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INFINITE SYSTEMS OF DIFFERENTIAL EQUATIONS 

J. P. McCLURE AND R. WONG 

1. I n t r o d u c t i o n . In an earlier paper [7], we have studied the existence, 
uniqueness and asymptot ic behavior of solutions to certain infinite systems of 
linear differential equations with constant coefficients. In the present paper 
we are interested in systems of nonlinear equations whose coefficients are not 
necessarily constants ; more specifically, we are concerned with infinite systems 
of the form 

(i i) r i W = Ç at*®xi® +/<('» *(*))» l e R * 

i = 1, 2, . . . . Here s is a nonnegative real number, R s = { / Ç R : / ^ s } , and 
x{t) denotes the sequence-valued function x(t) = (xi(/) , x2(t), . . . ) . Such a 
sequence defines a strongly continuous function with values in ll if and only if 
each %i(t) is continuous and | | x ( / ) | | = XT?=ilxi(OI converges uniformly on 
compact subsets of R s . For simplicity we shall call such functions strongly 
continuous. We wish to find conditions on the coefficient matr ix A (t) = [a f j( l)] 
and the nonlinear p e r t u r b a t i o n / ( / , x(t)) = (fi(t, x(t)) which guarantee the 
existence of a strongly continuous solution for the system (1.1). We are also 
interested in the asymptot ic behavior of solutions. 

In Section 2, we first consider the system of linear equations 

(12 ) V*^ = ? °<i(')**(0» * € R 5 

\Xi(s) = Ci} 

i — 1, 2, . . . . Under certain conditions on the coefficient matr ix A(t), which 
nevertheless allow the diagonal entries au(t) to be unbounded, we show tha t 
for each initial value c = (ct) £ I1, the system (1.2) has a unique strongly 
continuous solution. This leads to a natura l definition of the fundamental 
matrix (or evolution operator) for the system (1.2), which turns out to be 
very useful in the s tudy of the nonlinear system (1.1). In Section 3, we show 
t h a t the solution to (1.2) can be approximated by the solutions to finite 
systems obtained from (1.2) by t runcat ion. 

Time-dependent linear systems have been the subject of considerable re­
search, and the results of Sections 2 and 3 give some improvement over some 
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DIFFERENTIAL EQUATIONS 1133 

of this earlier work (cf. [1 ; 8]). At the same time, the result of the present 
paper for linear systems does not entirely subsume tha t of [7]. There, in the 
case of constant coefficients, we were able to use results in the abst ract theory 
of differential equations in Banach spaces to show that , for initial values in a 
dense subspace of I1, the differential equations are satisfied in a much stronger 
sense (i.e. tha t of strong derivat ive) . To apply the abstract results tha t we 
know to t ime-dependent problems, we would have to put much stronger condi­
tions on A(t) than those we actually use. 

In Section 4, we use the fundamental matrix of Section 2 to show the 
existence of a strongly continuous solution to certain non-linear systems. Our 
theorem requires conditions on the pe r t u rba t i on / ( / , x(t)) which are natural 
extensions of conditions known for finite systems. Finally, in Section 5, we 
investigate the asymptot ic behavior of solutions. Using the approximation 
result of Section 3, we show tha t when A (t) satisfies a diagonal dominance 
condition, the solution to (1.2) decays exponentially to zero. Fur thermore , 
under certain assumptions which are again natural extensions of those used 
in the case of finite systems, we are able to extend this result to the nonlinear 
system. 

Throughout , the scalars may be either real or complex. As indicated by our 
notat ion, differentiation of ^-valued functions will be considered only in the 
sense of differentiation of each coordinate function. In contrast with this, we 
find it convenient to use strong, as well as coordinatewise integrals. We adopt 
the convention tha t , whenever we write an integral of a vector-valued function 
(as opposed to writing the integrals of the coordinate functions), we mean the 
strong Riemann integral. 

2. T h e l inear s y s t e m . The linear system (1.2) can be regarded as a special 
case of (1.1), and we consider this case first. The existence theorem for (1.1), 
proved in Section 4, depends on the solutions to (1.2). Throughout the re­
mainder of the paper, we assume tha t A(i) satisfies the following conditions: 

(Ai) each atj{t) is continuous on R0 ; 

(A2) the function œ(t) = sup {Reau(t) : i = 1, 2, . . .} is locally bounded 
above on Ro; 

(A3) ^2i^j\aij(t)\ converges uniformly on compact subsets of Kofor each j , and 
ix(t) = sup {^2i^j\aij(t)\ : j = 1, 2, . . .} is locally bounded on Ro. 

As in [7], we decompose the matrix A(i) into its diagonal and off-diagonal 
par ts , and write D(t) for the diagonal matrix diag [a**(/)], and B(t) = A (t) — 
D(t). By condition (Ai), the uniform convergence of 2 ] i ^ ; l a o ( 0 l o n compact 
subsets of R0 is equivalent to the continuity of J2i^j\aij(l)\ o n Ro for each j . 
Fur thermore , (Ai) and (A3) together imply t ha t B(t) is a bounded operator 
on ll for each / £ Ro, and tha t t*-+B(t) is a strongly continuous operator-
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valued function (i.e., t -̂> B(t)c is a strongly continuous /^valued function for 
each c £ ll). If we define 

K(t, s) = diag e x p ( ^ J a ^ ( r ) ^ r j j 

for ^ and t in R0, then (Ai) and (A2) imply t ha t K(t, s) is a bounded operator 
on ll. I t is easily seen tha t K(t, s) is also strongly continuous (in the operator 
sense) as a function of two variables. 

LEMMA 2.1. Assume that conditions (Ai), (A2) and (A3) /w/d, aw^ let c = 

(et) Ç Z1. 77&ew a strongly continuous function x{t) is a solution of (1.2) i / and 
0w/;y z/ it is a solution of the integral equation 

(2.1) x(t) =K(t, s)c+ J #(/, T)5(T)*(T )dr. 

Proof. Since £(/) is strongly continuous and the operators K(t, s) and B(t) 
are continuous, the equation (2.1) is equivalent to the system of integral 
equations 

Xi(t) = exp I J au^drjci 

+ I exp I I aH((i)d<j) YJ atj^Xj^dr. 
J s \ J T / j-éi 

In turn, these equations are clearly equivalent to the system (1.2). The proof 
is complete. 

T H E O R E M 2.1. Assume that conditions (Ai), (A2) and (A3) hold. Then for 
each c £ ll, the system (1.2) has a unique strongly continuous solution. 

Proof. We shall work with the integral equation (2.1). Define a sequence 
\xn(t) : n = 0, 1, 2, . . .} as follows: 

Xo(t) = K(t, s)c 

( 2 ' 2 ) xn+1(t) = K(t, s)c + I *K(t, r)B(r)xn(r)dr. 
J s 

Clearly, xo(t) is strongly continuous, and by induction xn(t) is strongly con­
t inuous for each n. We shall show tha t {xn(t)} converges to a solution of (2.1) 
uniformly on compact subsets of R s . 

First , we have from (2.2) t ha t 

(2.3) xi(t) = %o(t) + I K(t,r)B(r)xo(r)dr. 
J s 

Since | | £ ( 0 | | = M ( 0 by condition (A3) and also 

\\K(t,s)\\ ^ e x p ( j ' « ( O d r j 
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by assumption (A2), (2.3) gives 

\\%i(t) — Xo(t)\\ ^ | |c | | l I /x(r)rfr) exp I I co(r)drl . 

In general, we have 

||*n+i(0 - *n( t ) | | ^ J exp I J o)(a)daJfi(r)\\xn(r) - xw_i(r) | |dr, 

and induction leads to 

(2.4) | | x n + 1 (0 -xH(t)\\£ yj II(T)CLTJ
 e x p ( J ^(r)drj 

(» + 1)! 
for any value of n. Thus the series Xo(t) + J2n=o[xn+i(t) — xn(/)] converges 
uniformly on compact subsets of R s , and by the usual argument it follows tha t 
the sequence {xn (/)} converges uniformly on compact subsets of R s to a strongly 
continuous function x(t). Passing to the limit in (2.2) as w —> oo, we obtain 

c+ )K(t,r) x{t) = K(t, s)c + I K(t, r)B(r)x(r)dr. 
J s 

Consequently, there is a t least one strongly continuous solution of (2.1) or 
equivalently, of (1.2). 

To show the uniqueness, let y it) be any strongly continuous solution of (2.1). 
Then 

* / " 
\ \ m - m W ik \ \\W,T)\\ \\B{T)\\ \\x(r) - y(r)\\dr. 

J S 

For any T G R „ there is a constant AT > 0 such tha t \\K(t, r ) | | \\B(T)\\ ^ M 
uniformly for s ^ r ^ t ^ T. Thus , for any e > 0 and any t Ç [s, T] 

MO -y(t)\\ <e + M f \\x(r) ~y(r)\\dr. 

Now Gronwall 's inequality implies 

| | * (0 - 5K0II < e exp [M(t - s)] 

for all / G [s, T]. Since e > 0 and jf Ç R4. were arbitrary, this shows tha t 

*K0 = 5K0 f ° r a ^ ^ ^ Rs, and proves the theorem. 

For future reference, we point out tha t from (2.4) an upper bound for the 
solution is given by 

(2.5) | | * 0 ) | | ^ X ( < , s ) | | c | | ( * € R , ) , 

where 

(2.6) \(t, s) = exp [ J ' (C(T) + / i ( r ) ) d r j . 
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1136 J. P. MCCLURE AND R. WONG 

The existence and uniqueness of strongly continuous solutions to (1.2) leads 
to a natural definition of the fundamental matrix, as follows. For j = 1 , 2 , . . . , 
let ëj = (ôij : i = 1, 2, . . .) £ ll, and let u3(t, s) = (Uij(t, s) : i = 1, 2, . . .) 
be the unique strongly continuous solution to (1.2) for the initial value c = ëj. 
Then the fundamental matrix for the system (1.2) is defined to be U(t, s) = 
[utj(t, s)]. Clearly U(t, s) is defined whenever 0 ^ 5 ^ / , and the following 
properties are immediate. First , 

(2.7) U(s, s) = I, s t Ro, 

where / = [<5i;] is the infinite ident i ty matrix. Also, U(t, s) defines a bounded 
operator on I1; in fact from (2.5), we have 

(2.8) \\U(t,s)\\ ^ \(t,s), OSs St. 

Fur thermore , U(t, s) is strongly continuous as a function of /, for each s; this 
follows from the strong continui ty of the functions Uj(t, s), which form the 
columns of U(t, s). The next result gives further properties of U(t, s). 

T H E O R E M 2.2. (i) For each c G I1, the strongly continuous solution of (1.2) is 

[/(/, s)c. 

(ii) Whenever s ^ r ^ /, 

(2.9) U(t,r)U(r,s) = U(t,s). 

(iii) U(t, s) is strongly continuous as a function of two variables on A = 
{(t,s) : 0 S s S t\. 

Proof, (i) I t suffices to show tha t (2.1) holds for x(t) = U(t, s)c (t £ R s ) . 
Firs t note t h a t U(t, s)c = YTj=icjûj(t, s), and the series converges uniformly 
for t in a compact subset of R s . Also, by definition of Uj(t, s)} we have 

«,(/, s) = K(t, s)ëj + I K(t}T)B(r)uj(r,s)dT1 
J s 

for each j and each / £ R s . Therefore 
CD 

U(t, s)c = X cjUj(t, s) 

CO CO P t 

= X) CjK(t,s)ëj+ £ Ci I K(tJr)B(r)uj(r,s)dT 
; = 1 j=l J s 

/

U CO 

K(t,r)B(r) X) cjuj(T,s)drJ 
s ; = 1 

where we have used the local uniform convergence of J2cjuj(t, s) to interchange 
the integral and the summat ion in the last term. T h u s (i) is proved. 

(ii) Suppose r £ R*. From (i), it follows t h a t y(t) = U(t, r ) U(T, S)C (t £ R r ) 
is the strongly continuous solution of (1.2) on RT with y(r) = U(r, s)c. On 
the other hand, if x(t) = U(t, s)c, then the differential equat ions in (1.2) are 
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satisfied for / £ R s , in particular for t £ RT, and we have x(r) = U(T, S)C = 
y(r). Thus by uniqueness x(t) = y(t) whenever t £ RT, and tha t proves (ii). 

(iii) T o see this, we re-examine the proof of Theorem 2.1. Note t ha t the 
successive approximations and the solution to (2.1) depend on 5 as well as 
on /. Fur thermore , the first approximation x0 is clearly jointly continuous, and 
by induction each xn is jointly continuous. Since the est imate (2.4) together 
with (A2) and (A3) imply tha t the approximations xn converge to the solution 
x uniformly on compact subsets of the triangle 0 ^ 5 ^ t, x is also jointly 
continuous. In particular, each Uj is jointly continuous, and tha t proves (iii). 

T o conclude this section, we note the following identity, which follows 
immediately from Theorem 2.2(i): for each c £ I1 and any 5 and / such tha t 
0 ^ s ^ t, 

- ; : • 

(2.10) K(t,s)c = U(t,s)c- K(t,r)B(j)U(r,s)cdT. 
J s 

We need this identi ty in the proof of the existence of solutions to nonlinear 
systems. 

3. A p p r o x i m a t i o n via f in i te t r u n c a t i o n . In this section, we shall show 
t h a t under the assumptions of Theorem 2.1, the solution of the system (1.2) 
is the limit of solutions to finite systems obtained from (1.2) by truncat ion. 
This result is of interest in itself, and also is useful in the s tudy of the exponen­
tial stabil i ty of solutions in Section 5. 

Given an infinite matr ix function A (t) = [a^^t)], we define An(t) = [a t-/n) (t)] 
as follows: 

(n) (f\ _ iai.?(t) ifO = i>J = >̂ or i f i = j \ 
aij W " (O otherwise, 

and set Bn(t) = An(t) — D(t). If c = (ct) is a sequence, we write cn for the 
t runcat ion of c after n terms: cn = (ci, . . . , cn, 0, . . . ) . Finally, we denote by 
xw (/) the solution to the integral equation 

(3.1) x(t) = K(t, s)cn + J l K(t, r)Bn(r)x(r)dr (t Ç R.) ; 

equivalently, x{n) {i) is the solution to the finite system of differential equations 

(3 2) )**(*) = ^ aa(f)xj(t)1 t Ç:Rs,i = I, . . . ,n 

\Xi(s) = cu i = 1, . . . , n, 

augmented by the terms xt(t) = 0 for i > n. 

T H E O R E M SA. Assume that (Ai), (A2) and (Az) hold. Then the functions x(n) (t) 
converge to the solution x{t) of the system (1.2), uniformly on compact subsets of 
R5, as n —> co . 
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1138 J. P. MCCLURE AND R. WONG 

Proof. Fix T 6 R s ; we will show tha t x(n) (t) —> x(Z) uniformly on [s, T] as 

n —» oo . First note t h a t 

HâKO-^OII ^ | | X ( / , J ) | | | | 2 - ^ | | 

+ f'||iî:(/,T)||||[5(T)-5 l,(T)]ic(T)||dr 

+ f'\\K(t,r)\\ \\Bn(r)\\\\x(r)-x(n)(r)\\dr 

= I1 + I2 + Is. 

Since K(t, s) is uniformly bounded on [s, T], I1 —> 0 as n —» 00 uniformly on 
[5, JH]. To est imate 72, we observe tha t for any y ^ I1. 

\\[B(T) - B„(r)]y\\ g \\B(r)(y - yn)\\ + \\B(r)y - (B(r)y)n\\. 

The first of these terms tends to 0 as n —> 00, uniformly on [s, T], since B(j) 
is uniformly bounded there and yn —> 3? in Z1. The second term tends to 0 as 
n —> 00 uniformly on [5, T], since {J5(r)y : T ë [s, 7']J is compact in Z1, and 
compact sets in Z1 can be characterized as those sets which are closed, bounded 
and have elements with uniformly converging sums (see the remarks following 
the proof). Hence, Bn(r) —> B(T) as n —> co , strongly and uniformly on [s, T]. 
From this it follows tha t | | [ 2 ? ( T ) — Bn(r)]y\\ —> 0 as n —> 00 , uniformly for 
r G [sj T] and ^ is a compact subset of Z1. This is because whenever W(T) is 
a strongly continuous operator, the map (T, y) 1—> ^ ( r ) ^ : R 5 X Z1 —• Z1 is 
continuous, so if PF(TO)3>O is small, then W{r)y is small uniformly in a neigh­
borhood of (TO, ;yo) • Now, x(t) being strongly continuous, we have 
| | [ 2? (T) — Bn(r)]x(T)\\ —> 0, uniformly on [5, T], as n —> 00. Since i£(Z, T) is 
uniformly bounded for s S r S t S 7 , we have I2 —> 0, uniformly for Z G [s, 2"], 
as n —> 00 . 

Thus , there are constants en such t ha t i \ + 72 ^ en uniformly on [s, T], and 
ew —» 0 as n —•» 00. To obtain a final est imate for 73, we simply note t h a t 
| | ^ W ( T ) | | ^ | | 2 3 ( T ) | | for all n and all T, and t ha t 5 ( T ) is uniformly bounded on 
[s, T]. So, there is a constant M such t ha t 

hûM I \\X(T) - x(n)(r)\\dr 
J s 

for all t £ [s, T]. Combining these results, we have 

||.X'(/) - x(K)(t)\\ ^ tn + M f ' \\X(T) - X{n){r)\\dr 

for all t G [s, T]. Applying Gronwall 's inequality yields 

\\x(t) - .?<»>(*) || S e» exp [M(t - 5)] g 6„ exp [ M ( r - s)] 

for all / G [5, 7"], and the theorem is proved. 
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The characterization of compact sets in I1 will be used again in Section 4. 
Of course, a set is compact if and only if it is complete and totally bounded, 
and a set 5 in I1 is totally bounded if and only if it is bounded, and for every 
e > 0 there is a positive integer N such tha t J2i>N\yt\ < e for every y = 

(y<) e s. 

4. T h e n o n l i n e a r s y s t e m . In this section, we begin the s tudy of the non­
linear system (1.1): 

\xt(t) = g a„(/)*,(0 +ft(t,x(t)), t G R5, 

\Xi{s) = Ct. 

In addition to the assumptions (Ai), (A2) and (A3), we now impose the 
following conditions o n / ( / , x) = (ft(t,x)): 

(Fi)fi : Ro X ll —•> C is continuous for each i\ 
(F2) \\f(t, x)\\ = ^27=i\fi(t, x)\ converges uniformly on bounded subsets of 

Ro X I1. 

These assumptions imply tha t / : R0 X I1 —> ll is continuous, and moreover 
t ha t / ( -B) is totally bounded in ll whenever B is bounded in R0 X I1 (see the 
remarks a t the end of Section 3). We obtain a solution to (1.1) by again 
converting to a strong integral equation. 

T H E O R E M 4.1. Let x(t) be a strongly continuous function on R s . Then (1.1) 
holds if and only if x{t) satisfies the strong integral equation 

(4.1) x(/) = U(t, s)c+ } ' U(t, r)f(r, x{r))dr. 
J S 

Proof. (We refer to Section 2 for the definition and properties of U(t, s).) 
First assume tha t x(t) satisfies (1.1). Integrat ing these equations, we obtain 

xt(t) = exp ( I au^drjCi 

+ I exp I I au{<j)d<j) ^2 ^ij(r)xj(T)dT 

+ J exp y J aai^daJfiiT, x(r))dT. 

Because of the strong continuity of x(t) and the various boundedness assump­
tions, this gives 

(4.2) x(t) =K(t,s)c+ I K(t,T)B(r)x(T)dr + I K(t, r)f(r, x(r))dr, 
J s J s 

where all the integrals are strong integrals. Subst i tut ing (2.10) in the first 
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and third terms of (4.2), and changing the order of the integration in the 
resulting double integral, we obtain 

(4.3) x{t) = (Tix)(t) + [T2(I - T U r K O . 

where we define 

{T1y){t) = U{t,s)c+ U(t,T)f(T,y(r))dT 
/ : 

(7*50(0 / : 
K(t,T)B(r)9(r)dT 

for y(t) strongly continuous on R5 . From (4.3) we see t h a t (I — T\)x is a 
fixed point for T2. But (I — T\)x is strongly continuous, and by Theorem 2.1 
(with c = 0) , 7̂ 2 has the unique strongly continuous fixed point Ô. So (I — l\)x 
= Ô, and x satisfies (4.1). 

Conversely, suppose x is strongly continuous and (4.1) holds. Then for each i 
and each / £ R s , 

oo f* t oo 

(4.4) Xi(t) = YJ Uij(t,s)cj+ I X uiAt, r)fj(r, x{r))dr. 

By Theorem 2.2, we have 

d (4.5) 
dt 

X utj(t, s)cj 
3=1 

= X aik(t) X uJcj(t, s)cj-
k=l j=l 

Examining the second term of (4.4), we observe t ha t the integrand is differen-
tiable. In fact, replacing Cj b y / 7 ( r , X(T)) and 5 by r in (4.5), we get 

7 OO 

J k=i 
;(0 X %;(^)/ ;(r, £(r)) 

whenever t ^ r, and the sum with respect to k on the right converges absolutely 
and uniformly for / and r in bounded sets, by the assumptions on A(t), the 
cont inui ty of U(t, s) and the assumptions on f(t, x). Therefore 

(4.6) 

d_ 
dt /

*t oo 

X utj(t, r)fj(T}x(r))dT 
s j=l 

= f,(t,x(t)) + /

t oo 

<*(0 X ukj(t,r)fj(r,x(T))dT. 
. 7 = 1 

By uniform convergence, we may interchange the summat ion over k and the 
integration in the last term. Combining (4.5) and (4.6), we have from (4.4) 

oo 

*i(t) = X G»(0**(0 +fi(t,x(t)). 

Since x(s) = c is immediate from (4.1), we have shown t h a t x(/) satisfies (1.1), 
as required. 
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T H E O R E M 4.2. Assume that conditions (Ai), (A2) and (A3) hold, and assume 
thatf(t, x) satisfies, in addition to (Fi) and (F2) , the following condition: 

(F3) //^re is a continuous function g : Ro —» Ro SWCÂ / t o 

11/0,*)!! ^g(OII*ll 
/or a// / and a// £. 71*en //^ system (1.1) fozs a strongly continuous solution. 

Proof. Let X s denote the set of strongly continuous functions from R5 into Z1. 
With the operations of pointwise addition and scalar multiplication, and the 
the topology of uniform convergence on compact sets, Xs is a Fréchet space. 
Define a mapping T : Xs —» Xs as follows: for x G X s , 

( 7 S ) ( 0 = U(t, s)c+ I U(t,r)f(r}x(r))dr. 
J s 

Clearly a solution of (4.1) is precisely a fixed point of T. 
Now recall t ha t \\U(t, s)\\ ^ X(/, s), and tha t X(/, s) is continuous in t. 

Therefore, for any positive number r, the equation 

u(t) = \(t, s)r + I X(/, r)g(r)u(r)dT 
J s 

has a continuous solution u(t) on R s . Take r ^ | |c | | , fix such a solution n(t), 
and define 

5 = j ^ I s : | |*(0II ^ w(0 for all t G R s } . 

Then J5 is easily seen to be non-empty, convex, closed, and bounded in Xs. 
The theorem will follow from the fixed point theorem of Tychonoff (see [6, p. 45] 
or [3, p . 163]), if we can show tha t T is continuous, T(B) ÇZ B and T(B) is 
totally bounded in Xs. These results are proved in the following lemmas. 

LEMMA 4.1. T is continuous. 

Proof. Fix x G Xs. Then for any y G Xs and any t G R s , 

\\(Ty)(t) - ( 7S) ( / ) | | â / ' | | f / ( / , r ) | | | | / ( r , y ( r ) ) - / ( r , ,v(r)) | |dr 

£ M , , . • sup | | / ( r , y ( r ) ) - / ( r , . r ( r ) ) | | 

where Af,ti. = (/ — s) sup {\\U(t, r)\\ : s ^ r ^ t}. This shows tha t it is 
sufficient to prove tha t for any T è s, \\f(r, y(r)) — f(r, x(r))\\ can be made 
small uniformly on [s, T] by making \\y(r) — £ ( r ) | | small uniformly on [s, T]. 

Now fix T è ^ and 6 > 0. If ||V(T-) - .v(r)| | < 1 for r G 0 , T] , then 

IlivMII S 1 + s u p s ^ r ^ r | | x ( r ) | | . By (F2) , there exists a positive integer TV such 
tha t J2i>AT\fi(r> y(T))\ < e f ° r all r ê [s, ^ ] and all such y. This implies 

\\f(r,y(r)) -f(r,Hr))\\ S £ | / , ( r , y ( r ) ) - / , ( r , * ( T ) ) | + 2«. 
1 = 1 
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Now a fairly straightforward a rgument involving the cont inui ty of the fu and 
the continui ty of x shows t ha t there is a number ô > 0 such tha t \\y(r) — X(T)\\ 
< 5 on [s, T] implies 

E \U(r,y(r))-Mr,x(r))\ <e 
1=1 

on [s, T]. This completes the proof of the lemma. 

L E M M A 4.2. T(B) Q B. 

Proof. If x G 5 , then for any t £ R*, 

\\{Tx)V)\\* \\U(f,s)c\\ + f ' || C/(^r) || | | / ( r ,5î(T))dr 

^ X ( / , 5 ) | | c | | + J s ' x ( ^ r ) g ( r ) | | . f ( r ) | | r f r 

^ X(*,s)r + I X(/,T)g(T)M(r)dT 

= u(t). 

Thus r . r £ i3, as required. 

LEMMA 4.3. T(B) is totally bounded in X s. 

Proof. By the Ascoli-Arzéla theorem [3, p. 34], it suffices to show tha t , for 
each t e R s , the set Vt = {(Tx)(t) : x £ B} is totally bounded in l\ and tha t 
T(B) is equicontinuous. 

Since U(t, r ) is a strongly continuous operator-valued function, the mapping 
(r, v) f—•> U(t, r)v from [s, t] X ll into ll is continuous. Thus , if 5 is a compact set 
in Z1, the set } U(t, r)v : s :g r ^ /, v £ 5} is compact . In part icular , F = 
{U(t, T)J(T, X(T)) : s ^ T ^ t, x e B} is totally bounded, in view of (F 2 ) . 
Therefore co (F )~ , the closed convex hull of V, is compact (see [3, pp. 163-4]). 
Since 

/ > • • 
(Tx)(t) = U(t,s)c + U(t,r)f(r,x(r))dr, 

J s 

and if x £ 5 , the integral has the value (/ — s)v for some v £ c o ( F ) _ , the 
set V, is totally bounded. 

T o prove t ha t T(B) is equicontinuous, fix t € R s ; then for x £ B and 
A > 0 

||(r*)(* + A) - (m (011 
^ ||[tf(* + ft,s) - U(t,s)]c\\ 

/

t+i, 

U(t + h,T)f(r,x(r))dr\\ 

+ 11 / ' [ ^ + A. r) - £/(<, r)]/(T, X(r))dr| | 

= Ei + £ 2 + £ 3 . 
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Clearly Ei —> 0 as h —> 0+ , and E\ is independent of x. To est imate E2, fix any 
r > /; then for h such tha t t < t + h < T, 

/

t+h 
\\U(t + h,T)\\\\f(r,x(r))\\drèhPQ, 

where P = sup {|| £/(CT, r ) | | : ( ^ T g <r ^ T) and 

Q = sup {\\J(T, X(T)\\-. t z T g r , * e 5) . 

T h e last es t imate is 0(A) as A —> 0+ and is independent of x € -B. Finally, we 
have from (2.9) tha t 

£3 =£ ||[tf(* + h,t) - I] f' U(t, r)/(r, .f(r ))<*r||. 

Now f/(/ + h, t) — I —> 0 strongly, hence uniformly on compact sets, as 
/̂  —» 0 + . For any x £ B, the integral in the last expression has its value in 
(/ — 5) c o ( F ) ~ . Since c o ( F ) ~ is compact, £ 3 —» 0 as h —» 0+ , uniformly with 
respect to x G ^ . This shows tha t T(B) is equicontinuous to the right a t t. 
Equicont inui ty to the left a t / is proven similarly, and tha t proves the lemma. 

Remarks, (a) With regard to Lemma 4.3, we should point out t ha t in proving 
left equicontinuity of T(B), the estimation of the term corresponding to £ 3 is 
more complicated, bu t not essentially different. Also, there is another method 
by which these particular terms can be est imated: take the norm inside the 
integral, and apply the Lebesgue dominated convergence theorem. 

(b) The main importance of condition (F3) of Theorem 4.2 is to guarantee 
the existence of the scalar function u(t) which is used to define the set B. This 
condition can be weakened as follows: there is a continuous function g : R s X 
R0 —> Ro, monotonie non-decreasing in the second variable, such tha t | | / ( / , x)\\ 
= gf t II^ID» a n c l such tha t the scalar equation 

u(t) = X(t, s)r + J X(/, r)g(r, u{r))dr 

has a solution u(t). 

5. Exponent ia l s tab i l i ty . In this section, we are concerned with the asymp­
totic behavior of solutions to (1.1). We say tha t the system (1.1) is exponen­
tially stable if there are positive constants K and b such tha t every strongly 
continuous solution x(t) of (1.1) satisfies 

(5.1) \\x(t)\\ ^ K\\c\\e-^-s\ t e Rs. . 

Regarding (1.2) as a special case of (1.1), we first seek conditions on A(t) which 
guarantee the exponential stability of (1.2). 
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We call A (t) vertically diagonally dominant if there is a positive number 5 

such tha t 

(5.2) - Réagit) ^ Ô + £ \aij(t)\ 

for j = 1, 2, . . . and / Ç R0 . Finite systems of differential equat ions with a 

diagonally dominant coefficient matr ix have been studied by Kahane [5] and 

Fink [4]. The following theorem extends their result to the context of the 

present article. 

T H E O R E M 5.1. Assume that conditions (Ai) and (A3) hold, and that A(t) is 

vertically diagonally dominant. Then, for each c in ll, the system (1.2) is exponen­

tially stable; in fact, with 8 as in (5.2), we have 

(5.3) | | x ( / ) | | ^ \\c\\e~^-s\ te R , 

Proof. Firs t note tha t (A2) is satisfied with a>(t) = —5 for all /, so (1.2) has 

a unique strongly continuous solution for each c. 

Now let x{n) (/) be as in Section 3. Since the first n coordinates of x(n) (t) form 

the solution to (3.2), and the diagonal dominance for A(t) restricts to An(t), 

we can apply the result of Kahane [5] and Fink [4] to get 

(5.4) ||*<»>(0|| ^ \\cn\\e-^-s\ te Ks 

for each n. Let t ing n —» oo in (5.4) and using Theorem 3.1, we obtain (5.3). 

Now we turn to the nonlinear system (1.1), and investigate the asymptot ic 
relationships between solutions of (1.1) and t ha t of (1.2). The following theorem 
is a natural extension of a result for finite systems (cf. [2, pp. 54, 65]). 

T H E O R E M 5.2. Assume that A(t) satisfies conditions (Ai), (A2) and (A3), and 

that / ( / , x(t)) satisfies conditions (F i ) , (F2) and (F3) with j'Qg(/) < oo. Then 

exponential stability of (1.2) implies exponential stability of (1.1). 

Proof. Suppose (1.2) is exponentially stable, and let K and <5 be such tha t 
(5.1) holds for solutions to (1.2). Then by Theorem 2.2(i), we have 

\\U(t,s)c\\ ^ KWcWe-^1-^ 

whenever 0 S s rg t and c G ll. Applying this to c = ej} and taking the su-
premum over j , we get 

(5.5) \\U(t, 5) | | ^ Ke-Kl-*\ 0 S s ^ t. 

Let x{t) be a strongly continuous solution to (1.1). Then by Theorem 4.1 , 

x{t) = Uit, s)c+ I U(t,r)f(r,x(r))dr, K R s , 
J s 

and therefore, using (5.5) and (F 3 ) , 

\\m\\ t* K\\c\\e-Ht~s) + K f's e-Ht-T)g(T)MT)\\dT. 
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The last inequality is equivalent to 

||X-(/)||e
5('-s) £K\\c\\+K f eHT-s)g(r)\\x(r)\\dT. 

J S 

By Gronwall 's inequality, we have 

\\x(t)\\eH'-s) ^K\\c\\exp[K J' g(r)dr). 

If we put Kx = K exp (KJog(r)dr), we get 

||5I(*)|| ^ K.WcWe-^-^ 

and the theorem is proved. 

COROLLARY. If (Ai) and (A3) /w/d, and A(t) is vertically diagonally dominant, 
and if (Fi), (F2), and (F3) hold with jog(r)dr < oo , then (1.1) ^ exponentially 
stable. 
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