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Abstract. The moduli spaces of Calabi^Yau threefolds are conjectured to be connected by the
combination of birational contraction maps and £at deformations. In this context, it is important
to calculatedim Def�X � fromdim Def� ~X � in termsofcertaingeometric informationof f , whenwe
are given a birational morphism f : ~X ! X from a smooth Calabi^Yau threefold ~X to a singular
Calabi^Yau threefold X. A typical case of this problem is a conjecture of Morrison-Seiberg
which originally came fromphysics. In this paper wegive amathematical proof to this conjecture.
Moreover, by using output of this conjecture, we prove that certain Calabi^Yau threefolds with
nonisolated singularities have £at deformations to smooth Calabi^Yau threefolds. We shall
use invariants of singularities closely related to Du Bois's work to calculate dim Def�X � from
dim Def� ~X �.
Mathematics Subject Classi¢cations (2000): 14Jxx, 32Gxx.
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Introduction

The moduli space of Calabi^Yau threefolds is far from irreducible or connected in
the usual sense. A lot of Calabi^Yau threefolds are, however, connected by the com-
bination of birational contraction maps and £at deformations. In studying such
phenomena, the following is a fundamental problem:

PROBLEM. Let f : ~X ! X be a birational morphism from a smooth Calabi^Yau
threefold ~X to a singular Calabi^Yau threefold X . When does X have
a £at deformation to a smooth Calabi^Yau threefold? Calculate
dim Def�X � ÿ dim Def� ~X � in terms of geometric informations of f , where
Def�X � is the Kuranishi space of X .

We shall treat this problem in the case of X having nonisolated rational
Gorenstein singularities and as an application, we shall give a mathematical proof
to a conjecture posed by Morrison and Seiberg from a physical view point [M].
The case of X having isolated rational Gorenstein singularities or the case f being
a primitive birational morphism has been studied in [Na-St,Na 1, Na 2] or in
[Gr 1, 2], respectively.

Let us assume that X is a Calabi^Yau threefold with nonisolated rational
Gorenstein singularities. By [Re], the singular locus S of X is a one-dimensional
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locally trivial £at deformation of a rational double point on a surface at a general
point p 2 S except ¢nite numbers of bad points; one calls these bad points dissident.

Our main idea is to get information on deformations of X by studying dissident

points. For a dissident point p 2 X , we can define two invariants m�X ; p� and
s�X ; p� in a similar way as the case of an isolated singularity; the definitions of them

are given between Lemmas 1.3 and 1.4.

Let S0 be the set of dissident singular points of X and put U :� X n S0. By Prop-
osition 1.2 there is a natural inclusion i:H1�U;YU � ! Ext1�O1

X ;OX�. Let
j: Ext1�O1

X ;OX � ! H0�X ;T1
X � be the natural map and put f :� j � i. The main

theorem of this paper is the following:

THEOREM 1.9. Let X be a Calabi^Yau threefold with rational Gorenstein
singularities. Then the map f has the following properties:

(1) The image of f is contained in H0
S0
�X ;T 1

X �. Moreover,

jÿ1�H0
S0
�X ;T1

X �� � H1�U;YU �:

(2) dim im�f�XSp2S0fm�X ; p� � s�X ; p�g ÿ s�X �.
(3) If m�X ; p� � 0 for all p 2 S0, then dim im�f� � Sp2S0s�X ; p� ÿ s�X �.

The theorem plays an essential role in calculating dim Def�X � ÿ dim Def� ~X � when
X is obtained from a smooth Calabi^Yau threefold ~X by a birational contraction
morphism. In the remainder, we shall explain this by using the most basic example
in the Morrison^Seiberg conjecture.

Let f : ~X ! X be a birational morphism from a smooth Calabi^Yau threefold ~X to
a singular Calabi^Yau threefold X . Assume that Exc�f � �: D is a smooth surface
having a conic bundle structure over f �D� � P1 and that f jD has no multiple ¢ber
and has exactly n reducible ¢bers. X has exactly n dissident points corresponding
to these reducible ¢bers. Let k � r� ~X � ÿ r�X �. By a local calculation [Gr 2], there
is an exact sequence

0! F ! T1
X !OP1 �4ÿD3� ! 0;

where F has support only on S0; H0
S0
�X ;T 1

X � � H0�F�. Again, by the argument in
[Gr 2, Theorem(1.9)], we can prove that the composed map of j and
H0�X ;T 1

X � ! H0�P1;OP1 �4ÿD3�� is surjective. Now, by Theorem 1.9(1) we have
dim im�j� � dim im�f� � h0�P1;OP1 �4ÿD3��. Since it is easily checked that
m�X ; p� � 0 for all p 2 S0, one can calculate dim im�j� by Theorem 1.9(3). In
our case, Ker�j� � H1�X ;YX � is isomorphic to H1� ~X ;Y ~X �. The result is:

THEOREM 2.1 (Morrison^Seiberg). Let ~X and X be as above. Assume that nX 3.
Then the Kuranishi space Def�X � of X is smooth, and dim Def�X � �
dim Def� ~X � � 2nÿ 2ÿ k.

By using the dimension count in Theorem 2.1, we can prove the following theorem.
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THEOREM 2.3 Let ~X and X be as above. Assume that nX 4. Then X has a £at
deformation to a smooth Calabi^Yau threefold.

NOTATION. Let D �W be a simple normal crossing divisor in a smooth variety.
Let Op

D be the sheaf of p-forms on D. There is a subsheaf of Op
D consisting of

the sections whose supports are contained in the singular locus Dsing of D. By
Ôp

D we mean the quotient sheaf of Op
D by this subsheaf. We denote by D�0� the

normalization of D. Let Di �1W iW n� be irreducible components of D�0�. Then
we de¢ne D�l� :� `i0<:::<il Di0 \Di1 \ ::: \Dil . Let h

�l� : D�l� !W be the natural map.
Then we simply write OD�l� for h�l�� OD�l� .

1. Deformation of Calabi^Yau Threefolds with Nonisolated Singularities

PROPOSITION 1.1. Let �X ; p� be the germ of a (possibly nonisolated) normal
Gorenstein singularity of dimX 3 at a point p. Then one has isomorphisms

H0
fpg�X ;T 1

X � � H1�U;YU � and H0�X ;T1
X � � Ext1�O1

U ;OU �;

where

U :� X n fpg;T 1
X :� Ext1OX

�O1
X ;OX �

and YU is the tangent sheaf on U.
Proof. X is embedded into a smooth variety V with the de¢ning ideal sheaf I . The

exact sequence

0! I=I �2� ! O1
V jX ! O1

X ! 0

yields a commutative diagram with exact rows

Hom�O1
V jX ;OX � ÿ! Hom�I=I �2�;OX � ÿ! Ext1�O1

X ;OX � ÿ! 0?y ?y ?y
Hom�O1

V jU ;OU � ÿ! Hom�I=I �2�jU ;OU � ÿ! Ext1�O1
U ;OU � ÿ! 0

�1�

Note here that the second sequence is exact because

Ext1�O1
V jU ;OU � � H1�U;YV jU � � H2

fpg�X ;YV jX � � 0

by the depth argument.
The two vertical maps on the left-hand side are isomorphisms because X is a nor-

mal variety, hence we have H0�X ;T 1
X � � Ext1�O1

U ;OU � by the diagram.
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Next we consider the commutative diagram

H0�X ;T 1
X � ÿ! H0�U;T1

U �?y ?y
Ext1�O1

U ;OU � ÿ! H0�U;T1
U �

�2�

The vertical maps in this diagram are both isomorphisms by the arguement above.
The kernel of the ¢rst horizontal map is isomorphic to H0

fpg�X ;T 1
X � and the kernel

of the second horizontal map is isomorphic to H1�U;YU �. This implies that
H0
fpg�X ;T1

X � is isomorphically mapped onto H1�U;YU � by the isomorphism
H0�X ;T 1

X � � Ext1�O1
U ;OU �. &

PROPOSITION 1.2. Let X be a compact, normal, Gorenstein analytic space of
dimX 3. Put S � Sing�X � and choose ¢nite number of points p1; . . . ; pm 2 S. Let
U :� X n fp1; . . . ; pmg. Then there is an injection H1�U;YU � ! Ext1OX

�O1
X ;OX �.

Proof. LetXi be a Stein open neighborhood of pi 2 X and setUi :� Xi n fpig. Then
one has the exact sequence (�)

0! Ext1�O1
X ;OX � !

f �1W iWmExt1�O1
Xi
;OXi ��

� Ext1�O1
U ;OU � ! �1W iWmExt1�O1

Ui
;OUi �

The map f is injective because the map

�1W iWmHom�O1
Xi
;OXi � �Hom�O1

U ;OU � ! �1W iWmHom�O1
Ui
;OUi �

is surjective.
On the other hand, by Proposition 1.1,H1�Ui;YUi � � H0

fpig�Xi;T 1
Xi
�. Therefore one

has the exact sequence (��):
0! H1�U;YU � ! �1W iWmH0

fpig�Xi;T 1
Xi
��

�H1�U;YU � ! �1W iWmH1�Ui;YUi �:

There are injections from the third and fourth terms of the sequence (��) to the
third and fourth terms of the sequence (�) respectively, and the square made by
these injections commutes. Hence there is an injection from the second term of
(��) to the second term of (�). &

In the remainder, X will be a Calabi^Yau threefold with rational Gorenstein
singularities (equivalently, a projective threefold with rational Gorenstein
singularities with KX � 0, H1�X ;OX � � 0). By [Re], the singular locus S of X is
a one-dimensional locally trivial £at deformation of a rational double point on a
surface at a general point except ¢nite number of bad points; one call these bad
points dissident. Let S0 be the set of dissident points on X and set U :� X n S0.
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Let p: ~X ! X be a resolution of singularities such that E :� pÿ1�S� is a divisor of ~X
with simple normal crossings. We take the resolution in such a way that
C :� pÿ1�S0� is also a simple normal crossing divisor.

Our basic object is the following commutative diagram with exact rows induced by
local cohomology sequences:

H1�pÿ1�U�;O2
~X �logE��ÿE�� ÿ! H2

C� ~X ;O2
~X �logE��ÿE�� ÿ!g H2� ~X ;O2

~X �logE��ÿE��x? b
x? �3�

H1�U ;YU � ÿ!f H2
S0
�X ;YX �

Note that YU � p�O2
~X �logE��ÿE��jU . In fact, take p� of the exact sequence

0! O2
~X �logE��ÿE�� ! O2

~X ! Ô2
E ! 0:

All singularities on U are locally trivial deformation of rational double points of
surfaces, from which we deduce that p�Ô2

E jU � 0 and that p�O2
~X jU � YU .

Let S � fp1; . . . ; pmg and take Xi andUi for each pi in the same way as the proof of
Proposition 1.2. Then

H2
S0
�X ;YX � � �1W iWmH1�Ui;YUi � � �1W iWmH1�Ui; p�O2

~X �logE��ÿE��jUi
�:

Hence, f is identi¢ed with the coboundary map

H1�U; p�O2
~X �logE��ÿE�jU � ! H2

S0
�X ; p�O2

~X �logE��ÿE��;

and the vertical maps in the diagram are natural ones.

LEMMA 1.3. The vertical maps in the diagram are both surjective.
Proof. As we remarked above, the vertical maps ¢t into the following exact

sequences respectively. (The second sequence is exact because
R2p�O2

~X �logE��ÿE� � 0 by the vanishing theorem of Guillen, Navarro-Aznar
and Puerta.)

H1�U;YU � ! H1�pÿ1�U�;O2
~X �logE��ÿE�� ! H0�U;R1p�O2

~X �logE��ÿE�jU �;
H2

S0
�X ;YX � ! H2

C� ~X ;O2
~X �logE��ÿE�� ! H1

S0
�X ;R1p�O2

~X �logE��ÿE��:

All singularities on U are locally trivial 1-parameter deformation of rational
double points. It can be checked that R1p�O2

~X �logE��ÿE� vanishes on U by using
this fact. Therefore, the third term of each sequence vanishes. &

Let �V ; p� be the germ of a rational Gorenstein singularity of dim 3 at a point p. Set
S � Sing�V �. Assume that �V ; p� is realized as an open subset of a complex algebraic
variety.
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Let �K :

V ;F � be the ¢ltered de Rham complex de¢ned by Du Bois [DuB]. (Here we
shall use the notation in [St].)

De¢ne m�V ; p� :� dimH2�Gr1F �K
�
V ��:

Note that, when �V ; p� is a rational Gorenstein singularity of dim 3, the sheaf
H2�Gr1F �K

:

V �� has a support only at p. In fact, according to [St], one can construct
the ¢ltered de Rham complex of a pair �K :

V ;S� in such a way that, for each i,

GriFK
�
V ;S! GriFK

�
V ! GriFK

�
S ! GriFK

�
V ;S�1�

is an exact triangle in the derived category D��V ;C�. In particular,

H2�Gr1FK
:

V ;S� ! H2�Gr1FK
:

V � ! H2�Gr1FK
:

S�
is an exact sequence.

Let n: ~V ! V be a resolution such that nÿ1�S� �: F is a divisor with normal
crossings. By [St, (3.4)] H2�Gr1FK

�
V ;S� � R1n�O1

~V �logF ��ÿF �.
Since S is a locally trivial deformation of a rational double point outside p, the

sheaf R1n�O1
~V �logF ��ÿF � has a support only at p, hence the sheaf H2�Gr1FK

:

V ;S� also
has a support only at p.

On the other hand,H2�Gr1FK
:

S� � 0 because S is a curve or an isolated point. Thus
the sheaf H2�Gr1F �K

:

V �� has a support only at p.

Remark. Let a: ~S! S be the normalization map. From [DuB], there is a dis-
tinguished triangle in the ¢ltererd derived category

0! K
:

V ! K
:

S � Rn�K
:

~V ! Rn�K
:

F ! 0:

Since H1�Gr1FK
:

S� � a�O1
~S and since H2�Gr1FK

:

S� � 0, one has an exact sequence

a�O1
~S � n�O1

~V ! n�Ô1
F !H2�Gr1F �K

:

V �� ! R1n�O1
~V ! R1n�Ô1

F

by the distinguished triangle.
The map a�O1

~S ! n�Ô1
F obtained as a composition of the natural inclusion

a�O1
~S! a�O1

~S � n�O1
~V and the ¢rst map in the sequence coincides with the map

induced by the natural map from the normalization F �0� of F to ~S. We can check
that this map is surjective. Hence, we have

H2�Gr1F �K
:

V �� � Ker�R1n�O1
~V ! R1n�Ô1

F �:
On the other hand, one has an exact sequence

R1n�O1
~V �logF ��ÿF � ! R1n�O1

~V ! R1n�Ô1
F :

Therefore we have a surjection

R1n�O1
~V �logF ��ÿF � ! H2�Gr1F �K

:

V ��:

If S is analytically isomorphic to the coordinate axis of Cn or S is isolated, then
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one can show that this map is an isomorphism, equivalently that
m�V ; p� � dim�R1n�O1

~V �logF ��ÿF ��p. (We omit the proof of this fact.) For example,
if �V ; p� � �RDP� � �C1; 0�, then m�V ; p� � 0, where �RDP�means the germ of a sur-
face rational double point.

Denote by Weil�V ; p� (resp. Cart�V ; p�) the Abelian group of Weil divisors (resp.
Cartier divisors) on �V ; p�. Then de¢ne s�V ; p� to be the rank of
Weil�V ; p�=Cart�V ; p�.

LEMMA 1.4. Assume that m�X ; p� � 0 for all p 2 S0. Then the map b is an
isomorphism.

Proof. By Lemma 1.3, the map b is surjective. We only have to prove the
injectivity. The map b ¢ts into the exact sequence

H0
S0
�X ;R1p�O2

~X �logE��ÿE�� !a H2
S0
�X ;YX � !

b
H2

C� ~X ;O2
~X �logE��ÿE��:

By the same argument as [Na-St, Theorem 1], the map

d:R1p�O1
~X �logE��ÿE� ! R1p�O2

~X �logE��ÿE�

is a surjection. Since m�X ; p� � 0, we have an exact sequence (cf. Remark)

p�O1
~X ! p�Ô1

E ! R1p�O1
~X �logE��ÿE� ! 0:

Let us consider the commutative diagram

p�Ô1
E ÿ! R1p�O1

~X �logE��ÿE�x? x?
p�OE ÿ! R1p�O ~X �ÿE�:

�4�

We shall prove that the vertical map on the left-hand side is surjective. First note
that we have taken p in such a way that C :� pÿ1�S0� is a simple normal crossing
divisor. Since X has rational singularities, we see that H1�C;OC� � 0. By the mixed
Hodge structure on H1�C;Z�, we know H0�C; Ô1

C� � 0. Therefore H1�C;C� � 0.
This implies that R1p�CE � 0. Look at the spectral sequence Ep;q

1 :� Rqp�Ô
p
E which

converges to Ep�q :� Rp�qp�CE . Then E1;0
1 � coker�p�OE ! p�Ô1

E� because
p�Ô2

E � 0. Since E1;0
1 � E1;0

1 � 0, we conclude that the map p�OE ! p�Ô1
E is

surjective.
Now by the commutative diagram, the map

d:R1p�O ~X �ÿE� ! R1p�O1
~X �logE��ÿE�

is surjective, henceR1p�O2
~X �logE��ÿE� � 0. From this it follows that the ¢rst term of

the exact sequence is zero. &
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We shall next investigate dimH2
C� ~X ;O2

~X �logE��ÿE��.

PROPOSITION 1.5.

dimH2
C� ~X ;O2

~X �logE��ÿE�� � Sp2S0fm�V ; p� � s�V ; p�g

Proof. Note that H2
C� ~X ;O2

~X �logE��ÿE�� is the dual space to
�p2S0R

1p�O1
~X �logE�p. Then we have the result by the following lemma:

LEMMA 1.6. Let �V ; p� be the germ of a rational Gorenstein singularity of dim 3
which can be realized as an open subset of a complex algebraic variety. Set
S � Sing�V �. Assume that S is a one-dimensional locally trivial £at deformation
of a surface rational double point outside p. Let n: ~V ! V be a resolution such that
nÿ1�S� � F is a divisor with simple normal crossings. Then R1n�O1

~V �logF � has its
support only at p and its dimension is m�V ; p� � s�V ; p�.

Proof. Take Rn� of the exact sequences:

0! O1
~V ! O1

~V �logF � ! OF �0� ! 0;

0! O1
~V �logF ��ÿF � ! O1

~V ! Ô1
F ! 0;

where F �0� is the normalization of F . Note that R1n�OF �0� ! R2n�O1
~V is injective. This

is proved in the following manner. It is enough to prove that the composition
j:R1n�OF �0� ! R2n�O1

~V ! R2n�O1
F �0� is injective. Let Fi �1W iW k� be irreducible

components of F �0� which are contracted to p by n. Now de¢ne
ji :� ^c1�NFi= ~V � : H1�Fi;OFi � ! H2�Fi;O

1
Fi
�. The map j is then identi¢ed with

�iji. It is enough to prove that ji are all injective. We can choose an effective divisor
B � ~V so that ÿB is n-ample. Take an Fi. We may assume that H1�Fi;OFi � 6� 0
because, if H1�Fi;OFi � � 0, then ji is obviously injective. The Fi then has a ¢bration
over an irregular curve Ci whose general ¢ber li is isomorphic to P1. Since �B:li� < 0,
B contains Fi as an irreducible component and �Fi:li� < 0. This implies that ji is an
injection.

By an argument used in the proof [Na-St, Theorem (1.1)], one has
R2n�O1

~V �logF ��ÿF � � 0. Since

H2�Gr1F �K
:

V �� � Ker�R1p�O1
~V ! R1p�Ô1

F �

(cf. Remark), the second exact sequence yields the exact sequence

0!H2�Gr1F �K
:

V �� ! R1n�O1
~V ! R1n�Ô1

F ! 0:

On the other hand, since R1n�OF �0� ! R2n�O1
~V is an injection, the ¢rst exact sequence

yields the excat sequence

n�OF �0� ! R1n�O1
~V ! R1n�O1

~V �logF � ! 0:
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Let us consider the composite n�OF �0� ! R1n�O1
~V ! R1n�Ô1

F . The cokernel of the
composite has support at p and its dimension as a C vector space is s�V ; p�. Then
the result follows from the two exact sequences just above. &

The following lemma will be useful in the next proposition.

LEMMA 1.7. Let ~X be the same as above. Then the natural map
H2� ~X ;O2

~X �logE��ÿE�� ! H2� ~X ;O2
~X � is an injection.

Proof. Taking the dual, we need to show the map

H1� ~X ;O1
~X � ! H1� ~X ;O1

~X �logE��

is surjective. By the theory of mixed Hodge structure, it suf¢ces to show that the map
H2� ~X ;C� ! H2� ~X n E;C� is surjective. By the exact sequence

H2� ~X ;C� ! H2� ~X n E;C� ! H3
E� ~X ;C� !

i
H3� ~X ;C�;

we only have to prove that i is injective. Let i�:H3� ~X ;C� ! H3�E;C� be the dual
map of i. Note that i� is the map of mixed Hodge structure. Let F be the Hodge
¢ltration of the mixed Hodge structure. Since Gr0FH

3�E;C� � Gr3FH
3�E;C� � 0,

we have to show that the maps i�i : GriFH
3� ~X ;C� ! GriFH

3�E;C� are surjective
for i � 1; 2. In the exact sequence

H2� ~X ;O1
~X � ÿ!

i�1 H2�E; Ô1
E� ! H3� ~X ;O1

~X �logE��ÿE��;

the last term vanishes because it is dual to

H0� ~X ;O2
~X �logE�� � H0�X ;YX � � 0:

Hence i�1 is surjective.
Let E �0� (resp. E �1�) be the normalization of E (resp. the double locus of E). By

taking H2 of the exact sequence

0! Ô1
E ! O1

E �0� ! O1
E �1� ! 0

we see that the map H2�E; Ô1
E� ! H2�E �0�;O1

E �0� � is surjective. Compose this with i�1
and take the conjugation. Then we see thatH1� ~X ;O2

~X � ! H1�E �0�;O2
E �0� � is surjective.

Since

Gr2FH
3�E;C� � H1�E; Ô2

E� � H1�E �0�;O2
E �0� �;

the i�2 is surjective. &

PROPOSITION 1.8. Let X and ~X be the same as above and let
s�X � :� rankZWeil�X �=Cart�X �. In the diagram (3), dim im�g � b� � s�X �.
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Proof. By Lemma 1.7, we calculate the dimension of the image of the composed
map

H2
S0
�X ;YX � ! H2� ~X ;O2

~X �logE��ÿE�� ! H2� ~X ;O2
~X �:

This map is factorized as

H2
S0
�X ;YX � ! H2

C� ~X ;O2
~X �logE��ÿE�� ! H2

C� ~X ;O2
~X � ! H2� ~X ;O2

~X �:

Note here that the ¢rst map is surjective by Lemma (1.3). Taking the dual of these
maps we have the sequence of maps

H1� ~X ;O1
~X � ! �p2S0 �R1p�O1

~X �p 
 ÔX ;p!
!�p2S0 �R1p�O1

~X �logE�p 
 ÔX ;p! H2
S0
�X ;YX ��

The last map here is an injection. By taking Rp� of the exact sequence

0! O1
~X ! O1

~X �logE� ! OE �0� ! 0;

we have an injection R1p�O1
~X=p�OE �0� ! R1p�O1

~X �logE�. Therefore, we need to cal-
culate the dimension of

im�H1� ~X ;O1
~X � ! �p2S0 �R1p�O1

~X �p=�p�OE �0� �p�;

which is nothing but s�X �. &

We are now in a position to state the Main Theorem:

THEOREM 1.9. Let X be a Calabi^Yau threefold with rational Goren-
stein singularities. Let S0 be the set of dissident singular points of X
and put U :� X n S0. Then the coboundary map f : H1�U;YU �
! H2

S0
�X ;YX � � H0

S0
�X ;T1

X � has the following properties:

(1) The map f coincides with the natural map j: Ext1�O1
X ;OX � ! H0�X ;T1

X � if one
identi¢es H1�U;YU � (resp. H0

S0
�X ;T 1

X �) with a subspace of Ext1�O1
X ;OX � (resp.

H0�X ;T1
X �) by the natural inclusion de¢ned in Proposition 1.2. Moreover,

jÿ1�H0
S0
�X ;T 1

X � � H1�U;YU �.
(2) dim im�f�XSp2S0fm�X ; p� � s�X ; p�g ÿ s�X �.
(3) If m�X ; p� � 0 for all p 2 S0, then dim im�f� � Sp2S0s�X ; p� ÿ s�X �.

Proof. (1) restates Propositions 1.1 and 1.2 except the ¢nal part. If
j�z� 2 H0

S0
�X ;T 1

X � for z 2 Ext1�O1
X ;OX �, then z is sent to zero by the composed

map Ext1�O1
X ;OX � ! Ext1�O1

U ;OU � ! H0�U;T 1
U �, hence z is contained in

H1�U;YU �.
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(2), (3): Consider the diagram

H1�pÿ1�U�;O2
~X �logE��ÿE�� ÿ! H2

C� ~X ;O2
~X �logE��ÿE�� ÿ!

g

H2�X ;O2
~X �logE��ÿE��x? b

x? �5�

H2�U;YU � ÿ!f H2
S0
�X ;YX �

By Lemma 1.3 and Propositions 1.5 and 1.8,

dim Ker�g� � Sp2S0fm�X ; p� � s�X ; p�g ÿ s�X �:

Then (2) follows from the diagram above. Note that if the assumption of (3) holds,
then the map b is an isomorphism by Lemma 1.4. &

2. Applications

Let f : ~X ! X be a birational morphism from a smooth Calabi^Yau threefold ~X to a
singular Calabi^Yau threefold X . Assume that Exc�f � �: D is a smooth surface
having a conic bundle structure over f �D� � P1, and that f jD has no multiple ¢ber
and has exactly n reducible ¢bers. Let k � r� ~X � ÿ r�X �.

In this section, we shall give a mathematical proof of the following result due to
Morrison^Seiberg.

THEOREM 2.1. If nX 3, then the Kuranishi space Def�X) of X is smooth, and
dim Def�X � � dim Def� ~X � � 2nÿ 2ÿ k.

Proof. The smoothness of Def�X � is already proved in [Gr 2].
Note that X has dissident points on f �D� corresponding to reducible ¢bers of f jD.

Let p 2 S0 be one of these points. Since the singular locus S � X is smooth at
p, m�X ; p� � dim�R1f�O1

~X �logD��ÿD��p. In our case we have an exact sequence

0! R1f�O1
~X �logD��ÿD� ! R1f�O1

~X ! R1f�O1
D ! 0:

By the formal function theorem, we can check directly that R1f�O1
~X � R1f�O1

D,
which implies that m�X ; p� � 0.

Since f ÿ1�p� is a line pair in a conic bundle D! S, Pic� ~X ; f ÿ1�p�� � Z�2. On the
other hand, D is irreducible around f ÿ1�p�. Therefore s�X ; p� � 1.

By [Gr 2], there is an exact sequence

0! F ! T1
X !OP1 �4ÿD3� ! 0;

where F has the support on S0; H0
S0
�X ;T 1

X � � H0�X ;F�. By Theorem 1.9(1), (3), we
see that dim�im�j� \H0�X ;F�� � nÿ s�X �. Note that s�X � � kÿ 1.

On the other hand, we have the following result:
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LEMMA 2.2. The composed map Ext1�O1
X ;OX � ! H0�P1;OP1�4ÿD3�� of j and

H0�X ;T 1
X � ! H0�P1;OP1 �4ÿD3�� is surjective.

Proof. According to [Gr 2], by the exact sequence

f �O1
Xÿ!O1

~X ÿ!
c

O1
~X=X ! 0;

we have a commutative diagram with exact rows

H0�Ext1�Ker�c�;O ~X � ! H2��Ker�c��� !d
0

Ext2�Ker�c�;O ~X �

l
?y �

?y t
?y

T1
X ! H0�Ext1� f �O1

X ;OX � ! H2�Hom� f �O1
X ;O ~X �� !

d
Ext2� f �O1

X ;O ~X �

�6�

Note here that Ext1�f �O1
X ;O ~X � � T1

X and that the map l is injective.
By the argument in [Gr2, Theorem(1.9)], t is injective, hence Ker�d� � Ker�d0�. By

the diagram above, H0�Ext1�f �O1
X ;OX�� is generated by H0�Ext1�Ker�c�;O ~X � and

the image of the map T1
X ! H0�Ext1�f �O1

X ;OX��.
On the other hand, the support of the sheaf f�Ext1�Ker�c�;O ~X � is contained in S0

and there is an exact sequence (cf. [Gr 2, Theorem (1.4)])

0! f�Ext1�Ker�c�;O ~X � ! f�Ext1�f �O1
X ;O ~X � ! OP1�4ÿD3� ! 0:

Hence H0�P1;OP1 �4ÿD3�� � Coker�l�, which implies our claim. &

Proof Continued. Since D3 � 8ÿ n, by Lemma 2.2, we have

dim im �Ext1�O1
X ;OX � ! H0�X ;T 1

X �� � 2nÿ 2ÿ k:

One may assume that the map Def� ~X � ! Def�X � is unrami¢ed by deforming ~X
slightly if necessary. In particular, one may assume that the map
H1� ~X ;Y ~X � ! Ext1�O1

X ;OX � is injective. Since f�Y ~X � YX , and since any
deformation of ~X induces a locally trivial deformation of the small neighborhood
of D � ~X , we have H1�X ;YX � � H1� ~X ;Y ~X �. Now the theorem follows from the
exact sequence

0! H1�X ;YX � ! Ext1�O1
X ;OX � ! H0�X ;T1

X �: &

THEOREM 2.3. Let ~X and X be as above. Assume nX 4. Then X has a £at
deformation to a smooth Calabi^Yau threefold.

Proof. The condition nX 4 implies that dim Def�X � > dim Def� ~X � by Lemma 2.2.
By [Gr2, Lemma 1.6], if we take a general 1-parameter deformation X ! D1 of X ,
then, after possibly making a ¢nite base change over D1, there is a small partial
resolution X0 ! X with X0 ! D1 £at such that X0t �t 6� 0� has Q-factorial terminal
singularities. By [Na-St, Theorem (1.3)], X0t has a £at deformation to a smooth
Calabi^Yau threefold. Since X has ¢nitely many crepant partial resolutions, and
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since Def�X � is smooth, there is a crepant partial resolution X 0 such that
Def�X 0� ! Def�X � is surjective. This X 0 should satisfy

(a) dim Def�X 0�X dim Def�X �, and
(b) X 0 is smoothable by a £at deformation.

If X 0 � X , nothing to prove. we shall derive a contradiction when X 0 is not X .
Assume thatX 0 has nonisolated singularities. ThenX 0 is obtained from ~X by £opping
some �ÿ1;ÿ1�-curves C1; . . . ;C1 in reducible ¢bers of f jD, and by contracting the
proper transform D0 of D to a curve along rulings. Let ~X

0
be the smooth threefold

obtained from ~X by the £ops, and let f 0: ~X
0 ! X 0 be the birational contraction

of D0 to a curve, for which we will de¢ne the number n0 and k0 in the same way
as above. By the construction, we have n0 � nÿ l, k0X kÿ l. By Theorems 1.9
and Theorem 2.1, we calculate dimT 1

~X 0
, in terms of dimT 1

~X 0
� dimT 1

~X
, n0 and k0 :

(1) If n0W 2, then dimT1
X 0 � dimT1

~X 0 � n0 ÿ k0 � 1.
(2) If n0X 3, then dimT1

X 0 � dimT1
~X 0 � 2n0 ÿ 2ÿ k0.

Then we conclude that dimT1
X > dimT 1

X 0 when nX 4, a contradiction.
Assume that X 0 has only isolated singularities. Then X 0 is obtained from ~X by

£opping some �ÿ1;ÿ1�-curves C1; . . . ;Cl in reducible ¢bers of f jD and by con-
tracting �ÿ1;ÿ1�-curves Cl�1; . . . ;Cs in reducible ¢bers to points. Note that X 0

has only ordinary double points. In the calculation of dimT1
X 0 , the £opping curves

have no effects, hence we may assume that l � 0 (equivalently that ~X � ~X
0
).

Let Fj �1W jW r� be a generator of Pic� ~X � 
Q. Let r be the rank of the
matrix �Ci;Fj�f1W iW s;1W jW rg. Then, by the de¢nition of k, we should
have sÿ rW nÿ k� 1. By [Fr], dimT1

X 0 � dimT1
~X � sÿ r. Thus we have

dimT1
X 0 W dimT1

~X � nÿ k� 1. On the other hand, by Theorem 1.9 and Lemma 2.2,
dimT1

X � dimT1
~X � 2nÿ kÿ 2. Since dimT1

X W dimT1
X 0 , we obtain nW 3, a con-

tradiction.
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