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Abstract

We propose an efficient semi-numerical approach to compute the steady-state probability
distribution for the number of requests at arbitrary and at arrival time instants in PH/M/c-
like systems with homogeneous servers in which the interarrival time distribution is
represented by an acyclic set of memoryless phases. Our method is based on conditional
probabilities and results in a simple computationally stable recurrence. It avoids the
explicit manipulation of potentially large matrices and involves no iteration. Owing to the
use of conditional probabilities, it delays the onset of numerical issues related to floating-
point underflow as the number of servers and/or phases increases. For generalized Coxian
distributions, the computational complexity of the proposed approach grows linearly with
the number of phases in the distribution.
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1. Introduction

In many computer and networking applications, as well as a number of other areas, the
request arrival process exhibits significant deviations from a simple Poisson process. This is
the case, for example, for Internet traffic where times between request arrivals are thought
to be highly variable and possibly ‘heavy tailed’ [14], [23], as well as for I/O subsystems in
large computer installations [22]. To achieve ever increasing performance levels at acceptable
energetic expense, a frequent solution entails the use of multiple parallel facilities to process
the requests, e.g. in mainframe I/O [12]. If we assume memoryless service times, the system
congestion and the delays experienced by requests become those of a G/M/c-type queue. Since
in man-made systems the buffer sizes can only be finite, under heavier workloads, effects
due to a limited queueing room cannot be neglected, so the G/M/c/N -type queue is then a
more adequate model. Additionally, in many situations, the service and/or arrival processes
may exhibit nonnegligible dependence on the current state of the system. For example, state-
dependent service rates allow a more accurate representation of service in systems such as
multicore processors [43] where, because of interference between processors, the processing
capacity does not grow linearly with the number of active processors. State-dependent arrival
rates may be useful, for instance, to represent congestion avoidance in IP networks.
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Although there are analytical results for the unrestricted state-independent G/M/c queue [2],
[9], [26], their application requires computations which, depending on the specific distribution
of interarrival times, may quickly become difficult [18], [27]. To the best of the authors’
knowledge, the G/M/c queue with restricted queueing room has received less attention, and
there are few easily usable general analytical results [13], [20]. The same seems to apply to
G/M/c-type queues with state dependencies [18].

Since any distribution can be approximated arbitrarily closely by a finite number of
exponential phases [35], [36], a possible approach is to use a phase-type distribution for the
times between request arrivals [8], [16], [21], [24], [37], [41], and, hence, attempt to solve the
resulting PH/M/c-type queue.

The matrix-geometric techniques pioneered by Neuts [34], [35] are a possible avenue to
evaluate such processes. There is a large body of previous work in the area of matrix-analytic
approaches. In particular, Latouche and Ramaswami [29] proposed the logarithmic reduction
algorithm as a numerically stable approach to the computation of steady-state probabilities in
level-independent systems, i.e. systems without state dependency. This algorithm is based
on stochastic complementation [39]. The work of Gaver et al. [17] is devoted to finite
queues in randomly changing environments, and includes a numerical method that involves
a recursive determination of certain matrices. The logarithmic reduction algorithm of Latouche
and Ramaswami has been extended by Bright and Taylor [11] to level-dependent infinite queues.
Bright and Taylor pointed out possible numerical problems in their approach due to the recursive
calculation of matrices involved in the solution. Gaver et al. [17] mentioned similar problems.
Latouche [28] showed that Newton’s method applied to nonlinear equations in Markov chains is
quadratically convergent, although not very attractive because of its computational complexity.
Akar and Sohraby [1] proposed an invariant subspace approach whose convergence rates are
at least quadratic, and whose accuracy may be better due to the avoidance of truncation. The
generalization of matrix-geometric stationary distributions to level-dependent quasi-birth-and-
death processes was considered by Ramaswami and Taylor [38]. Bean et al. [3] studied the
quasistationary distributions for level-dependent processes and proposed a method derived from
the Latouche–Ramaswami algorithm for their computation. The work of Ye [44] examined the
theoretical properties of the Latouche–Ramaswami logarithmic reduction algorithm, including
numerical stability issues, and offered a more stable algorithm for inverting a diagonally
dominant matrix. An improved matrix-geometric algorithm was proposed by Naoumov et
al. [33]. The spectral expansion method can also be applied to obtain a solution for these types
of systems [15], [31], [32].

We refer the reader to the books by Latouche and Ramaswami [30], Bini et al. [5], and,
at a more introductory level, Bolch et al. [9] for an overview of properties of matrix-analytic
approaches and numerical methods for quasi-birth-and-death problems and G/M/1-type Markov
chains. Bini et al. [6], [7] discussed practical considerations and software implementation for
several of the methods mentioned above. Mitrani and Chakka [31] compared the performance
of the spectral expansion and matrix-geometric methods for an M/M/c-type queue. Haverkort
and Ost [19] also compared the spectral expansion method with the Latouche–Ramaswami
algorithm for a model of a fault-tolerant system. Tran and Do [42] presented a comparison
of the practical performance of matrix-geometric methods and of the spectral expansion for a
specific quasi birth-and-death process.

We propose a considerably simpler semi-numerical approach to compute the steady-state
probability distribution for the number of requests in the system both at arbitrary times and
at instants of request arrival for PH/M/c-type queues with and without state dependencies.

https://doi.org/10.1239/jap/1331216835 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216835


86 A. BRANDWAJN AND T. BEGIN

Our method, inspired by a recent semi-numerical solution for M/Cn/1-type queues [10], exploits
the known form of the steady-state distribution, involves no iteration, and results in a simple
numerically stable recurrence. It avoids the explicit manipulation of potentially large matrices,
and, because of the use of conditional probabilities, reduces the possibility of floating-point
numerical problems, especially as the number of servers and/or phases increases.

This paper is organized as follows. In the next section we describe in more detail the PH/M/c-
type and PH/M/c/N -type models considered, and the proposed recurrent solution. In Section 3
we present a formal proof of the computational stability of our recurrent solution. In Section 4
we discuss the computational complexity of our approach, and present an example of numerical
results obtained using it. Section 5 concludes the paper.

2. Model and its recurrent solution

2.1. State description

The queue considered comprises c homogeneous servers. The service times are assumed to
be memoryless with individual service rate µ(n), where n is the current number of requests in
the system. In the case of a restricted queueing room, N is the maximum value for this number.

Similarly to several authors [30], [35], we represent the times between arrivals as a phase-
type distribution, which we assume to be acyclic. We denote by a the number of memoryless
phases, by τj (n) the probability that the arrival process starts in phase j, j = 1, . . . , a, by
λj (n) the rate of phase j , by rjl(n) (l > j) the phase transition probabilities, and by r̂j (n) the
probability that the arrival process terminates after phase j . We consider this queue in steady
state for which the joint probability of the current stage of the arrival process and the current
number of requests in the system, p(j, n), is a common description. We discuss briefly in
Section 2.3 the conditions under which our queue with unlimited queueing room has a steady-
state solution. In the case of a finite queueing room, the steady state of our queue always exists.
A summary of the principal notation used in this paper is as follows.

c Number of servers.
n Total current number of requests in the system; n = 0, . . . , N for a finite

queueing room.
τj (n) Probability that the arrival process starts in phase j, j = 1, . . . , a, when there

are n requests in the system.
λj (n) Completion rate for phase j of the arrival process.
rjl(n) Probability that the arrival process continues in phase l upon completion of

phase j , where j, l = 1, . . . , a, l > j .
r̂j (n) Probability that the arrival process ends (new request generated) upon comple-

tion of phase j, j = 1, . . . , a.
u(n) Rate of request completions given by min(c, n)µ(n), where µ(n) is the service

rate of a single server.
u∗ Limiting value of u(n) with unrestricted queueing room.
p(j | n) Conditional probability that the arrival stage is j given that the number in the

system is n.
α(n) Conditional rate of arrivals given that the number in the system is n (cf. (2)

below).
α̃ Limiting value of α(n) with unrestricted queueing room.
p(n) Steady-state probability that the number of customers in the system is n.
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PA(n) Probability that an arriving customer finds n customers already present in the
system.

n∗ Number of requests for which the state dependence ends for arrivals and
service (ñ = n∗ + 1).

ρ̃ Limiting geometric factor for an unrestricted queue.

2.2. Restricted queueing room (PH/M/c/N -type queue)

We first consider the case where the queueing room is finite so that no more than N

(N > c) requests can be in the system (queued and in service). With a finite queueing
room, there are several possible assumptions regarding the arrival process when the buffer
is full. One simple possibility is that requests arriving to find the buffer full are simply lost
(lost arrivals) and the arrival process continues unperturbed. Another possibility, of interest in
networking applications, is that the arrival process stops altogether when the buffer becomes
full, and remains blocked until a request leaves the system (blocked arrivals). Our approach
can accommodate both assumptions.

It is a straightforward matter to obtain the balance equations for the steady-state probability
p(j, n) that the current stage of the arrival process is j and that the current number of requests
is n. It is also not difficult to show that the marginal probability that there are n requests in the
system, p(n), can be expressed as

p(n) = 1

G

n∏
m=1

α(m − 1)

u(m)
, n = 0, 1, . . . , (1)

where

α(n) =
a∑

j=1

λj (n)r̂j (n)p(j | n), (2)

u(n) = min(c, n)µ(n), and G is a normalizing constant chosen so that
∑

n p(n) = 1. Note
that α(n) can be viewed as the steady-state rate of request arrivals conditioned on the current
number of requests already present in the system. Except in the trivial case of Poisson or
quasi-Poisson arrivals, α(n) is not known in advance, so our goal is to compute it so as to obtain
the steady-state probabilities p(n) from (1).

From the definition of conditional probability, we have p(j, n) = p(j | n)p(n). Using this
relationship together with (1) in the balance equations, we obtain, for n = 0, 1, . . . , N − 1 in
the case of lost arrivals,

p(j | n)[λj (n) + u(n)] = p(j | n + 1)α(n) +
j−1∑
l=1

λl(n)rlj (n)p(l | n)

+ τj (n)u(n), j = 1, . . . , a. (3)

With lost arrivals, for n = N , we have

p(j | N)[λj (N) + u(N)] =
j−1∑
l=1

λl(N)rlj (N)p(l | N) + τj (N)u(N)

+ τj (N)α(N), j = 1, . . . , a. (4)

The equations for the case of blocked arrivals are given in Appendix A.5.
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Clearly, we have
a∑

j=1

p(j | n) = 1 for all n = 0, 1, . . . . (5)

Based on the forms of (3) and (4), we let

p(j | n) = ϕj (n)α(n) + ξj (n)u(n). (6)

We start from n = N . Using (6) in (4), we readily obtain the coefficients ϕj (N) and ξj (N)

in the order j = 1, . . . , a (cf. (15) and (16) in Appendix A.3). From (6) and the normalizing
condition (5), we determine α(N). We are thus able to compute p(j | N) using α(N), and
the previously computed coefficients ϕj (N) and ξj (N) in (6). We then consider consecutive
decreasing values of n = N − 1, . . . , 0. For each n, the values of p(j | n + 1) are known,
and we easily determine the coefficients ϕj (n) and ξj (n) using (6) in (3) (cf. (15) and (16)
in Appendix A.3). We obtain α(n) using (6) in the normalizing condition (5), and, hence,
p(j | n) from (6). Details of the recurrent computation are shown in Appendix A.3. Note that
the simple recurrence described in the appendix requires that the phase-type distribution of the
time between arrivals be acyclic.

Having obtained the values of α(n) for n = 0, 1, . . . , we are ready to compute the steady-
state probabilities for the number of requests in the system p(n) from (1).

The probability that an arriving customer finds n customers already present in the system,
PA(n), can be expressed as

PA(n) = α(n)p(n)∑
i≥0 α(i)p(i)

, n = 0, 1, . . . . (7)

From (7), it follows that the loss probability in the case of lost arrivals is given by PA(N). In
the case of blocked arrivals, we have α(N) = 0 so that, as expected, PA(N) = 0. The fraction
of time during which the arrival process is blocked is then given by p(N). Note that α(n), the
conditional state-dependent rate of arrivals, exhibits in general a strong nontrivial dependence
on n, except in the case of a Poisson arrival process, in which case α(n) is a constant.

2.3. Unrestricted queueing room (PH/M/c-type queue)

We now consider the case of an unrestricted buffer size. We assume that the state dependen-
cies in the arrival process and in the service rate vanish starting with some value of the number
of requests in the system, say, n = n∗, so that we have τj (n) = τ ∗

j , λj (n) = λ∗
j , rjl(n) = r∗

j l ,
r̂j (n) = r̂∗

j , and µ(n) = µ∗ (and, hence, u(n) = u∗ = cµ∗) for n ≥ n∗. Following a
reasoning similar to that used for a standard G/M/c queue [26, p. 75], it can be shown that
the distribution of the number of requests found at arrival instants is geometric for n > n∗. It
is easy to show that the steady-state probabilities p(n) are also geometrically distributed for
n > n∗. The geometric factor being α(n)/u∗, it follows that, for the case n > n∗, the α(n)

reach their limiting value α̃. Thus, from (2), the conditional probabilities p(j | n) must also
reach their limiting values p̃(j). The limiting value α̃ is given by

α̃ =
a∑

j=1

p̃(j)λ∗
j r

∗
j .
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Hence, for ñ = n∗ + 1, the values of p(j | n) become equal to p̃(j) and α(n) = α̃. Denoting
the geometric factor by ρ̃ = α̃/u∗ we have

p(n) = 1

G

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∏
k=1

α(k − 1)

u(k)
, n ≤ ñ,

[ ñ∏
k=1

α(k − 1)

u(k)

]
ρ̃n−ñ, n > ñ.

The normalizing constant G can be written as

G = 1 +
ñ−1∑
n=1

n∏
k=1

α(k − 1)

u(k)
+

[ ñ∏
k=1

α(k − 1)

u(k)

]
1

1 − ρ̃
.

Clearly, we must have ρ̃ < 1, i.e. α̃ < u∗ for the steady solution to exist. An in-depth discussion
of stability and related issues in a mutiserver queue can be found in the works of Kiefer and
Wolfowitz [25] and Scheller-Wolf and Sigman [40].

The limiting values p̃(j) and α̃ can be determined from the limit of equation (3) for n → ∞:

p̃(j)(λ∗
j + u∗) = p̃(j)α̃ +

j−1∑
l=1

λ∗
l r

∗
lj p̃(l) + τ ∗

j u∗, j = 1, . . . , a. (8)

Obviously, we must have
∑a

j=1 p̃(j) = 1. Based on this fact, a simple bisection can be used to
solve (8) (see Appendix A.1). Thus, starting from the value ñ = n∗ + 1 and using the limiting
values p̃(j) as p(j | ñ + 1), we compute the values of p(j | n), j = 1, . . . , a, and α(n) for
consecutive decreasing values of n = ñ, ñ − 1, . . . , 0, from recurrence (3) as described in the
preceding section.

In the case of a standard PH/M/c queue, i.e. when there are no state dependencies in the
arrival process or the service rate, the steady-state probabilities p(n) are known to have a
geometric form starting from n = c [2, p. 698], [26]. Therefore, it is clear that our asymptotic
factor ρ̃ coincides with the solution of the well-known equation involving the Laplace–Stieltjes
transform of the interarrival time distribution (see, e.g. [2, p. 698]) and [9, Equation (6.85),
p. 265]. Thus, the simple bisection (cf. Appendix A.1) for the limiting probabilities p̃(j) (see
(8)) provides an alternate way of computing this solution.

3. Stability of the recurrent solution

In this section we show that our recurrent solution is computationally stable. We follow
closely the line of reasoning presented for M/G/1-like queues [10], adapting it to the distribution
type and queue considered in this paper. We write the recurrence as

p(j | n)[λj (n) + u(n)] = p(j | n + 1)α(n) +
j−1∑
l=1

λl(n)rlj (n)p(l | n)

+ τj (n)u(n), j = 1, . . . , a,

where we use the notation p(j | N + 1) = τj for all j in the case of a finite buffer with lost
arrivals, and p(j | N) = 0 for all j in the case of a finite buffer with blocking.

As described in Section 2, the solution can be expressed as

p(j | n) = ϕj (n)α(n) + ξj (n)u(n) (9)
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with the coefficients ϕj (n) and ξj (n) given by

ϕj (n)[λj (n) + u(n)] = p(j | n + 1) +
j−1∑
l=1

λl(n)rlj (n)ϕl(n), j = 1, . . . , a, (10)

ξj (n)[λj (n) + u(n)] =
j−1∑
l=1

λl(n)rlj (n)ξl(n) + τj (n), j = 1, . . . , a. (11)

From (5) and (6) we obtain, for α(n),

α(n) =
[

1 − u(n)

k∑
j=1

ξj (n)

]/ k∑
j=1

ϕj (n).

We assume that the phase-type distribution of the time between arrivals has indeed a stages, so
λj (n) > 0 and τj (n) + ∑j−1

l=1 rlj (n) > 0 for j = 1, . . . , a (in particular, τ1(n) > 0).
We first show that our recurrence for p(j | n) produces positive values.

Lemma 1. If p(j | n + 1) > 0 for i > 1 then we have

(a) ϕj (n) > 0 and ξj (n) > 0 for j ≥ 1,

(b) α(n) > 0, and

(c) p(j | n) > 0 for j ≥ 1.

Proof. The proof of part (a) follows directly from (10) and (11).
(b) Summing (11) over all values of j and using the fact that

∑a
j=1 τj (n) = 1, we obtain

a∑
j=1

ξj (n)[λj (n) + u(n)] =
a∑

j=1

j−1∑
l=1

λl(n)rlj (n)ξl(n) + 1.

Rearranging the terms and using the fact that
∑a

l=j+1 rjl(n) = 1 − r̂j (n), we have

1 − u(n)

a∑
j=1

ξj (n) =
a∑

j=1

ξj (n)λj (n)r̂j (n) > 0,

and, hence, α(n) > 0.
(c) Follows directly from the results of (a) and (b).

Lemma 1 establishes that p(j | n) > 0 for j ≥ 1 and n ≥ 0.
Consider now a set of perturbed conditional probabilities, where the perturbation corresponds

to floating-point roundoff errors, i.e.

p̃(j | n + 1) = p(j | n + 1) + �p
(n+1)
j .

Because the conditional probabilities are normalized at each step of the recurrence, the per-
turbations �p

(n+1)
j must satisfy

∑a
j=1 �p

(n+1)
j = 0. We assume that the perturbations are

small so that we have p̃(j | n + 1) > 0. From (11), it is clear that the perturbation does not
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affect ξj (n). Let ϕ̃j (n) = ϕj (n) + �ϕ
(n)
j be the solution of (10) when p(j | n+ 1) is replaced

by p̃(j | n + 1). The perturbations �p
(n+1)
j and �ϕ

(n)
j are related by

�ϕ
(n)
j [λj (n) + u(n)] =

j−1∑
l=1

λl(n)rlj (n)�ϕ
(n)
l + �p

(n+1)
j . (12)

In Lemma 2 below we bound relative perturbations in ϕj (n) in terms of relative perturbations
in p(j | n + 1).

Lemma 2. The perturbations �p
(n+1)
j and �ϕ

(n)
j satisfy

max
j

�ϕ
(n)
j

ϕj (n)
≤ max

j

�p
(n+1)
j

p(j | n + 1)
, min

j

�ϕ
(n)
j

ϕj (n)
≥ min

j

�p
(n+1)
j

p(j | n + 1)
.

Proof. See Appendix A.4.

Let p̃(j | n) = p(j | n) + �p
(n)
j be the conditional probabilities at n corresponding to

p̃(j | n + 1). In (9) p̃(j | n) is expressed as

p̃(j | n) = ϕ̃j (n)α̃(n) + ξj (n)u(n),

where

α̃(n) =
[

1 − u(n)

a∑
j=1

ξj (n)

]/ a∑
j=1

ϕ̃j (n).

The following lemma relates �p
(n)
j to �ϕ

(n)
j .

Lemma 3. The perturbations �p
(n)
j satisfy

�p
(n)
j

α(n)ϕj (n)
= 1

1 + �β(n)

[
�ϕ

(n)
j

ϕj (n)
− �β(n)

]
,

where

�β(n) =
a∑

j=1

�ϕ
(n)
j

/ a∑
j=1

ϕj (n).

Proof. See Appendix A.4.

The preceding lemmas give us the elements to prove the stability of our recurrent algorithm.
We consider the following function to assess the magnitude of the relative error in p(j | n):

g(n) = maxj �p
(n)
j /p(j | n) − minj �p

(n)
j /p(j | n)

1 + minj �p
(n)
j /p(j | n)

.

Theorem 1. The function g(n) satisfies

(a) g(n) ≤ g(n + 1),

(b) maxj |�p
(n)
j /p(j | n)| ≤ g(n).

Proof. (a) Because
∑a

j=1 �p
(n)
j = 0, we must have

max
j

�p
(n)
j

p(j | n)
≥ 0 and min

j

�p
(n)
j

p(j | n)
≤ 0. (13)
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Using (9) and the results of Lemma 1, we have

max
j

�p
(n)
j

p(j | n)
≤ max

j

�p
(n)
j

α(n)ϕj (n)
and min

j

�p
(n)
j

p(j | n)
≥ min

j

�p
(n)
j

α(n)ϕj (n)
.

Substituting into the definition of the function g(n) we obtain

g(n) ≤ maxj �p
(n)
j /(α(n)ϕj (n)) − minj �p

(n)
j /(α(n)ϕj (n))

1 + minj �p
(n)
j /(α(n)ϕj (n))

.

From the results of Lemma 2 and Lemma 3, we have

[
max

j

�p
(n)
j

α(n)ϕj (n)
− min

j

�p
(n)
j

α(n)ϕj (n)

]
= 1

1 + �β(n)

[
max

j

�ϕ
(n)
j

ϕj (n)
− min

j

�ϕ
(n)
j

ϕj (n)

]

≤ 1

1 + �β(n)

[
max

j

�p
(n+1)
j

p(j | n + 1)
− min

j

�p
(n+1)
j

p(j | n + 1)

]

and

1 + min
j

�p
(n)
j

α(n)ϕj (n)
= 1

1 + �β(n)

[
1 + min

j

�ϕ
(n)
j

ϕj (n)

]

≥ 1

1 + �β(n)

[
1 + min

j

�p
(n+1)
j

p(j | n + 1)

]

> 0.

Combining these results yields g(n) ≤ g(n + 1).
(b) Using (13), we conclude that

g(n) ≥ max
j

�p
(n)
j

p(j | n)
− min

j

�p
(n)
j

p(j | n)
≥ max

j

∣∣∣∣
�p

(n)
j

p(j | n)

∣∣∣∣.
Thus, Theorem 1 shows that our recurrent algorithm is numerically stable.

In the next section we discuss the computational complexity of our method and present a
numerical result that illustrates its application.

4. Performance of the method

We start with a brief discussion of the computational complexity of our recurrent solution.
In the case of a finite queueing room of size N , i.e. the PH/M/c/N -type queue, the total number
of floating point operations can be evaluated in advance. It varies with the precise nature of
the phase-type distribution considered, and can be expressed as o(Nak), where k ≤ 3. For the
generalized Coxian distribution where (with the exception of the last stage) rjl = 0 for any
l �= j + 1, we have k = 1. Thus, for these types of distribution, which include the Erlang and
the hyperexponential distributions, the complexity is o(Na). The maximum value of k = 3 is
reached for a general acyclic distribution.

In the case of an unrestricted queueing room, i.e. the PH/M/c-type queue, the first step is to
solve for the limiting probabilities p̃(j). This step may involve a slightly variable, but generally
modest (say, a few tens), number of bisection points (cf. Appendix A.1). The complexity of
each bisection point is o(ak), where the value of k depends on the type of distribution of the
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time between arrivals, as discussed for the PH/M/c/N -type queue. The second step involves
our recurrence, and its complexity is o(ñak).

In both cases, the memory space requirements of our approach are limited: an array of a

elements to hold the probabilities p(j | n) for a single value of n at a time, two arrays of a

elements for the coefficients ϕj and ξj , and a single array of (N + 1) (or (ñ + 1)) elements to
store the values of α(n).

Note that our recurrence requires no special arrangements for state-dependent systems.
Note also that by using the conditional probabilities p(j | n), as opposed to the regular state
probabilities p(j, n), we partition the state space into a set of subspaces individually normalized
for each value of the number of requests n. This has the effect of scaling up the numerical
values manipulated, thus delaying the onset of loss of precision due to floating-point underflow
problems. Depending on the number of stages and the specific instance of the phase-type
distribution, such problems might otherwise occur even for moderate numbers of servers. In
Appendix A we give an example of application of our method to a larger number of servers and
phases. An implementation of our algorithm is currently available online [4].

In Section 3 we presented a theoretical proof that the proposed recurrence is computationally
stable, and, in the many numerical examples we have considered, we found the method to be
numerically stable in practice.

5. Conclusions

In this paper we proposed a simple recurrent solution of PH/M/c/N -type and PH/M/c-type
queues. The queues considered may have state-dependent arrival and service processes. For
systems with finite buffers, the proposed method can handle queues with lost arrivals, as well
as with blocking.

We derived our recurrent solution by considering the conditional probabilities of the arrival
process given the number of requests in the system. The resulting recurrence yields the state-
dependent arrival rates, and, hence, the steady-state probabilities for the number of requests
both at arbitrary times and at instants of arrival. The solution is exact, and involves no iteration.
In the case of an unrestricted queueing room, the solution involves the computation of the
limiting geometric factor (ρ̃ = α̃/u∗) and the limiting conditional probabilities before the
actual recurrence. A simple bisection can be used to accomplish this task with high accuracy.

The proposed solution is reasonably scalable as the number of servers and phases increases.
For a generalized Coxian distribution of the interarrival times, its computational complexity is
o(Ma), and it is o(Ma3) for an arbitrary acyclic phase-type distribution, where a is the number
of phases and M is the maximum population level for the recurrence, i.e. N for the PH/M/c/N -
type and ñ for the PH/M/c-type queue. It is interesting to note that, for phase-type distributions,
many distribution fitting methods use the generalized Coxian distribution (or some simplified
form thereof) [8], [16], [21], [24], [37], [41], for which the complexity of the proposed recurrent
solution grows linearly with the number of stages.

The use of conditional probabilities, as opposed to the joint probabilities of the current arrival
phase and the number of customers in the system, has the distinct advantage of dividing the
state space into subspaces individually normalized for each population level. This scales up
the values manipulated by the computation, thus delaying the onset of numerical issues related
to floating-point underflow.

We presented a theoretical proof that our recurrent solution is computationally stable, and
our numerical trials indicate that the method is numerically stable in practice even with large
numbers of phases. Our recurrent solution requires minimal memory space. It is also very
simple to implement in a standard computer language.
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Appendix A

A.1. Limiting probabilities with unrestricted queueing room

To devise a simple solution for (8), let us treat the limiting rate of arrivals α̃ as a parameter
and write the equation as

p̃(j) = 1

λ∗
j + u∗ − α̃

[j−1∑
l=1

λ∗
l r

∗
lj p̃(l) + τ ∗

j u∗
]
, j = 1, . . . , a. (14)

For α̃ < u∗ + minj λ∗
j , p̃(j) is a strictly increasing function of α̃. For α̃ = 0, summing (14)

over all values of j , and dividing by u∗, we obtain

a∑
j=1

p̃(j) = 1 − 1

u∗
a∑

j=1

λj r̂
∗
j < 1.

On the other hand, as α̃ → u∗ + minj λj ,
∑a

j=1 p̃(j) → ∞ >1. Since
∑a

j=1 p̃(j) is a
continuous strictly increasing function of α̃, there must be a unique value of α̃ such that∑a

j=1 p̃(j) = 1. Given the geometric nature of the limiting distribution of the number of
requests in the system, we must have α̃ < u∗ if the queue is to be stable. Thus, the limiting
solution can be obtained through a simple bisection looking for a value α̃ ∈ (0, u∗) for which∑a

j=1 p̃(j) = 1.

A.2. Application example

To illustrate the application of our method, we consider a system with 32 servers, a Pareto-
like distribution of the time between arrivals, and a finite buffer of 64 requests. Such bursty
distributions have been reported in I/O subsystems (see, e.g. [22]), as well as computer networks
(see, e.g. [14] and [23]). The number of servers chosen might correspond, for instance, to
the number of ‘exposures’ in the case of parallel access volumes [12] in a mainframe I/O
subsystem. The phase-type representation of the Pareto-like distribution was obtained using
the PhFit software [21]. It contains 16 phases, six of which are used for the heavy-tail part
of the distribution. We represent in Figure 1 the results obtained using our method at close
to 80% server utilization, including the steady-state average-time probabilities p(n) and the
probabilities of the state upon arrival, PA(n).

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0.05

0.04

0.03

0.02

0.01

0.00

Number of requests in the system

distribution at an arbitrary timep n( ): distribution found upon arrivalPA n( ):

Figure 1: Distributions of the number of requests at arbitrary times and upon arrival.
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Figure 2: Pareto-like distribution for the time between arrivals used in the numerical example.

Table 1.

Probabilities Phase rate

τ1 4.962 997 89 × 10−2 λ1 7.029 376 15
τ2 6.556 227 66 × 10−2 λ2 5.602 915 23
τ3 6.080 485 26 × 10−2 λ3 5.014 299 42
τ4 3.953 060 23 × 10−2 λ4 4.398 542 22
τ5 8.433 362 70 × 10−2 λ5 4.111 812 39
τ6 1.114 454 42 × 10−1 λ6 3.091 590 50
τ7 4.346 580 02 × 10−2 λ7 2.594 319 15
τ8 1.137 791 44 × 10−2 λ8 2.526 358 99
τ9 3.875 069 20 × 10−2 λ9 2.456 465 93
τ10 2.301 720 16 × 10−1 λ10 2.259 072 87
τ11 5.270 715 06 × 10−7 λ11 2.234 017 04 × 10−5

τ12 8.119 158 05 × 10−6 λ12 1.691 547 94 × 10−4

τ13 1.084 296 20 × 10−4 λ13 9.825 538 80 × 10−4

τ14 1.424 765 17 × 10−3 λ14 5.498 235 48 × 10−3

τ15 1.867 582 84 × 10−2 λ15 3.059 037 19 × 10−2

τ16 2.447 091 29 × 10−1 λ16 1.700 401 80 × 10−1

r12, r23, . . . = r̂10, r̂11, . . . = 1

The Pareto-like distribution used in our example is depicted in Figure 2, with the numerical
values of the probabilities and phase rates given in Table 1.

A.3. Details of the recurrent computation

We look for a solution to (3) of the form p(j | n) = ϕj (n)α(n)+ξj (n)u(n). For our purpose
here, we let p(j | N + 1) = τj for all j . Equation (3) then implies that

ϕj (n) = 1

[λj (n) + u(n)]
{
p(j | n + 1) +

j−1∑
l=1

λl(n)rlj (n)ϕl(n)

}
, j = 1, . . . , a, (15)
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and

ξj (n) = 1

[λj (n) + u(n)]
{j−1∑

l=1

λl(n)rlj (n)ξl(n) + τj (n)

}
, j = 1, . . . , a. (16)

The unknown α(n) is determined from the normalizing condition (5):

α(n) =
[

1 − u(n)

a∑
j=1

ξj (n)

]/ a∑
j=1

ϕj (n). (17)

The computation for n = N−1 in the case of communication blocking proceeds in an analogous
way.

Note that we are able to use a simple recurrence owing to the assumed acyclic nature of the
phase-type distribution of the time between arrivals. If this restriction is lifted, the ϕj (n) and
ξj (n) could not be evaluated sequentially as shown in (15) and (16).

Our recurrent computation can be summarized as follows.

Algorithm 1.

for n from N to 0 do

• Compute coefficients ϕj (n) and ξj (n) for j from 1 to a.

• Compute α(n) using (17).

• Compute p(j | n) for j from 1 to a using (6).

endfor

Compute p(n) and PA(n) using (1) and (7).

A.4. Proofs of Lemmas 2 and 3

Proof of Lemma 2. Suppose that maxj �ϕ
(n)
j /ϕj (n) is attained at j = m. Then, for j = m,

we can write (12) as

[
�ϕ

(n)
m

ϕm(n)

]
ϕm(n)[λm(n) + u(n)] −

m−1∑
l=1

[
�ϕ

(n)
l

ϕl(n)

]
ϕl(n)λl(n)rlm(n)

=
[

�p
(n+1)
m

p(m | n + 1)

]
p(m | n + 1),

which leads to

[
�ϕ

(n)
m

ϕm(n)

]{
ϕm(n)[λm(n) + u(n)] −

m−1∑
l=1

ϕl(n)λl(n)rlm(n)

}
≤

[
�p

(n+1)
m

p(m | n + 1)

]
p(m | n + 1).

On the other hand, at j = m, (10) becomes

ϕm(n)[λm(n) + u(n)] −
m−1∑
l=1

ϕl(n)λl(n)rlm(n) = p(m | n + 1).
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Combining these two results yields

max
j

�ϕ
(n)
j

ϕj (n)
= �ϕ

(n)
m

ϕm(n)
≤ �p

(n+1)
m

p(m | n + 1)
≤ max

j

�p
(n+1)
j

p(j | n + 1)
.

In an analogous manner, we obtain

min
j

�ϕ
(n)
j

ϕj (n)
≥ min

j

�p
(n+1)
j

p(j | n + 1)
.

Proof of Lemma 3. We have

�α(n) = α̃(n) − α(n)

= 1 − u(n)
∑a

j=1 ξj (n)∑a
j=1 [ϕj (n) + �ϕ

(n)
j ]

− 1 − u(n)
∑a

j=1 ξj (n)∑a
j=1 ϕj (n)

= −(
1 − u(n)

∑a
j=1 ξj (n)

)(∑a
j=1 �ϕ

(n)
j

)
(∑a

j=1 ϕj (n)
)(∑a

j=1 ϕj (n) + ∑a
j=1 �ϕ

(n)
j

)

= −α(n)
�β(n)

1 + �β(n)
,

�p
(n)
j = p̃(j | n) − p(j | n)

= [ϕj (n) + �ϕ
(n)
j ][α(n) + �α(n)] − α(n)ϕj (n)

= α(n)�ϕ
(n)
j + �α(n)[ϕj (n) + �ϕ

(n)
j ]

= α(n)

[
�ϕ

(n)
j − �β(n)

1 + �β(n)
[ϕj (n) + �ϕ

(n)
j ]

]

= α(n)

1 + �β(n)
[�ϕ

(n)
j − �β(n)ϕj (n)].

A.5. PH/M/c/N queue with blocking

We consider here a communications type of blocking where the arrival process is stopped
altogether when the number of requests in the system becomes N . The arrival process then
restarts after the departure of a request. For this type of blocking, the equations for the top
two values of n change. For n = N , there are no arrivals, the probabilities p(j | N) are
meaningless, and α(N) = 0 (of course, p(N) is in general nonzero.) For n = N −1, we obtain

p(j | N − 1)[λj (N − 1) + u(N − 1)]

=
j−1∑
l=1

λl(N − 1)rlj (N − 1)p(l | N − 1)

+ τj (N − 2)u(N − 1) + τj (N − 1)α(N − 1), j = 1, . . . , a. (18)

The steady-state probabilities p(n) are obtained, as before, from (1). Note that (18) is similar
to (4) except that it applies to n = N − 1. For n = 0, . . . , N − 2, (3) applies as before.
The probabilities upon arrival are given by (7). The probability that the source is blocked is
simply p(N).
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The blocking described above corresponds either to a closed network of two stations with a
total population of N requests, or a node in a computer network with a buffer size of N packets
where the source generating the packets is prevented from overflowing the buffer.
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