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Abstract

We show that an elation generalized quadrangle that has p + 1 lines on each point, for some prime p, is
classical or arises from a flock of a quadratic cone (that is, is a flock quadrangle).
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1. Introduction

A generalized quadrangle is an incidence structure of points and lines such that, if P
is a point and ` is a line not incident with P , then there is a unique line through P that
meets ` in a point. From this property, if there is a line containing at least three points
or if there is a point on at least three lines, then one can see that there are constants s
and t such that each line is incident with t + 1 points, and each point is incident with
s + 1 lines. Such a generalized quadrangle is said to have order (s, t), and hence its
point–line dual is a generalized quadrangle of order (t, s). Of the known generalized
quadrangles, most admit a group of elations (see Section 2 for a definition) and are
called elation generalized quadrangles. In this paper, we will be interested in elation
generalized quadrangles where the parameter t is prime.
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If S is an elation generalized quadrangle of order (p, t), for some prime p, then
the elation group G is a p-group (see [Fro88, Lemma 6], and note that s and t
are interchanged!). In this situation, we have, by a deep result of Bloemen, Thas and
Van Maldeghem [BTVM96], that S is isomorphic to one of the classical generalized
quadrangles W(p), Q(4, p), or Q(5, p). The same is not true if we interchange points
and lines. Suppose that S is an elation generalized quadrangle of order (s, p) (where p
is a prime). Again, by a result of Frohardt [Fro88, Lemma 6], we have that the elation
group is a p-group; however, there exist candidates for S that are not classical but are
known as flock quadrangles. These elation generalized quadrangles are obtained from
a flock of PG(3, p) (a partition of the points of a quadratic cone of PG(3, p), minus
its vertex, into conics) and they have order (p2, p). Such a quadrangle is classical
if and only if the flock is linear; and there do exist nonlinear flocks for p a prime at
least 5 (see [PT84, Section 10.6]). In this paper, we prove the following result that is
complementary to that of Bloemen, Thas and Van Maldeghem.

THEOREM 1.1. If p is a prime, then an elation generalized quadrangle of order (s, p)
is classical or a flock quadrangle.

Note that the above theorem does not hold when p is replaced by a prime power
since the duals of the Tits quadrangles T3(O) arising from the Tits ovoids are elation
generalized quadrangles of order (q2, q) (for q = 2h and h an odd number at least
3) that are not flock quadrangles, and the Roman elation generalized quadrangles of
Payne are of order (q2, q) (for q = 3h , h > 2) but are not flock quadrangles.

The proof of Theorem 1.1 relies on the following result concerning Kantor families
for groups of order p5 (see Section 2 for a definition of Kantor families).

THEOREM 1.2. If p is an odd prime and G is a finite p-group of order p5 that admits
a Kantor family of order (p2, p), then G is an extraspecial group of exponent p.

In Sections 2 and 3, we briefly revise the basic background theory and definitions
needed for this paper. Kantor families for groups of order p5 are then investigated
in Section 4, and Theorem 1.2 is proved in Section 5. Finally in Section 6 we prove
Theorem 1.1.

Though our group theoretic notation is standard, we briefly review it for the sake
of a reader whose interest lies more in geometry than in group theory. If a is a group
element of order p and α ∈ Fp then, identifying α with an element in {0, . . . , p − 1},
we may write aα . If a and b are group elements, then we define their commutator as
[a, b] = a−1b−1ab. The properties of group commutators that we need in this paper
are listed, for instance, in [Rob96, Section 5.1.5]. The centre of a group G consists of
those elements z ∈ G that satisfy [g, z] = 1 for all g ∈ G. If H, K are subgroups of a
group G, then the commutator subgroup [H, K ] is generated by all commutators [a, b]
where a ∈ H and b ∈ K . The derived subgroup G ′ of G is defined as [G, G]. The
symbol γi (G) denotes the i th term of the lower central series of G; that is γ1(G)= G,
γ2(G)= G ′, and, for i > 3, γi+1(G)= [γi (G), G]. The nilpotency class of a p-group
is the smallest c such that γc+1(G)= 1. The Frattini subgroup 8(G) of a finite group
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G is the intersection of all the maximal subgroups. If G is a finite p-group, then
8(G)= G ′G p and logp |G :8(G)| is the size of a minimal set of generators for G.
The basic properties of the Frattini subgroup of a p-group can be found, for instance,
in [Rob96, Section 5.3]. The exponent of a finite group G is the smallest positive n
such that gn

= 1 for all g ∈ G.

2. Generalized quadrangles and Kantor families

2.1. The basics A (finite) generalized quadrangle is an incidence structure of points
P , lines L, together with a symmetric point–line incidence relation satisfying the
following axioms:

(i) each point lies on t + 1 lines (t > 1) and two distinct points are incident with at
most one line;

(ii) each line contains s + 1 points (s > 1) and two distinct lines are incident with at
most one point; and

(iii) if P is a point and ` is a line not incident with P , then there is a unique point on
` collinear with P .

We say that our generalized quadrangle has order (s, t) (or order s if s = t), and
the point–line dual of a generalized quadrangle of order (s, t) is again a generalized
quadrangle but of order (t, s). Higman’s inequality states that the parameters s and t
bound one another; that is, if s, t > 1 then t 6 s2 and, dually, s 6 t2. A collineation θ
of S is an elation about the point P if it is either the identity collineation, or it fixes
each line incident with P and fixes no point not collinear with P . If there is a group G
of elations of S about the point P such that G acts regularly on the points not collinear
with P , then we say that S is an elation generalized quadrangle with elation group G
and base point P . Necessarily, G has order s2t .

The classical generalized quadrangles W(q), Q(4, q), H(3, q2), Q(5, q) and
H(4, q2) are elation generalized quadrangles and arise as polar spaces of rank 2. The
first of these is the incidence structure of all points of PG(3, q) and totally isotropic
lines with respect to a null polarity, and is a generalized quadrangle of order q . The
point–line dual of W(q) is Q(4, q), the parabolic quadric of PG(4, q), and is therefore
a generalized quadrangle of order q (see [PT84, 3.2.1]). The incidence structure of
all points and lines of a nonsingular Hermitian variety in PG(3, q2), which forms
the generalized quadrangle H(3, q2) of order (q2, q), has as its point–line dual the
elliptic quadric Q(5, q) in PG(5, q), which is a generalized quadrangle of order (q, q2)

(see [PT84, 3.2.3]). The remaining classical generalized quadrangle, H(4, q2), is
the incidence structure of all points and lines of a nonsingular Hermitian variety in
PG(4, q2), and is of order (q2, q3) (see [PT84, 3.1.1]).

2.2. Kantor families Now standard in the theory of elation generalized quadrangles
are the equivalent objects known commonly as 4-gonal families or Kantor families
(after their inventor). Let G be a group of order s2t and suppose there exist two
families of subgroups F = {A0, . . . , At } and F∗ = {A∗0, . . . , A∗t } of G such that:
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(a) every element of F has order s and every element of F∗ has order st ;
(b) Ai 6 A∗i for all i ;
(c) Ai ∩ A∗j = 1 for i 6= j (the ‘tangency condition’); and
(d) Ai A j ∩ Ak = 1 for distinct i , j ,k (the ‘triple condition’).

Then the triple (G, F , F∗) is called a Kantor family, but we will also say that (F , F∗)
is a Kantor family for G. The pair (s, t) is said to be the order of (F , F∗). From a
Kantor family as described above, we can define a point–line incidence structure as
follows.

Points Lines
elements g of G right cosets Ai g
right cosets A∗i g symbols [Ai ]

a symbol∞

Note that Ai ∈F , A∗i ∈F∗, g ∈ G. Incidence comes in four flavours (points on the
left, lines on the right):

g ∼ Ai g
A∗i g ∼ [Ai ]

A∗i g ∼ Ai h, where Ai h ⊆ A∗i g,
∞ ∼ [Ai ].

It turns out that this incidence structure is an elation generalized quadrangle of order
(s, t) with base point ∞ and elation group G. Remarkably, all elation generalized
quadrangles arise this way [PT84, Section 8.2], and we obtain a so-called translation
generalized quadrangle when G is abelian [PT84, 8.2.3].

3. Flock quadrangles and special groups

3.1. Flock generalized quadrangles A q-clan is a set of 2× 2 matrices over GF(q),
of size q , the difference of any two being anisotropic. Payne introduced q-clans
in [Pay85], and used them to construct elation generalized quadrangles of order
(q2, q). A flock of the quadratic cone C with vertex v in PG(3, q) is a partition of the
points of C\{v} into conics. Thas [Tha87] showed that a flock gives rise to an elation
generalized quadrangle of order (q2, q), which we call a flock quadrangle. The flocks
of PG(3, q) have been classified by Law and Penttila [LP03] for q at most 29. A BLT-
set of lines of W(q) is a set L of q + 1 lines of W(q) such that no line of W(q) is
concurrent with more than two lines of L. In [BLT90], it was shown that, for q odd, a
flock of a quadratic cone in PG(3, q) gives rise to a BLT-set of lines of W(q). Also for
q odd, Knarr [Kna92] gave a direct geometric construction of an elation generalized
quadrangle from a BLT-set of lines of W(q). The ingredients of the Knarr construction
are as follows:
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(i) a symplectic polarity ρ of PG(5, q);
(ii) a point P of PG(5, q);
(iii) a 3-space inducing a W(q) contained in P⊥, but not containing P; and
(iv) a BLT-set of lines L of W(q).

For each element `i of L, let πi be the plane spanned by `i and P . Then we
construct an elation generalized quadrangle as follows.

Points Lines
points of PG(5, q) not in Pρ totally isotropic planes not contained
lines of PG(5, q) not incident in Pρ and meeting some πi in a line

with P but contained in some πi the planes πi
the point P

Incidence is inherited from that of PG(5, q).

Kantor [Kan91, Lemma] showed that a Kantor family of the flock elation group
that is constructed from a q-clan gives rise to a BLT-set of lines of W(q). We show
in Section 6 that, for q prime, any Kantor family of a flock elation group gives rise to
a BLT-set of lines of W(q), and the resulting flock quadrangle obtained by the Knarr
construction is isomorphic to the elation generalized quadrangle arising from the given
Kantor family.

3.2. Special and extraspecial groups A finite p-group G is special if its centre, its
derived subgroup and its Frattini subgroup coincide. Moreover, we say that a special
group is extraspecial if its centre is cyclic of prime order. The exponent of a special
group is either p or p2. Further, the order of an extraspecial group is of the form
p2m+1, where m is a positive integer. For each such m there are, up to isomorphism,
precisely two extraspecial groups of order p2m+1, one with exponent p, and another
with exponent p2 (see [Asc00, Section 8]). The elation groups of the flock quadrangles
of order (p2, p) are extraspecial of exponent p (see [Pay89]).

Here we recall a few facts about extraspecial p-groups that can be readily found
in [Asc00, Section 8]. The quotient group E/Z(E) is an elementary abelian p-group
forming a vector space V over GF(p). Moreover, the map from V 2 to Z(E) defined by

〈Z(E)x, Z(E)y〉 = [x, y]

defines an alternating form on V . Thus for m = 2, we obtain the generalized
quadrangle W(p), where the totally isotropic subspaces correspond to abelian
subgroups of E properly containing Z(E).
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4. Kantor families for p-groups of order p5

Recall that the elation group of a generalized quadrangle of order (p2, p), p prime,
has order p5. Thus we provide in this section some powerful tools that will enable us
to prove Theorem 1.2.

LEMMA 4.1. Let (G, F , F∗) be a Kantor family giving rise to an elation generalized
quadrangle S of order (s, t). Suppose that H is a subgroup of G of order t3 such that,
for all A ∈F and A∗ ∈F∗,

|A∗ ∩ H |> t2 and |A ∩ H |> t.

Then

({A ∩ H | A ∈F}, {A∗ ∩ H | A∗ ∈F∗})

is a Kantor family for H giving rise to an elation generalized quadrangle of order t .

PROOF. Suppose that A and B are a pair of distinct elements of F , and let A∗ and
B∗ be the respective elements of F∗ such that A 6 A∗ and B 6 B∗. Since A and B∗

intersect trivially, we have that

|A∗H |> |A∗(B ∩ H)| =
|A∗||B ∩ H |

|A∗ ∩ B ∩ H |
> st2.

Therefore

|A∗ ∩ H | = |A∗||H |/|A∗H |6 t2,

and so A∗ and H intersect in t2 elements, for all A∗ ∈F∗. Similarly,

|AH |> |A(B∗ ∩ H)| = |A||B∗ ∩ H |> st2,

and so |A ∩ H | = t , for all A ∈F . The ‘triple’ and ‘tangency’ conditions follow from
those in (G, F , F∗). 2

THEOREM 4.2. Let p be an odd prime. A generalized quadrangle of order (p2, p)
with an elation subquadrangle of order p is isomorphic to H(3, p2). Moreover, the
subquadrangle here is isomorphic to W(p) and so is not a translation generalized
quadrangle.

PROOF. Let S be a generalized quadrangle of order (p2, p) with an elation
subquadrangle S ′ of order p. By [BTVM96], an elation generalized quadrangle
of order p is isomorphic to either W(p) or Q(4, p). Now every line of our given
generalized quadrangle of order (p2, p) induces a spread of the subquadrangle; but
Q(4, p) has no spreads for p odd (see [PT84, 3.4.1(i)]). Therefore, S ′ is isomorphic
to W(p). It was proved by Brown [Bro02], and independently by Brouns, Thas and
Van Maldeghem [BTVM02], that if a generalized quadrangle S of order (q, q2) has
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a subquadrangle S ′ isomorphic to Q(4, q), and if in S ′ each ovoid O X consisting of
all of the points collinear with a given point X of S\S ′ is an elliptic quadric, then S
is isomorphic to Q(5, q). By a result of Ball, Govaerts and Storme [BGS06], if p is a
prime then every ovoid of Q(4, p) is an elliptic quadric. Therefore, by dualizing, we
have that S is isomorphic to H(3, p2). 2

The reason why we have pointed out that the subquadrangle is not a translation
generalized quadrangle will become apparent in Section 5. We obtain the following
consequence of Theorem 4.2.

LEMMA 4.3. Let p be a prime and let (G, F , F∗) be a Kantor family giving rise to
an elation generalized quadrangle S of order (p2, p). Suppose that H is a subgroup
of G of order p3 with the property that, for all A∗ ∈F∗, we have |A∗ ∩ H |> p2. Then
S is isomorphic to H(3, p2).

PROOF. Let A ∈F and A∗ ∈F∗ such that A 6 A∗. The condition |A∗ ∩ H |> p2

implies that A∗H 6= G. This gives AH 6= G, and so |A ∩ H |> p. Now it follows
from Lemma 4.1 that H gives rise to an elation subquadrangle S ′ of order p. The
remainder follows from Theorem 4.2. 2

For p odd, W(p) is not a translation generalized quadrangle, which implies in the
previous lemma that H is nonabelian. The next result gives more information about
Kantor families for groups of order p5.

LEMMA 4.4. Suppose that G is a group with order p5 and let (F , F∗) be a Kantor
family of order (p2, p) for G. Then the following hold.

(i) None of the members of F is normal in G. In particular, G is nonabelian.
(ii) If G is not extraspecial and H is a subgroup of G of order p3, then there is a

subgroup U of G such that |U | = p3 and HU = G.
(iii) The group G is not generated by two elements.
(iv) The nilpotency class of G is two.
(v) The subgroup G ′ is elementary abelian.

PROOF. If G is an extraspecial group with order p5, then properties (i), (iii), (iv)
and (v) are valid for G, and so we may assume, for the entire proof, that G is not
extraspecial.

(i) Assume by contradiction that A ∈F is normal, and choose distinct B,
C ∈F \ {A}. Then AB is a subgroup of G with order p4 and so AB ∩ C = 1 is
impossible, violating the triple condition.

(ii) Let H be a subgroup of G with order p3. Since the elation group of H(3, p2)

is extraspecial with exponent p, Lemma 4.3 implies that there is A∗ ∈F∗ such that
|H ∩ A∗| = p, and so H A∗ = G.

(iii) Since G/8(G) is not cyclic, |8(G)|6 p3. Further, 8(G)U = G implies that
U = G, and hence it follows from part (ii) that 8(G) 6= p3. Therefore we obtain that
|8(G)|6 p2, and so a minimal generating set of G has at least three elements.
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(iv) A group of order p5 has nilpotency class at most four. If the nilpotency
class of G is four, then |G ′| = |8(G)| = p3, which is a contradiction by the
previous paragraph. We claim that the nilpotency class of G is not three. Suppose
by contradiction that it is three. In this case, as G is not generated by two
elements, G/G ′ ∼= C p × C p × C p and |G ′ : γ3(G)| = |γ3(G)| = p. Choose a, b ∈
G such that 〈[a, b]γ3(G)〉 = G ′/γ3(G). Let c1 ∈ G such that 〈aG ′, bG ′, c1G ′〉 =
G/G ′. Then there are α, β ∈ Fp such that [a, c1] ≡ [a, b]α (mod γ3(G)) and [b, c1]

≡ [a, b]β (mod γ3(G)). Set c = c1aβb−α . Then 〈aG ′, bG ′, cG ′〉 = G/G ′ and
[a, c] ≡ [b, c] ≡ 1 (mod γ3(G)); that is [a, c], [b, c] ∈ γ3(G). By the Hall–Witt
identity, [a, b, c] = [c, b, a][a, c, b] = 1. As γ3(G)= 〈[a, b, a], [a, b, b], [a, b, c]〉,
this implies that either [a, b, a] 6= 1 or [a, b, b] 6= 1. Hence the subgroup 〈a, b〉 has
nilpotency class three and order p4 (see also [Sch03, Corollary 2.2(i)]).

Let H = 〈c, G ′〉. Clearly, |H | = p3 and G/H = 〈aH, bH〉. Let U be a subgroup
of G such that HU = G, and so HU/H = G/H = 〈aH, bH〉. This shows that
there are h1, h2 ∈ H such that ah1, bh2 ∈U . Since [a, h1], [a, h2] ∈ γ3(G) and
[a, b, h1] = [a, b, h2] = 1, we obtain that 〈[ah1, bh2]γ3(G)〉 = G ′/γ3(G) and either
[ah1, bh2, ah1] 6= 1 or [ah1, bh2, bh2] 6= 1. Thus U contains G ′ and U is a group
of order at least p4. This, however, is a contradiction, by part (ii). Therefore the
nilpotency class of G is not three. Since, by part (i), the nilpotency class of G is not
one, we obtain that the class of G must be two.

(v) By part (iv), we only need to show that the exponent of G ′ is p. By [Rob96,
5.2.5], the quotient G ′/γ3(G)= G ′, as an abelian group, is an epimorphic image of
the tensor product (G/G ′)⊗Z (G/G ′), which implies that the exponent of G ′/γ3(G)
= G ′ divides the exponent of G/G ′. As G is not generated by two elements, the size,
and hence the exponent, of G ′ is at most p2. However, if this exponent is p2, then
G/G ′ ∼= (C p)

3, which is impossible. 2

The next lemma describes the case when either G ′ or 8(G) is small.

LEMMA 4.5. Suppose that G is a group with order p5 and let (F , F∗) be a Kantor
family for G.

(i) If |G ′| = p, then all members of F ∪F∗ are abelian.
(ii) If |8(G)| = p, then all members of F ∪F∗ are elementary abelian. Moreover,

if p is odd, then, in this case, G has exponent p.
(iii) If p is odd and G is extraspecial, then G has exponent p and all members of

F ∪F∗ are elementary abelian.

PROOF. (i) Let us first assume that |G ′| = p. It suffices to prove, for all A∗ ∈F∗, that
A∗ is abelian. We argue by contradiction and assume that A∗ ∈F∗ is not abelian. In
this case the derived subgroup (A∗)′ of A∗ is nontrivial, and, as (A∗)′ 6 G ′, we obtain
that (A∗)′ = G ′. Let A ∈F such that A 6 A∗. Then A is a maximal subgroup of A∗,
and so (A∗)′ = G ′ 6 A. Thus A is normal in G, which is impossible by Lemma 4.4(i).
Therefore A∗ is abelian, as claimed.
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(ii) The assertion that the members of the Kantor family are elementary abelian can
be proved by substituting 8(A∗) in the place of (A∗)′ and 8(G) in the place of G ′ in
the previous paragraph. Let p be an odd prime. In this case, as |G ′| = p, the elements
of G with order p form a subgroup �(G) of G. Let A ∈F and B∗ ∈F∗ such that
A ∩ B∗ = 1. In this case AB∗ = G and A, B∗ 6�(G). Therefore G =�(G), which
amounts to saying that G has exponent p.

(iii) This part follows immediately from part (ii). 2

The following lemma is a generalization of [Kan91, Lemma].

LEMMA 4.6. Let p be an odd prime and let (F , F∗) be a Kantor family for an
extraspecial group E of order p5. Then the image of F∗ in E/Z(E) corresponds
to a BLT-set of lines of W(p).

PROOF. First note that, by Lemma 4.5(iii), all the members of F∗ are abelian and
hence each A∗ ∈F∗ induces an abelian subgroup of E/Z(E), and so a totally isotropic
line of the associated W(p) geometry. Therefore, every member of F∗ contains Z(E).
Suppose by way of contradiction that there is a line of W(p) concurrent with three
elements of L= {A∗/Z(E) : A∗ ∈F∗}. Then there exists an abelian subgroup H of E
of order p3, and three elements A∗, B∗, C∗ of F∗ such that H intersects each of these
elements in a subgroup of order p2 properly containing Z(E) (note that H contains
Z(E)). Let A, B, C be the unique elements of F contained in A∗, B∗, C∗ respectively.
Now (H ∩ B)Z(E) is contained in B∗ and so A ∩ (H ∩ B)Z(E)= 1. Also, we have
that |H ∩ A| = p as p2

= |H ∩ A∗| = |(H ∩ A)Z(E)| = |H ∩ A||Z(E)| (similarly,
|H ∩ B| = p). Thus

|(H ∩ A)(H ∩ B)Z(E)| =
|H ∩ A||(H ∩ B)Z(E)|

|H ∩ A ∩ (H ∩ B)Z(E)|
= |H ∩ A||(H ∩ B)Z(E)|

= |H ∩ A||H ∩ B||Z(E)|

> p3,

and so one can see that H = (H ∩ A)(H ∩ B)Z(E). So

C∗ ∩ H = (C ∩ (H ∩ A)(H ∩ B))Z(E)

and, by the condition AB ∩ C = 1, we have that C∗ ∩ H = Z(E), giving us the
desired contradiction. Therefore, L is a BLT-set of lines of W(p). 2

5. Proof of Theorem 1.2

In this section we prove Theorem 1.2. By Lemma 4.5(iii), an extraspecial group
with order p5 and exponent p2 does not admit a Kantor family with order (p2, p).
Hence we may assume, for a proof by contradiction, that:
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G is a group of order p5 and (F , F∗) is a Kantor family for G with
order (p2, p).

Our aim is to derive a contradiction. First note that Lemma 4.4 implies that one of the
following must hold:

(I) G/G ′ ∼= C p × C p × C p2 and G ′ ∼= C p;
(II) G/G ′ ∼= (C p)

3 and G ′ ∼= (C p)
2; or

(III) G/G ′ ∼= (C p)
4 and G ′ ∼= C p.

We show, case by case, that none of the above possibilities can occur. We let Z denote
the centre of G.

Case (I). Using the argument in the proof of Lemma 4.4(iv), we can choose
generators a, b, c of G such that G ′ = 〈[a, b]〉 and c ∈ Z . It also follows that
Z = 〈z, 8(G)〉, and so |Z | = p3. By Lemma 4.5(ii), all members of F∗ must be
abelian and so [Hac96, Theorem 3.2 and Lemma 2.2] imply that the subgroups A ∩ Z
and A∗ ∩ Z with A ∈F and A∗ ∈F∗ form a Kantor family for Z with order p. This,
however, contradicts Theorem 4.2, since the subquadrangle here is not a translation
generalized quadrangle (note that Z is abelian). Hence case (I) cannot occur.

Case (II). First we claim that it is possible to choose the generators x , y and z of
G such that G ′ = 〈[x, y], [x, z]〉 and [y, z] = 1. Let x, y, z be generators of G. Then
G ′ = 〈[x, y], [x, z], [y, z]〉. Since G ′ ∼= (C p)

2 we have that there are α, β, γ ∈ Fp
such that at least one of α, β, γ is nonzero and [x, y]α[x, z]β [y, z]γ = 1. If α = β = 0
then γ 6= 0, and [y, z] = 1 follows. If α = 0 and β 6= 0 then [xβ yγ , z] = 1. Now
replacing x by xβ yγ we find that in the new generating set [x, z] = 1 holds. Similarly,
if α 6= 0 and β = 0 then [y, x−αzγ ] = 1 and replacing x by x−αzγ we obtain that
[x, y] = 1 holds in the new generating set. Finally if αβ 6= 0, then we replace x by
xβ/α yγ /α and y by yzβ/α to obtain that [x, y] = 1. Thus, after applying one of the
substitutions above and possibly renaming the generators, [y, z] = 1 holds, and the
claim is valid.

We continue by verifying the following claim: if H is a subgroup in G with order
p2 and H ∩ Z = 1 then there are c, d ∈ Z such that H = 〈yc, zd〉.

Assume that H is a subgroup or order p2 that does not intersect Z . Then
H Z/Z ∼= H/(H ∩ Z)= H and so H ∼= C p × C p. In particular H can be generated by
two elements of the form u = xα1 yβ1 zγ1c1 and v = xα2 yβ2 zγ2c2 where αi , βi , γi ∈ Fp,
ci ∈ Z and 〈u Z , vZ〉 ∼= C p × C p. Since [u, v] = 1 we obtain that

1= [u, v] = [xα1 yβ1 zγ1c1, xα2 yβ2 zγ2c2] = [x, y]α1β2−α2β1[x, z]α1γ2−α2γ1 .

Thus α1β2 − α2β1 = α1γ2 − α2γ1 = 0. Note that these two expressions can be viewed
as determinants of suitable 2× 2 matrices. If (α1, α2) 6= (0, 0) then the vectors
(β1, β2) and (γ1, γ2) are both multiples of (α1, α2) and so the matrixα1 α2

β1 β2
γ1 γ2


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has row-rank 1. Since the row-rank of a matrix is the same as the column-rank, this
also shows that the vector (α2, β2, γ2) is a multiple of the vector (α1, β1, γ1) and
so u Z = vZ , which gives H Z/Z ∼= C p, a contradiction. Thus (α1, α2)= (0, 0); that
is u = yβ1 zγ1c1 and v = yβ2 zγ2c2. Since 〈u Z , vZ〉 ∼= C p × C p, we must have that
β1γ2 − β2γ1 6= 0. Also, if β1, β2 = 0 then H Z/Z ∼= C p, and so we may assume that
β1 6= 0. Change v to u−β2/β1v; then 〈u, v〉 = H and v is of the form zγ d ′, where
d ′ ∈ Z . Now change u to uv−γ1/γ2 . Then 〈u, v〉 = H still holds and now u is of the
form yβc′, where c′ ∈ Z . Now uβ

−1
and vγ

−1
are as required.

Let us now prove that G does not admit a Kantor family. We argue by contradiction
and assume that (F , F∗) is a Kantor family of order (p2, p) for G. If A, B are
distinct elements of F such that A ∩ Z = B ∩ Z = 1, then the claim above implies that
[A, B] = 1, and so AB is a subgroup of G with order p4. Thus, if C ∈F \ {A, B},
then AB ∩ C 6= 1, which contradicts the triple condition. Thus F has at most one
member that avoids the centre. Let us suppose now that A, B, C are pairwise
distinct members of F such that A ∩ Z , B ∩ Z and C ∩ Z are nontrivial. As
A ∩ B = A ∩ C = B ∩ C = 1, we obtain that |A ∩ Z | = |B ∩ Z | = |C ∩ Z | = p and
that A ∩ Z , B ∩ Z , C ∩ Z are three distinct subgroups of Z . This, however, implies
that Z = (A ∩ Z)(B ∩ Z), and, in turn, that C ∩ Z 6 (A ∩ Z)(B ∩ Z), which violates
the triple condition.

The argument in the last paragraph implies that at most two members of F can
intersect Z nontrivially, and at most one member of F can avoid the centre. Thus
|F |6 3, which is a contradiction as p is odd and |F | = p + 1. Therefore, case (II)
is impossible.

Case (III). As G is not extraspecial, |Z | = p3, and Lemma 4.4(iv) implies that the
members of F∗ are abelian. In this case [Hac96, Theorem 3.2, Lemmas 2.1 and 2.2]
show that the subgroups A ∩ Z and A∗ ∩ Z (with A ∈F and A∗ ∈F∗) form a Kantor
family of order p for Z . However, we have a contradiction to Theorem 4.2 since the
associated subquadrangle of order p is not a translation generalized quadrangle.

As none of the possibilities listed at the beginning of the section can occur,
Theorem 1.2 must hold.

6. Proof of Theorem 1.1

Here we prove Theorem 1.1, but first we show that applying the Knarr construction
to a BLT-set of lines arising from a Kantor family (F , F∗) of the flock elation group
results in an elation generalized quadrangle isomorphic to that directly associated
to (F , F∗).

THEOREM 6.1. Let G be the flock elation group of order p5, p odd, and suppose that
G admits a Kantor family (F , F∗) giving rise to an elation generalized quadrangle

E . Consider the BLT-set of lines L of W(p) obtained by taking the image of F∗ under
the natural projection map from G onto G/Z(G). Then the flock quadrangle arising
from L via the Knarr construction is equivalent to E .
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PROOF. First note that G is extraspecial of exponent p, and observe that the matrices
of the form 

1 a b c d e
0 1 0 0 0 d
0 0 1 0 0 c
0 0 0 1 0 −b
0 0 0 0 1 −a
0 0 0 0 0 1

 , a, b, c, d, e ∈ GF(p),

define a representation of G into the symplectic group PSp(6, p) with its associated
null polarity given by the matrix

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0

 .

Moreover, the centre of G consists only of those upper triangular matrices with
zeros everywhere above the diagonal except possibly the top right corner, and G fixes
the projective point P represented by (1, 0, 0, 0, 0, 0). Hence G induces an action on
the quotient P⊥/P ≡W(p). It is not difficult to show that the right coset action of G
on G/Z(G) is permutationally isomorphic to the action of G on P⊥/P (as a projective
right-module). To be more specific, the representatives of G/Z(G) are in a bijection
with matrices of the form

1 a b c d 0
0 1 0 0 0 d
0 0 1 0 0 c
0 0 0 1 0 −b
0 0 0 0 1 −a
0 0 0 0 0 1

 , a, b, c, d ∈ GF(p),

and P⊥/P can naturally be identified with vectors of the form (0, a, b, c, d, 1). Thus
we have a bijection from G/Z(G) onto P⊥/P given by

1 a b c d 0
0 1 0 0 0 d
0 0 1 0 0 c
0 0 0 1 0 −b
0 0 0 0 1 −a
0 0 0 0 0 1

 7→ P + (0, a, b, c, d, 1)

such that the right coset action of G is equivalent to the right-module action of G
on P⊥/P .
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Let (F , F∗) be a Kantor family for G and let E be the associated elation generalized
quadrangle with points:

(i) elements of g;
(ii) right cosets A∗i g of elements of F∗;
(iii) ∞;

and lines:

(a) right cosets Ai g of elements of F ;
(b) symbols [Ai ] where Ai ∈F .

Let Q = (0, 0, 0, 0, 0, 1) and note that Q is opposite to P . Let K be the flock
quadrangle associated to L constructed from the point P , and define a map from E to
K as follows:

∞ 7→ P, [Ai ] 7→ πi , A∗i g 7→ zg
i , Ai g 7→ Mg

i , g 7→ Qg.

We will show that this map defines an isomorphism of generalized quadrangles.
Since the action of G on P⊥/P is permutationally isomorphic to the right coset action
of G on G/Z(G), we have that the stabilizer of the subspace corresponding to a
subgroup H containing Z(G) is just H itself. Therefore Ai fixes zi and A∗i fixes
Mi (for all i), and so the map above is well defined. Now we verify that the four types
of incidences are compatible.

Incidence of∞ and [Ai ]. It is clear that P ∼ πi for all i .

Incidence of A∗i g and [Ai ]. We want to show that πi ∼ zg
i given that we know that

πi ∼ zi . Now G fixes every subspace of P⊥ on P , and hence G fixes πi . Therefore
zg

i ∼ π
g
i = π (note that g is a collineation).

Incidence of A∗i g and Ai h. So Ai h ⊂ A∗i g. We want to show that Mh
i ∼ zg

i . By
definition, zi is the unique line of πi (not on P) that is on a plane Mi on Q. We
know that Mi ∼ zi . Since Ai h ⊂ Ai Zg, then there exists an element e of Z(G)

such that hg−1e ∈ Ai . It suffices to show that Mhg−1

i ∼ zi . Now Ai fixes Mi and

so Mhg−1

i = Me−1

i . Now e−1 fixes zi and so Mhg−1

i ∼ zi .

Incidence of g and Ai g. It is clear that G acts regularly on the points opposite P .
Since for all i we have Q ∼ Mi , it follows that Qg

∼ Mg
i .

Therefore, the flock quadrangle arising from L via the Knarr construction is equivalent
to E . 2

6.1. Theorem 1.1 and its proof In general, we do not know that a Kantor family
of the flock elation group must arise from a q-clan (possibly after applying an
automorphism of the flock elation group), but we can establish this for q prime, which
is the essence of Theorem 1.1, restated slightly differently below.
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An elation generalized quadrangle of order (s, p), with p prime, is a flock
quadrangle, isomorphic to Q(4, p) or isomorphic to W(p).

PROOF OF THEOREM 1.1 Let S be an elation generalized quadrangle of order (s, p),
where p is prime, and suppose that (G, F , F∗) is the corresponding Kantor family.
By [BTVM96], we may assume that s = p2, and so G has order p5. By Theorem 1.2,
G must be extraspecial. Now the Frattini subgroup of G has order p and so has
nontrivial intersection with every subgroup of G that has order at least p3. Hence
Z(G) is contained in every element of F∗. Therefore, by Lemma 4.6 and Theorem 6.1,
our generalized quadrangle S is a flock quadrangle. 2
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