

Under rigid lid conditions, there also exists a barotropic mode (j = 0) where ng (z) =
const with no associated buoyancy anomaly, G(I){S (z) = 0. This case will be handled
separately in the decomposition.

3.3. Inertial oscillation solution, w #0,k> + 1> =0

This solution has no vertical velocity, density anomaly or pressure gradients. It is simply
a horizontally uniform oscillating horizontal velocity field, with no constraints on vertical
structure other than the boundary conditions. In the triply periodic model used in Smith &
Waleffe (2002) this solution is referred to as the vertically sheared horizontal mode, while
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in the bounded domain it is identified as the inertial oscillation solution,

ur Uy cos(fotr + ¢o) F1(2)
vy | = | =Ursin(fot + ¢o)Fi(2) | . (3.15)
nr 0

Here, since there is no conjugate to k%> 4+ > = 0, the amplitude is purely real. Fy(z) is
an arbitrary function, and can be expanded in any complete basis. This is noteworthy
because it essentially leaves the boundary conditions for F;(z) unspecified, and unlike
other solutions considered here, d,F;(0) and d,F;(—D) are not necessarily zero. Therefore,
one must be careful not to expand F7(z) in a basis with unnecessarily restrictive boundary
conditions. That said, there is not necessarily any physical insight to be gained from this
additional freedom at the boundaries, and it would certainly be reasonable to restrict the
model to solutions where d,F7(0) = 9,F;(—D) = 0.

3.4. Wave solutions, w # 0, K+PF>0
Similar to the geostrophic solution where we assumed that p = pogn, the vertical

momentum equation requires that (N> — w?)G = —gd.F. Combined with continuity F =
ho,G, the vertical dependence vanishes from the problem and we are left with
iw —fo igk||u 0
fo iw igl||0o|=]0 (3.16)
kh Ih o n 0

This system of equations admits the internal wave solutions when

w=./ghK> + f3. (3.17)

The 4 wave solutions are given by,

ko il ]
ko Filfo oy
m R wK
og | = 2 | 0 ERf by e 4 e, (3.18)
2 wK
N+ Kh
F—G©)
L w _

where the horizontal phase is given by 01 = kx + ly = wt + ¢ and the amplitude is chosen
so that depth-integrated total energy is A2h/2, as will be shown below.

Combining the vertical constraints from non-hydrostatic vertical momentum (N> —
w?)G = —gd.F and continuity F = hd.G with the dispersion relation (3.17) results in the
K-constant, non-hydrostatic Sturm-Liouville problem (Early et al. 2020),

2 2 2
d-G N —f5 G,

— —K’Gj = -
gh;

) (3.19)

The eigendepth /; and eigenfrequency w; are interchangeable using the dispersion relation
(3.17) with fixed K. Note that the EVP could have been written in terms of a fixed
frequency w (with no subscript j), with eigendepth h; and eigenwavenumber K; (with
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subscript j), but the constant frequency formulation is not relevant for the decomposition
problem at fixed time.
The depth-integrated energies for the jth internal wave mode at total wavenumber K are,

HKEi_— <1+f°)/ F2(z)dz (3.20)
4 W) p
AZ 0
VKEi:TiKZh} / G;(2)dz (3.21)
PEi_ 2)G7(2) dz (3.22)

which sum to a depth-integrated total energy of Aihj /2. The internal wave solutions have
zero potential vorticity per (2.3), PV4 = 0; but they do have Ertel PV per (2.5),

5. [ ALk
Ertel PV, = % [:t 2* hifo

£0
again suggesting that Ertel PV may not be the appropriate quantity for this model.

(3.1n 5,)G(z) e+ + fo} +c.c., (3.23)
wj

4. Orthogonality and projection

The primary challenge that separates this wave-vortex decomposition from previous
ones is dealing with the vertical modes resulting from the K-constant EVP in (3.19).
In a vertically periodic domain with constant stratification in z, Fourier series are an
appropriate basis. For a vertically bounded domain with arbitrary stratification in z and
no buoyancy anomaly at the boundaries, the appropriate basis are the eigenmodes G; of
(3.19) with G(0) = G(—D) = 0.

4.1. Orthogonality

The non-hydrostatic Sturm—Liouville problem given by (3.19) implies that for a given
wavenumber K, two modes G;(z), Gj(z) satisfy the orthogonality condition,

1 0
- / (N*(2) — fDGiGjdz = 8, 4.1)
8J-D

where we have normalized the modes. Unlike the hydrostatic case, there does not appear to
be an equivalent Sturm—Liouville problem for the non-hydrostatic F; modes (with constant
K) and therefore no associated orthogonality condition. The expression

3 O:F; __ 'y (4.2)
AN —ehk>—f3) gl '

as far as we know, cannot be coerced to Sturm-Liouville form. The closest relationship we
are able to find is

0
/ (Fiff + hihiK>GiG; ) dz = hidy; 4.3)
-D

The difference between (3.9) and (4.3) is significant — the former can be used on any
function, while the latter requires a specific relationship between the dynamical variables
to project on the F; modes.
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4.2. Projection

A dynamical variable that expands in G, such as density anomaly, p(z), can be written as
in (3.2), e.g.

pe.y.z.0) =Y 3pu®Gin() exp(itkx + Iy)) + c.c., 4.4)
Jk

where the coefficients are recovered with

1
N:N,

> oy, z Dexp(—itke +1y) | G(2) dz.

~ Lo 2 2
pi () = — | (N“(@) — fp)
8J-D o

4.5)

The projection operation (4.5) first requires taking a Fourier transform of the variable,

then invoking the orthogonality condition (4.1) with the jth vertical mode Gj(z) for
wavenumber K = +/k? + [2. However, in order to use orthogonality condition (4.3) as
a projection operator, dynamical variables expanded in F must be added to a related
dynamical variable that scales like 2G. For example, the divergence, § = dxu + dyv, and
vertical vorticity, { = d,v — dyu, can be recovered from the wave solution (3.18) with,

0

5(1) = / (5(;)Fj(z)—isz(z)thj(z)) dz, (4.6)
"))
0

50 = [ (c0R@ - inn0nG0) b, @7

where 8(z,1) = )" 8j(1)F;(z) and ¢(z,t) = ) ¢j(1)Fj(z). However, this only works for
wave solutions since the geostrophic solution does not have the same relationships between
(u, v) and 7. It thus appears that (4.3) is not particularly useful in recovering solutions.

To project variables u and v (and also p) that are expanded in F, we instead use the
relationship derived from continuity, Fj(z) = h;0,G;(z), and consider the depth-integrated
quantities. That is, if

u@.y.z =y ”’%@ exp(ilkx + 1) Fju(2) + c.c., (4.8)
Jok,l

then we compute U = [*, udz’ so that,

Uk (1) .
Uy, 2,0 = Y === explitke + ) hiGiu (@) + c.c., (4.9)
Jok,l

which can then be projected using (4.5) to recover i (t). Notable here is that the
depth-integrated quantities represented by (4.9) are themselves depth dependent.

As discussed in the next section, the only part of the solution that must be handled in a
special manner is the barotropic j = 0 mode F((z), which as previously discussed has no
projection on the G modes in the rigid lid case. In practice, the integration linking (4.8)
to (4.9) can be performed by projecting u onto either the {F JHS (z)} basis or a cosine basis
(either of which satisfy the correct boundary conditions and have a constant/barotropic
mode), integrating spectrally, and then transforming back to the spatial domain.
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5. Wave-vortex decomposition

Per the previous discussion, the wave-vortex decomposition requires integrating (u, v) to
get (U, V), taking the Fourier transform in the horizontal of (U, V, n) and then projecting
the vertical structure at each horizontal wavenumber k and / onto the vertical eigenmodes
found via the K-constant EVP, (3.19). Early et al. (2020) developed a methodology for
the computation and projection onto these modes. Written as a sum of individual linear
solutions, and explicitly including the dependence on j, k, [, the three required variables
are expressed as

Ux,y,z,t) = Z ﬂ;( ) exp(itkx + 1y))Gji(z) + c.c. 5.1
jik,1
VL y, =y ”‘2’(  explithr + )G + cc. (5.2)
jik,l
njkl( )
1y, 2,0 = ) =5 explitke + )G +cc., (5.3)
Jok,l

where U,]k(t) = k(1) h;jx and Vljk(t) = Vjjk (t)h,jk The horizontal Fourier transform
followed by the vertical projection then recovers U,]k (0, Vyk(t) and 7 (7).

5.1. Non-zero wavenumber solutions, k* + I > 0, j=0
When vertically integrating the horizontal velocities u, v to project onto the vertical
modes, the amplitude of the j = 0 mode must be handled separately. The j = 0 mode for
the rigid lid boundary condition has no density anomaly, () = 0, and no divergence,
S(t) = iku(t) +ilv(r) = 0. This leaves only the amplitude and phase of the vorticity
g:(t) = ikv(t) — ilu(r). The only valid solution is therefore the vortex solution,

Ag = —lf—o kv (1) — lu(D)) , (5.4)

valid for all k&2 + 2 > 0.

5.2. Non-zero wavenumber solutions, k* + > > 0, j > 0

For each wavenumber (k, /) and mode j there are six unknowns: the amplitudes and phases
of the three different solutions. We denote the complex amplitudes as A+, A_ and Ao, for
the positive and negative wave, and geostrophic solutions, respectively. In matrix form the
three linearly independent solutions from (3.5) and (3.18) at wavenumbers k, / and mode j
are given by

rko —ilfy, ko tilfy gh
_1_
i ) oK oK fo clot 12\+
~ lo+ikfy  lo—ik h -
P | = | ek, Ttz ikfo, sk ] e (5.5)
y oK oK fo .
N Kh Kh 1 Ao
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which can be inverted to solve for A+, _,and Ao,
L e Ty 4] fo ~ lo Fikfy ~
= Ul) + ——2V(@) £ =7 5.6
+="7 [ —Kh (1 + K ()%E n()] (5.6a)
ho=iB00) iy 4 1 5 . (5.6h)

There is some insight to be gained by defining depth—integrated versions of horizontal
divergence and potential vorticity,

A =i (kf](t) +n7(t)), A =i (kf/(z) _ lf](t)) — i (o). (5.7a,b)
Now the solution has the form,

n efla)t - f ~ .
A= [—m(t) —w (Eﬂ(t) + n(t))] (5.8a)

R iwt . f B _
A= [-m(z) + (En(t) + r](t))] (5.8b)
Ag = —izﬁ(t). (5.8¢)

w

Importantly, (5.80)—(5.8¢) show that the vortex solution is recovered directly from
potential vorticity and the sum of the two wave solutions is recovered from the divergence
of the transport. Extracting the phase information and energetics of individual wave
solutions still requires additional information from vorticity and isopycnal displacement.

5.3. Zero wavenumber solutions, k* + 12 = 0

The only k% 4+ > = 0 solution is still inertial oscillations, per (3.15), with simple rotation
and zero isopycnal displacement, i.e.

ur(0) = [@(t) cos(for) — () sin(for)] Fi(2) (5.9a)
v1(0) = [a(®) sin(for) + 0(r) cos(fon)] F1(2) (5.9b)
n1(0) = 0. (5.9¢)

5.4. Summary of the decomposition

A key feature of the decomposition is that the recovered coefficients (5.4), (5.8a) and (5.9)
are strictly independent of time when applied to time-dependent linear solutions. That
is, the left-hand sides of these equations are time independent, while the right-hand sides
contain terms that are time dependent. This is not a contradiction; it simply reflects the fact
that for unforced inviscid flow, the amplitude and phase of the linear solutions will remain
fixed for all time. Applying the linear decomposition to nonlinear flows, an important
implication of the latter result is that the actual linearity or nonlinearity of a flow can be
made precise by assessing time variation in the recovered coefficients. For example, if
A+ for a given j, k, [ at time ¢ = ¢ is exactly equal to A+ computed at time ¢ = ¢1, then
that component of the flow was perfectly linear in the sense that the wave solution (3.18)
exactly described its evolution. The key takeaway when applying the above decomposition
is that any time variation in the recovered coefficients, (5.4), (5.8a) and (5.9), by definition
implies nonlinearity.
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6. Nonlinear transfers between wave and vortex solutions

Having derived a generalized wave-vortex decomposition for arbitrary stratification, we
next demonstrate its utility by analysing output from a nonlinear numerical simulation
performed by Lelong et al. (2020) using the Boussinesq model described by Winters & de
la Fuente (2012). The study by Lelong et al. (2020) was motivated by evidence of intense
near-inertial wave activity at the base of the quasi-permanent Cyprus eddy in the Eastern
Mediterranean (Cuypers et al. 2012), and was designed to explain the origin and dynamics
of the observed waves.

Background stratification in the region surrounding the Cyprus eddy changes rapidly
near the surface, following an approximately exponential-like profile as shown in figure 1.
Within this stratification, the Cyprus eddy was modelled as an axisymmetric vortex in
geostrophic equilibrium via the streamfunction,

1A 2 2 2
Y= 10 exp(—2a(x” +y°) — 28z), (6.1)

where (ug, vg, pg) = (=0y¥, 0xV¥, —p0 f09;1/g), and the strength and extent of the eddy
were set by parameters A, «, and 8, chosen to closely match the observations. This eddy
initial condition projects exactly onto to the geostrophic solutions in § 3, and remains stable
in the nonlinear model. To model the effects of an impulsive wind stress at the surface,
superimposed on the geostrophic vortex initial condition is an inertial oscillation of the
form

uy=Ure Vv =0, (6.2)

which itself projects exactly onto the inertial solution in § 3. In the absence of the eddy,
the inertial oscillation also remains stable in a nonlinear f-plane model. However, as
shown by Lelong et al. (2020), the combined presence of the anticyclonic eddy and the
inertial oscillation causes the inertial oscillation to lose energy while generating slightly
subinertial internal gravity waves that propagate downward into the eddy core. This classic
problem has a rich history, as discussed, for example, in recent papers by Lelong et al.
(2020) and Asselin & Young (2020) and references therein.

The transfer of energy from inertial oscillations to internal gravity waves was estimated
using spatial-temporal averaging by Lelong et al. (2020), but can also be computed
diagnostically at each instant in time using the wave-vortex decomposition described in
the previous sections. Figure 2 shows energy time series for the inertial, geostrophic and
wave mode solutions computed via the wave-vortex decomposition, which are consistent
with the transfer of energy observed in Lelong et al. (2020) (their figure 12b).

In addition to total energies, the present methodology also enables us to examine more
precisely which scales are involved in the energy transfers, and further identify exactly
the dynamical mechanisms that are responsible. Figure 3 shows the change in energy
among the different vertical modes and horizontal scales for geostrophic, inertial and
wave components on day 6 of the simulation. The dominant energy transfer for all three
components is in the lowest modes. Only the geostrophic flow shows a weak signature
of energy transfer in higher modes, although at later times energy transfers occur at
higher internal gravity wave modes as well (not shown). As anticipated by Lelong et al.
(2020), the peak energy transfer into the waves occurs at horizontal wavelengths similar
to the length scales of the geostrophic flow, with corresponding near-inertial frequencies
deviating from fy by only a few per cent. Note, however, that the original study found
wave frequencies to be slightly subinertial, an effect caused by the eddy’s anticyclonic
geostrophic vorticity (Kunze 1985). This shift to subinertial frequencies is not directly
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Figure 2. Energy time series for the Cyprus eddy simulation inferred via the wave-vortex decomposition,
showing that total energy and geostrophic energy are approximately conserved, while inertial energy decreases
and internal gravity wave increases by comparable amounts. Residual energy increases slightly (from 0.2 % to
0.3 %) during the same period.

captured by the linear decomposition, and instead the subinertial waves alias into other
superinertial frequencies.

Lelong et al. (2020) identified the vertical gradient of advection of geostrophic vorticity
by inertial oscillations as the most likely dynamical mechanism for transferring energy
from inertial oscillations to internal gravity waves. This is consistent with figure 2,
which suggests that the waves draw their energy entirely from the inertial flow, with the
geostrophic flow acting as a catalyst in facilitating energy transfer. Although the evidence
presented in Lelong et al. (2020) is entirely consistent with this hypothesis, the authors
were not able to show conclusively whether this mechanism can account for the total
energy transferred from inertial oscillations to internal gravity waves.

To compute the energy transfers between inertial, wave and vortex modes, we rewrite the
nonlinear equations of motion by projecting them onto wave-vortex space in appendix C.
For the problem considered here, the internal wave frequencies do not exceed 3 fy and we
are therefore able to make the hydrostatic approximation, simplifying the mathematics and
reducing numerical complexity. Summarizing the results from the appendix, the equations
of motion take the form,

Al F.
alA_|=|F_]|, (6.3)
Ao Fo

where the nonlinear terms are encapsulated in the three terms F(. The transfer of energy
is then proportional to R(F19A+p) according to (C17). To confirm that the energy flux
term is computed correctly, figure 4 compares the total change in energy of the constituent
parts determined via the wave-vortex decomposition at each time step, to the energy flux
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Figure 3. Change in energy of inertial, wave and geostrophic components as a function of mode and horizontal
scale on day 6 of the Cyprus eddy simulation. Contours on the wave plot indicate the frequency of oscillation,
in units of fy. The change in energy is dominated by a sustained loss of energy in the j = 1 inertial mode, and a
significant gain in wave energy at scales of approximately 250 km. Changes in geostrophic energy are an order
of magnitude smaller (note the log colour scale), and rapidly oscillate between signs with no sustained gain or
loss.

terms computed from R(F+0A+o) also computed at each time step. The two lines are
nearly indiscernible, indicating that the wave-vortex projection of the nonlinear equations
of motion is correctly reproducing the dynamics of the Boussinesq model.

Appendix C further shows that the nonlinear flux of energy into internal gravity waves
via advection of geostrophic vorticity ¢, by inertial oscillations (u,, vj,) can be written as,

ioVg f 0 et

Ff=+=—r (F - DFT [uio0xLg + viodyLg]) . (6.4)
where F is the projection operator onto the F; modes and DFT is the discrete Fourier
transform. Figure 4(a) shows that this mechanism accounts for all of the transfer of energy
into internal gravity waves, directly confirming the hypothesis of Lelong et al. (2020).
Additionally, figure 4(b) shows that the primary mechanism draining energy from inertial
oscillations is the advection of the geostrophic flow by internal gravity waves, with a small
contribution from self-advection by internal gravity waves.

Having identified the two dominant physical mechanisms responsible for the nonlinear
transfer of energy from inertial oscillations to internal gravity waves, we can now examine
exactly which modes and scales are involved in the transfer. Figure 5 shows the nonlinear
fluxes from only the two transfer mechanisms identified above, revealing the same
dominant modes of transfer as in figure 3. Here, it is clear that the advection of geostrophic
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Figure 4. Total change in energy (black) and computed total flux (dashed black) of («) the internal gravity wave
energy and (b) inertial energy. Panel (a) also shows the flux from inertial oscillations advecting geostrophic
motions (blue). Panel (b) includes the flux from internal gravity waves advecting geostrophic motions (orange),
and self-advection of internal gravity waves (purple).

flow by internal gravity waves primarily drains energy from the j = 1 inertial mode, but
also shifts some energy to the j = 2 mode. The advection of geostrophic flow by inertial
oscillations transfers energy into the mode j = 1 internal gravity waves at scale between
50 and 500 km. The results of figure 5 further imply that broader range of modes and
scales seen to be exchanging energy in figure 3 must be explained by other mechanisms
that transfer energy within the internal gravity wave modes. Indeed, at later times we find
that internal gravity wave energy cascades to higher modes (not shown).

7. Modelling implications

In addition to the physical insights gained from applying the wave-vortex decomposition,
there are also several implications for numerically modelling fluid flows. The first is the
rather startling recognition that for the exponential stratification profile in figure 1, 257
evenly spaced vertical grid points in a pseudospectral model only resolves approximately
19 vertical modes. Conversely, this suggests that in cases of challenging stratification,
modelling the equations of motion in wave-vortex space, as in appendix C, may actually
be more computationally efficient than traditional spectral approaches.

One of the central claims of this manuscript is that the above wave-vortex decomposition
can account for all variance of (u, v, w, p) at any instant in time. In practice, however,
ocean data and numerical models have a finite number of grid points, N, and it is not true
in general that N vertical modes will be resolved with N grid points. As noted in Early
et al. (2020), only if the grid points are at (or near) the Gaussian quadrature points of
the vertical modes, F(z) and G(z), for all resolved K, will all variance project onto the
modes. For the case of constant stratification, the Gaussian quadrature points are evenly
spaced and the vertical modes coincide with cosine and sine bases. In this special case, the
N vertical grid points in the Boussinesq model will coincide with N — 2 resolved internal
modes, leaving only the Nyquist frequency unresolved plus a barotropic mode. However, as
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Figure 5. Same as figure 3, but showing only the two dominant mechanisms from figure 4. The wave panel
shows flux from inertial oscillations advecting geostrophic motions and the inertial panel shows flux from
internal gravity waves advecting geostrophic motions.

figure 1 demonstrates, for variable stratification, regions of rapidly changing stratification
will lack resolution if an evenly spaced grid is used.

Because of the above issue, many numerical models use alternative vertical coordinates
such as o (pressure) coordinates and density coordinates, or other more complicated
hybrids, in order to better resolve the solutions. To resolve internal wave modes, Early
et al. (2020) showed that a Wentzel-Kramers—Brillouin (WKB)-scaled coordinate more
efficiently positions grid points than a density coordinate when capturing vertical modes.
Once the vertical modes are computed, the Gauss quadrature points for the first N modes
can computed from the roots of the N + 1th vertical mode. When creating a numerical
model, these points are the optimal choice for resolving the vertical modes.

So what happens when grid points in a numerical model are not able to fully resolve the
physics? From a diagnostic point of view, any variance not captured by the M resolvable
modes, results in a residual. The residual of projecting a function f onto the ' modes is
defined as fg = f — F~'[F[f]] where F projects using M modes. For the Cyprus eddy
example, the residual energy is shown in green in figure 2, and represents at most 0.3 % of
the total energy, a 48 % increase from its initial value. Thus the initial conditions start with
variance unresolved by the modal decomposition, and nonlinear processes further shift
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some of the resolved variance into unresolved variance over the course of the simulation.
Because the evenly spaced z grid in the model fully resolves the higher modes at lower
depths, but only 19 modes near the surface, we expect an accumulation of residual energy
at depth. Indeed, we find two peaks in residual energy between 450 and 500 m depth on
day 37 of the simulation. How exactly this affects the resulting physics is not entirely clear.
All we can say is that, given higher resolution, this residual energy would be associated
with higher-mode internal waves which are presently not being represented correctly.

In the case of ocean observations with limited vertical sampling resolution, the issue
is completely different than with a numerical model. In this case the physics is certainly
evolving correctly, but the unresolved wave modes alias into the lower modes. Depending
on the spectral slope of the unresolved modes, this aliasing may or may not have a
significant impact on the coefficients of the resolved modes (Early ez al. 2020).

A second but related implication for modelling is that it may be advantageous to
model the nonlinear equations of motions directly in wave-vortex space. This has the
advantage of establishing which wave and vortex solutions are valid a priori, using the
methods discussed above. Additionally, damping and/or small scale variance removal is
then performed directly on the wave and vortex coefficients, which correspond to wave
energy and potential enstrophy damping.

In light of the effective vertical resolution issues discussed above, the computational
efficiency of modelling the equations of motion in wave-vortex space is relatively
favourable for cases of nonlinear stratification. The rate limiting steps are the horizontal
and vertical transformations required to compute the terms in (C18a). The two basic
numerical operations to be performed on a vector of length N are a matrix multiplication,
which requires 2N? operations, and a fast Fourier transformation (FFT), which requires

%logQN — 3N operations when transforming real variables (Canuto et al. 2006). The
vertical transformation must be computed as a matrix multiplication applied to each of
the NNy /2 wavenumber vectors of length N, for total computational cost of N; N, Ny.
The horlzontal transformation can be computed usmg an FFT algorithm apphed to
each depth N, for a total computational cost of 2NZNxNy logy NyNy — 3N N;Ny. The
transformation from wave-vortex space to physical space requires applying the vertical
transformation 10 times (7 for the hydrostatic case) and the horizontal transformation
10 times. To finish the pseudospectral multiplication, the results must be projected back
onto wave-vortex space for a grand total of 13 horizontal transformations and 10 vertical
transformations. Assuming that N, = Ny, the total computational cost of the horizontal
and vertical transforms are approximately equal when 10log, Ny = N, or 13log, Ny =
N, for the hydrostatic case. This means that for a horizontal resolution of 256 the
horizontal transformations dominate the computation time until approximately 80-100
vertical modes are used.

8. Conclusion

The wave-vortex decomposition presented in this paper unambiguously separates linear
wave and geostrophic motions under arbitrary stratification into decoupled modes at any
given instant in time. The present decomposition has been fully implemented for arbitrary
stratification, as well as the special case of constant stratification (see appendices A
and B). The methodology has been validated against output from a linear simulation of
a Boussinesq model by confirming that the initial conditions can be exactly recovered
at all output times. We have further shown that this method successfully reproduces the
results of more traditional methods that rely on spatial-temporal filtering.
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In addition to these basic validations, the hydrostatic nonlinear equations of motion
projected in wave-vortex space (see appendix C) are shown to successfully reproduce
changes in wave-vortex amplitude from a nonlinear Boussinesq model. This suggests
that the nonlinear equations of motion can be integrated in wave-vortex space with little
modification from the work presented here. Estimates of the computational complexity of
the method, presented in § 7, show that numerical integration of the wave-vortex modes
may actually perform better than integration in physical space when the stratification
profile varies strongly with depth.

One of the more useful aspects of the decomposition is the ability to determine the
exact nonlinear pathways that move energy between the wave and geostrophic solutions at
different scales. This can be done diagnostically (as in § 6) or while directly integrating the
equations of motion. By selectively turning off transfer mechanisms, one can also derive
reduced-interaction models, such as in Hernandez-Dueifias et al. (2014), but now also for
vertically bounded flows with variable stratification.

While the present work is a step towards separating wave and vortex motions in
generalized flows, there are still limitations to this methodology that prevent its application
to, for example, output from global circulation models. In particular, the flows considered
here currently lack (i) surface and bottom buoyancy anomalies (ii) a free surface,
(i1i) horizontal dependence on stratification or background mean flow and (iv) bottom
topography. Two recent studies offer significant progress towards addressing the first
two issues. First, Smith & Vanneste (2013) showed that geostrophic motions can be
decomposed into uncoupled structures that include a surface buoyancy anomaly, and are
also orthogonal (or ‘diagonalize energy’ to use the terminology therein), albeit under rigid
lid conditions. Second, Kelly (2016) showed that in the presence of a free surface, there
exists a complete set of modes as well as an orthogonality condition that decouples the
surface mode from the interior modes, allowing for an unambiguous partitioning of wave
energy. Taken together, these results suggest that it should be possible to create a complete
framework that includes both a free surface and a surface buoyancy anomaly.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2020.995.
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Appendix A. Constant stratification

Assuming constant stratification, N>(z) = N2, significantly simplifies the problem because
the F-modes become orthogonal. The vertical modes take the form,

G (2) = Asin (m;(z + D)) (Ala)
F(2) = Ahjm; cos (m;(z + D)) , (Alb)
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with eigendepth h; = (1/g)((N3 — f3)/(K* + I> + m})) and vertical wavenumber m; =

jm/D. Using the normalization A% = (1/D)(2g/(N* —f?)) results in the following
orthogonality conditions,

1 0
. / D(Ng — )G @G (2) dz = 85 (A2a)
0 gh.zmz
PN () dg = =1L ;. A2b
/_D,(z),(z)z NS—foz’ (A2D)

The orthogonality conditions imply that if n(z) =), 1nGNO(2) or u(z) = don 0, FN(2),
then

. N2 _ f2 0
== | arenea: (A3a)
—-D
N2_ 2 0
il ;h2 ];0 / FY(2)u(z) dz. (A3b)
n'"n J-D

The consequence is that (it, 0) can be recovered directly, without integrating to get
transport quantities, that is (5.85)—(5.8c) with A(7) replaced by §(z), I1(¢) replaced by
PV(?), and AL no longer normalized by 4.

. —iwt . 1 — w? _
Ap=—pz [—la(z) - (fPV(t) + 777(0)] : (Ad)
A—ﬁ 50+~ (75va w—2~t AS
__2K[—1()+w<f ()+h”()>]’ (AS)
Ag = —flfﬁl(z), (A6)

w
where,

Sty =i (kiu(r) + 15(0)), PV(@©) =1 kv (r) — la(t)) — foii(t)/h. (ATa,b)

Appendix B. Numerical implementation

The decomposition was tested with output from a linear simulation with a rotating
spectral Boussinesq model (Winters & de la Fuente 2012) with constant stratification.
Implementation of the methodology requires the following steps,

(i) Discrete Fourier transforms of u, v and 1 in x and y.
(i1) A discrete cosine transform of # and v and a discrete sine transform of 7 in z.
(iii) Computation of the wave-vortex coefficients from the transformed variables.

The last step requires careful bookkeeping to ensure that all terms are properly
accounted for and not double counted.

The domain is assumed to have [N, x Ny x (N; + 1)] points, where Ny and Ny are
typically in powers of 2 to take advantage of the FFT, while N, + 1 has 2" + 1 points
to accommodate the type-I discrete cosine transforms (DCT-I) and type-I discrete sine
transforms (DST-I) used by the Winters model.
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0,0 [0,1 [02 ]03]0~4]0-3]0-3]0,-1
0 [ L1 |12 |13 | L4 ]13 | 1,3 ] 1-1
20 |21 [22 |23 |24 |23 |23 | 21
30 |31 |32 |33 |34 |33 |3-3 | 3-1
40 |41 |42 |43 |44 4343 [4-
3,0 | 3,1 |32 |33 |3.4|3.3|33|3—
20 2122232423232~
1,0 [—1,1 [—1,2 |[—1,3 | -1,4 [ -1 3 [-1,3 [ -1~

Table 1. Table of FFT coefficients for wavenumbers (k, /). We have let —4 < k<3 and —4 <1< 3,
consistent with an 8 x 8 2D FFT. The grey shaded region shows the redundant coefficients that are
determined from Hermitian conjugacy by changing the sign on the / component. The pink shaded components
are Hermitian conjugate by changing the sign on the k component. The orange components are Nyquist
components, and thus not full resolved. The cyan shaded component (including (k, [) = (—4, 0), (—4,4) and
(0, —4)) are self-symmetric, and therefore strictly real.

B.1. Horizontal transformation

The finite-length Fourier transform in a periodic domain is given by

1 0
Flfw]= Z/Df(x) exp(—ik;x) dx, (B1)

where kj=2mj/L. For a discretized domain with points at x, =nA wheren=[0 ... N — 1]
and A = L/N, the discrete Fourier transform is

N—1

A |
Fkg) = DFT [f0)] = 7 Y f () exp(—ikin) A (B2)
n=0

with wavenumbers k; = 27j/L now limited to j = [0 ... N — 1]. Variance is preserved
following Plancherel’s theorem,

1 N—-1 N—-1
5 2 =) S5tk dk, (B3)
n=0 j=0

where dk = 27t/L and S(k;) = L/2Tc|f‘(kj)|2 is defined as the spectrum.

Applying the DFT in both x and y using the usual numerical algorithms on a real
value function results in a two-dimensional transformed matrix as shown in table 1. For
a real-valued function the power is split between the two conjugate pairs, and therefore

f (kj) has to be doubled to be compared to Jé‘kl in (3.1). The grey and pink regions in
table 1 are Hermitian conjugates of other values in the table. The Nyquist frequency
Jj = N/2 is unresolved since the sine at the Nyquist is zero, and thus the orange regions
are also ignored. Only the white regions and the cyan component at k = / = 0 contain the
information for the inversion.
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B.2. Vertical transformation

The finite-length sine and cosine transforms are given by

2 0
S [8(2)] = B/ g(2) sin(m;z) dz (B4)
-D
and
Clf@]= / f(2) cos(mjz) dz, (B5)

where m; = jm/D. The discretized versions of these transforms, the DST-I and DCT-1 used
by the Winters model, are defined with points at 7, = nA wheren = 0..N; and A = D/N;.
Note that this differs from the discretization for the DF 7T by including endpoints. This
choice of discretization results in the discrete transforms

2(mj) = DST [g(zn)] = Z 8(zn) sin(mjz,) A (B6)

and
N.—1

A 2
f(mj) = DCT [f(zn)] = 5 1O ( ) + D f(an) cos(mizy) + (=)=

n=1

f() A B

with vertical wavenumbers at m; = j/D where j = 0..N,. The sum in the DC7T treats
the end points separately, as they have only half the width of the other points, A /2. For
the DST the function is zero at the endpoints, g(zo) = g(z,) = 0, and the mg and my,
wavenumber components have zero power.

With these definitions of the transform, Plancherel’s theorem states that,

| N.—1 N.—1
v D lgCa)? = Y Sem) dm (BS)
=1 j=1
with S(m;) = D/2x|g(m))|* and
1 (1rop & f(D)P S(mp)
¥ + D @l + | = 20 + ; S(mj) + 28(myz) | dm

(B9)
with S(m;) = D/2x [f(mj)|2 where dm = 1t/D. The variance of the my wavenumber is
notably a factor of 2 larger than the variance of a constant function.

B.3. Wave-vortex coefficients

Applying the discrete transformations exactly as defined above to u, v and 7 results in the
following matrices,

iy = DCT . [DFTy [DFT . [ulx,y,2)]]] (B10a)
Oxj = DCT . [DFT,[DFT . [v(x.y.2)]]] (B10b)
iy = DST,[DFT[DFT« [n(x,y,2]]]. (B10c)

912 A32-23


https://doi.org/10.1017/jfm.2020.995

https://doi.org/10.1017/jfm.2020.995 Published online by Cambridge University Press

J.J. Early, M.P. Lelong and M.A. Sundermeyer

B.3.1. Coefficients, k> +1> > 0,j =0

Starting with the j = 0 mode, the discrete transforms give non-zero coefficient functions
for @0 and U, but zero for 0. The DCT inflates the power by a factor of two, but the
DFT returns only half the power of the real-valued function. The result is that,

P Joo . .

Ag = —lg? (kUkIO — luklO) (B11)
exactly as written before.
B.3.2. Coefficients, kK> +1> > 0,j > 0

The projection operations as defined in (A3) can be related to the sine and cosine
transformations in (B4) and (BS5) by a scaling,

VPG — )

Ujj = ————=—=—1yj, (B12a)
/ hkljmj«/Zg /
U D(Ng _ fOZ) 0 (B12b)
Vilj = ————F— Ui/},
/ hk[jmj«/Zg /
0 D(Ng _ f02) n (B12c)
Nklj = —————=—=—"Nkij- c
7 \/2—g 7)
The wave-vortex coefficients are then recovered with,
X e ko +ilfy lo Fikfy gk
Ayr= Ui Ukl T — klj B13
+=—7 [ X Uy + K i F wnklj] (B13)
- nfo_  khfy_  fo
Ay = 1—uyi — 1—=Vj + —5 ki Bl4
0 = 1= tlj — i—5~ ) + 5 TIkj (B14)

Appendix C. Nonlinear equations of motion

Here, we rewrite the hydrostatic nonlinear equations of motion for (u, v, n, w,p) as
nonlinear equations of motion for (A4, A_, Ap).

C.1. Linear transforms

We separate the linear transformations into two parts S - T, where S : (A4, A_,Ap) —
(u, v, n, w, p) maps from wave-vortex space to physical variablesand T, : (A+,A_, Ag) —
(Ay,A_,Ag) winds the wave phases from the initial conditions to the current time in
wave-vortex space. The total transformations are therefore defined so that

u A~ ~

1)) A+ A+ u

n|=S-T,|A_| and |A_|=T,'s7"'| v [, (Cla,b)
w Ao AO Ui

p

where it is understood that the physical variables are functions of (x,y,z,?) and
wave-vortex coefficients are functions of ¢ and indexed with jki. The operator T, is the
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eia)t 0 0
Tw — 0 e—iwt 0 (CZ)
0 0 1
with inverse T, I given by,
e—ia)t 0 0
T,'=1 0 ¢ 0 (C3)
0 0 1
The projection onto physical variables is defined by,
ko —ilfy ko +ilfy ,gl'
_1_
o ~ wK wK Jo
Fo0 0 0 0y tikfy  dw—ikf 8,
o F' o o0 o0 wK oK o
S=DFT ' | 0 G' 0o 0 Kh Kh |
0 0 g1 0 w w
i 0 0 0 j:'—l_ —iKh —iKh 0
Kh Kh
—PO8—— PO8—— P08
. w w -
(C4)
with inverse,
ko +ilfy Ilo—ikfy gK']
2wK 2wK 2w F 0 0
_ ko —ilfy lo+ikfy gK
1
= — 0 0f- .
S 2wK 20K 2w 4 brT €5
O U R e
L w? w? w?

These transformations use hydrostatic versions of (5.5) and (5.6), as well as the DF 7 as
defined in appendix B. The vertical projection operators are defined with the hydrostatic

modes,

1[0 1
Flf@]= » /_ N fQFPdz, Glg)] = . /

with inverses

0

-D

2N’ G dz

(Cba,b)

(C7a,b)

F =Y. o' @] = Y g,
Y j

Note that, unlike the non-hydrostatic case, the vertical projection and DF7T operator
commute.
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C.2. Nonlinear equations of motion

As a preliminary step before re-writing the nonlinear equations of motion, the density
equation,

01 + w0 0 + udyp + vy + wdzp =0 (C8)
can be expressed using n = —p/d,p and N? = —(g/po)d;p as
o —w 4+ udn +voyn +w (8Zn + no, lnNZ) =0. (C9)

The nonlinear equations of motion written in matrix form are

— 1 —

0 —f 0 O — 0y
u ,010 u uNL u
v oo 0 0 O %% v oNL | | v
0 | w 0 w
0 0 0 1 0 NZ2—3|Lp 0 1Lp
——— £0 P— — e —
L I P N VR X o |V S
A
where the nonlinear operator AN is defined as
uNL [u, v, n, w] = udyu + voyu + wo,u, (Clla)
UNL [u, v, 7, w] = udyv + voyv + wo,v, (Cl11b)
ANL[u, v, 0, w] = uden + vdyn + w (azn + 78, 1nN2) : (Clle)
Changing to wave-vortex space, we apply the transformation 7, 1s~1to (C10),
o + Ay + AMy =0, (C12)
T s oy + 115 Ay 4+ 1,171 ANy = 0, (C13)
(72's7"0ST, ) A+ (15571 AST, ) 4+ T, '™ ANy =0, (C14)

where 4 =T, Ig-1 Y as in (C1) above. The result of this transformation are the nonlinear
equations of motion in wave-vortex space,

A+ F+ F+ uNL
|A_|=|F-| where |F_|=-T,'s""|vNL|y. (C15)
Ao Fo Fo nNL

If we had not included the time-winding operator 7, in the basis transformation, the
equations for the two wave coefficients, A1, would include linear terms to evolve the
phases, and thus the nonlinear equations would resemble forced wave equations. It is also
worth noting that the first part of this transformation, the projection onto vertical modes,
is identical to Kelly (2016), although without the free surface.

The physical variables (u, v, n, w) in (C15) can be expressed in terms of wave-vortex
coefficients (A4, A_, Ap), in which case the multiplication of physical variables becomes
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a convolution of wave-vortex coefficients. However, we have instead left this in
pseudospectral form, where the multiplication occurs in physical space and the result is
transformed into wave-vortex space.

C.3. Energy flux

The nonlinear equations of motion (C15) each have the form d,A = F, where F is a
complicated function of the other dependent variables. To compute the flux diagnostically,
we take an Euler time step, for which the solution is A(f + Af) = F(t) At + A(t). The
change in energy is computed by multiplying by the complex conjugate and taking the
time derivative so that,

th2 = 2FFAt + 2R (FA). (C16)
The first term, dependent on the Euler time step A¢, is only of consequence when A is zero
and can be neglected for these diagnostics. The squared amplitude is converted into total
energy using the expression in § 3, resulting in expressions for the change in total wave
and geostrophic energies,

d 1 - d 1 ghK -
—EL = -hR (FiA d —FEy=-= R (FoAo) - Cl7a,b
o 4 > ( + :I:) an QI 0 28( f() ) ( 0 O) ( a,b)

C.4. Nonlinear pathways

While the total energy flux is computed using (C17) with (C15), this does not immediately
tell us which nonlinear interactions are important. Writing out the nonlinear terms from
(C15) more explicitly, we have

. 1 — — — — K —
elw’F+:—2—(k-uNL+l.vNL)—12f° (z-uNL—k.vNL)Jr‘;—nNL, (C18a)
w
. 1
e F_=— % (k- uNL +1- vNL)+12£ (I-uNL —k- vNL)—2—nNL (C18b)
—1hﬁ (1-uNL — k- vNL) — fO =% nNL, (C18c)

where we have simplified the notation so that uNL = .7-" - DFT[uNL] and nNL = g-
DFT[nNL]. The idea now is to single out the specific nonlinear pathways that are move
energy between modes.

Using the wave-vortex decomposition, the physical variables in uNL, vNL and nNL
can be expressed in terms of their constituent parts. In this case we separate the inertial
oscillations (io) from gravity waves (igw), and combine the positive and negative waves
into a single internal gravity wave part. With the addition of the geostrophic component
(g), the physical variables are unambiguously separated as,

U= Ujp + Ujgy + g (C19a)
V= Vjp + Vigw + Vg (C19b)
N = Nigw + Ng (C19¢)
W= Wigy. (C19d)

The primary hypothesis described in § 6 is that the advection of geostrophic vorticity
by inertial oscillations is the energy source for internal gravity waves. This particular
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nonlinear pathway is part of the second term in parenthesis in (C18b) and (C18¢),

X i e:Fiwl
Fiove = if;T (k- F - DFT [uipdxvg + vipdyvg]
—1-F - DFT [ujo0sttg + vipdyitg]) , (C20)

and can be further simplified to

fO e:Fia)t

Fing -+
+ 20K

(F - DFT [uio0xg + viodyLg]) . (C21)
where o = 0,vg — Oyitg.

It is useful to treat the forcing of inertial oscillations separately from the rest of the
waves because so many terms cancel. The forcing term can be found by considering the
negative wave forcing (C18c¢), or with the transformation,

] 0 0 0
sl = S|t io (C22)
0 0 0
The total forcing on inertial waves is thus
Fip = — L& (uNL + ivNL) . (C23)

Individual nonlinear pathways can be computed by considering the constituent parts. The
two most relevant pathways for this problem are

io

FEvve _ _Leifi g [uigw TV (g + ivg)] (C24)

and

io

pigwVigw _ _ % elfor [uigw .V (uigw + ivigw)] , (C25)

where the (-) indicates horizontal averaging, equivalent to the K = 0 component of the
DFT operator that it replaces.
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