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Abstract. The moduli spaces of Calabi— Yau threefolds are conjectured to be connected by the
combination of birational contraction maps and flat deformations. In this context, it is important
to calculate dim Def(X) from dim Def’ (f( )in terms of certain geometric information of /, when we
are given a birational morphism /: X — X from a smooth Calabi— Yau threefold X to a singular
Calabi—Yau threefold X. A typical case of this problem is a conjecture of Morrison-Seiberg
which originally came from physics. In this paper we give a mathematical proof'to this conjecture.
Moreover, by using output of this conjecture, we prove that certain Calabi— Yau threefolds with
nonisolated singularities have flat deformations to smooth Calabi—Yau threefolds. We shall
use invariants of singularities closely related to Du Bois’s work to calculate dim Def(X) from
dim Def (X).
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Introduction

The moduli space of Calabi-Yau threefolds is far from irreducible or connected in
the usual sense. A lot of Calabi—Yau threefolds are, however, connected by the com-
bination of birational contraction maps and flat deformations. In studying such
phenomena, the following is a fundamental problem:

PROBLEM. Let f: X — X be a birational morphism from a smooth Calabi-Yau
threefold X to a singular Calabi-Yau threefold X. When does X have
a flat deformation to a smooth Calabi-Yau threefold? Calculate
dim Def(X) — dim Def(X) in terms of geometric informations of f, where
Def(X) is the Kuranishi space of X.

We shall treat this problem in the case of X having nonisolated rational
Gorenstein singularities and as an application, we shall give a mathematical proof
to a conjecture posed by Morrison and Seiberg from a physical view point [M].
The case of X having isolated rational Gorenstein singularities or the case f being
a primitive birational morphism has been studied in [Na-St,Na 1, Na 2] or in
[Gr 1, 2], respectively.

Let us assume that X is a Calabi-Yau threefold with nonisolated rational
Gorenstein singularities. By [Re], the singular locus X of X is a one-dimensional
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locally trivial flat deformation of a rational double point on a surface at a general
point p € X except finite numbers of bad points; one calls these bad points dissident.
Our main idea is to get information on deformations of X by studying dissident
points. For a dissident point p € X, we can define two invariants u(X,p) and
a(X, p) in a similar way as the case of an isolated singularity; the definitions of them
are given between Lemmas 1.3 and 1.4.

Let X be the set of dissident singular points of X and put U := X \ ;. By Prop-
osition 1.2 there is a natural inclusion 1 H'(U,®y)— Ext'(QL, Oy). Let
¢: Ext'(QY, Oy) — H(X, T}) be the natural map and put ¢ := ¢ o 1. The main
theorem of this paper is the following:

THEOREM 1.9. Let X be a Calabi—Yau threefold with rational Gorenstein
singularities. Then the map ¢ has the following properties:

(1) The image of ¢ is contained in HgO(X, T}). Moreover,
o \(HY (X, T}) = H'(U. Oy).

(2) dimim(¢) = Zpes, {1(X, p) + o(X, p)} — a(X).
() If w(X.p) =0 for all p € Xy, then dimim(¢) = Epex,0(X. p) — o(X).

The theorem plays an essential role in calculating dim Def(X) — dim Def(X) when
X is obtained from a smooth Calabi-Yau threefold X by a birational contraction
morphism. In the remainder, we shall explain this by using the most basic example
in the Morrison—Seiberg conjecture.

Letf: X — X be a birational morphism from a smooth Calabi-Yau threefold X to
a singular Calabi—Yau threefold X. Assume that Exc(f) =: D is a smooth surface
having a conic bundle structure over f(D) = P! and that /|, has no multiple fiber
and has exactly n reducible fibers. X has exactly n dissident points corresponding
to these reducible fibers. Let k = p(X) — p(X). By a local calculation [Gr 2], there
is an exact sequence

0— F — Ty — Opi(4—D*)— 0,

where F has support only on Zo; H (X, Ty) = H°(F). Again, by the argument in
[Gr 2, Theorem(1.9)], we can prove that the composed map of ¢ and
HY(X, T}) — H(P', Opi(4 — D%)) is surjective. Now, by Theorem 1.9(1) we have
dimim(p) = dim im(¢) + (P!, Opi (4 — D%)). Since it is easily checked that
w(X,p)=0 for all p € Xy, one can calculate dimim(¢) by Theorem 1.9(3). In
our case, Ker(p) = H'(X, ®y) is isomorphic to H'(X, ©3). The result is:

THEOREM 2.1 (Morrison—Seiberg). Let X and X be as above. Assume that n = 3.
Then the Kuranishi space Def(X) of X is smooth, and dimDef(X) =
dim Def(X) +2n—2 — k.

By using the dimension count in Theorem 2.1, we can prove the following theorem.
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THEOREM 2.3 Let X and X be as above. Assume that n > 4. Then X has a flat
deformation to a smooth Calabi—Yau threefold.

NOTATION. Let D C W be a simple normal crossing divisor in a smooth variety.
Let @), be the sheaf of p-forms on D. There is a subsheaf of ¥, consisting of
the sections whose supports are contained in the singular locus D, of D. By
Q) we mean the quotient sheaf of Q7 by this subsheaf. We denote by DI the
normalization of D. Let D; (1 <i < n) be irreducible components of DI, Then
we define DIV := [, _ _, D;, N D; N...ND;. Let il : DT — W be the natural map.
Then we simply write Opn for ANO .

1. Deformation of Calabi—Yau Threefolds with Nonisolated Singularities
PROPOSITION 1.1. Let (X, p) be the germ of a (possibly nonisolated) normal
Gorenstein singularity of dim > 3 at a point p. Then one has isomorphisms

H{ (X, Ty) = H'(U,®y) and H(X, Ty) = Ext'(Qy, Oy),
where

U:=X\{p}, Ty = Ext}, (QY, Ox)

and Oy is the tangent sheaf on U.
Proof. X is embedded into a smooth variety V' with the defining ideal sheaf 7. The
exact sequence

0— 11" - Q}/|X — Qﬁ( -0
yields a commutative diagram with exact rows

Hom(QL|y.Ox) — Hom(/I® 0y) — Ext'(@Q),0y) — 0

! ! !

Hom(Q} |y, Oy) — Hom(/I¥|,,0p) — Extl(Q},0p) — 0
(1)

Note here that the second sequence is exact because
Ext'(Q) |y, Ov) = H' (U, Oply) = H (X, Oply) =0

by the depth argument.
The two vertical maps on the left-hand side are isomorphisms because X is a nor-
mal variety, hence we have H(X, T}) = Ext!(Q},, Op) by the diagram.
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Next we consider the commutative diagram

H'X, T, — H'U,T})

| ! @)
Ext(QL.0y) — HU,T))

The vertical maps in this diagram are both isomorphisms by the arguement above.
The kernel of the first horizontal map is isomorphic to HO{M(X , T}) and the kernel
of the second horizontal map is isomorphic to H'(U,®y). This implies that
Ho{p](X, T)) is isomorphically mapped onto H!'(U,®y) by the isomorphism
HO(X, T}) =~ Ext'(Qy, Op). O

PROPOSITION 1.2. Let X be a compact, normal, Gorenstein analytic space of
dim > 3. Put £ = Sing(X) and choose finite number of points pi,...,pm € Z. Let
U:=X\{p1,....pm}). Then there is an injection H' (U, ®p) — Exth(Q}, Oyx).

Proof. Let X; be a Stein open neighborhood of p; € X and set U; := X; \ {p;}. Then
one has the exact sequence (x)

0 — Ext'@}, 0x) 5 @) <, < nExt'(@), Ox)&
® Ext'(Q),, Op) - @1 <, < mExt'(Q} - Ou)

The map ¢ is injective because the map
Br<i< mHom(Qﬁfi, Oyx,) ® Hom(Qy,, Op) — @1 <i < mHom(Q - Ou,)

is surjective.
On the other hand, by Proposition 1.1, H'(U;, ©y,) = H), (X;, Ty). Therefore one
has the exact sequence (xx):

0—> H'(U,Op) > &1 <i<mH), (Xi, T)®
& H'(U,0y) > &1 <i<nH' (U, Op).

There are injections from the third and fourth terms of the sequence (*x) to the
third and fourth terms of the sequence (x) respectively, and the square made by
these injections commutes. Hence there is an injection from the second term of
(x*) to the second term of (x). O

In the remainder, X will be a Calabi—-Yau threefold with rational Gorenstein
singularities (equivalently, a projective threefold with rational Gorenstein
singularities with Ky ~ 0, H'(X, Oy) = 0). By [Re], the singular locus X of X is
a one-dimensional locally trivial flat deformation of a rational double point on a
surface at a general point except finite number of bad points; one call these bad
points dissident. Let Xy be the set of dissident points on X and set U := X \ X.
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Let 7: X — X be a resolution of singularities such that E := n~'(Z) is a divisor of X
with simple normal crossings. We take the resolution in such a way that
C:=n"1(Zy) is also a simple normal crossing divisor.

Our basic object is the following commutative diagram with exact rows induced by
local cohomology sequences:

H'(n™\(U), Q% (log EX~E)) — HA(X,Q%(logEX-E) — H*X,Q%(log E)(~E))
T T 3)

H\(U, ©y) 2, H2,(X, ©y)

Note that @y = n*Qi—((logE)(—E))w. In fact, take n, of the exact sequence
0 — Qi (log E)(—E)) — Q} — Qf — 0.

All singularities on U are locally trivial deformation of rational double points of
surfaces, from which we deduce that n*ﬁ%w = 0 and that n*Q§?|U ~ Q.

LetZ ={p, ..., pwm} and take X; and U; for each p; in the same way as the proof of
Proposition 1.2. Then

Héo(Xs ®X) = 691 <i <mH1(Ui’ ®U,v) = 691 <i SmHl(Ui’ n*Qi'((lOgE)(_E)NU,)
Hence, ¢ is identified with the coboundary map
H' (U, Q% (log EX(—E)|y) — Hy (X, 1,.Q%(log E)(—E)),

and the vertical maps in the diagram are natural ones.

LEMMA 1.3. The vertical maps in the diagram are both surjective.

Proof. As we remarked above, the vertical maps fit into the following exact
sequences  respectively.  (The second sequence is exact  because
Rzn*in,(logE)(—E)zo by the vanishing theorem of Guillen, Navarro-Aznar
and Puerta.)

H'(U,0y) — H'(n"'(U), Q3 (log E)X—E)) — H(U, R'n, Q3 (log E)—E)|y),
H;, (X, Oy) » H(X, Q3 (log E)(—E)) — Hy (X, R'm. Q5 (log E)(—E)).
All singularities on U are locally trivial 1-parameter deformation of rational

double points. It can be checked that Rln*Q%((log E)(—E) vanishes on U by using
this fact. Therefore, the third term of each sequence vanishes. O

Let (V, p) be the germ of a rational Gorenstein singularity of dim 3 at a point p. Set

¥ = Sing(V). Assume that (V, p) is realized as an open subset of a complex algebraic
variety.

https://doi.org/10.1023/A:1002614926312 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002614926312

60 YOSHINORI NAMIK AWA

Let (K, F) be the filtered de Rham complex defined by Du Bois [DuB]. (Here we
shall use the notation in [St].)

Define u(V, p) := dim H*(GrL(K})).

Note that, when (V/, p) is a rational Gorenstein singularity of dim 3, the sheaf
Hz(GrlF(K'V)) has a support only at p. In fact, according to [St], one can construct
the filtered de Rham complex of a pair (K, y) in such a way that, for each i,

GriK, s — GripK, — GrpKy — GriK, 5[1]
is an exact triangle in the derived category D*(V, C). In particular,
HA(GrpKy 5) - H*(GrypK,) - H*(GrpKy)

is an exact sequence.

Let v: ¥ — V be a resolution such that v-!(X) =: F is a divisor with normal
crossings. By [St, (3.4)] H*(GrpK, 5) = R'v,Q} (log F)(—F).

Since X is a locally trivial deformation of a rational double point outside p, the
sheaf R‘v*Q%;(log F)(—F) has a support only at p, hence the sheaf ’HZ(Gr}KV,Z) also
has a support only at p.

On the other hand, H*(GrLKy) = 0 because X is a curve or an isolated point. Thus
the sheaf Hz(GrlF(K'V)) has a support only at p.

Remark. Let o:X — % be the normalization map. From [DuB], there is a dis-
tinguished triangle in the filtererd derived category

0K, > K; @ Rv*K’f/ — Rv,. K — 0.
Since H'(GrjKy) = oc*Q}: and since H*(GrLKy) = 0, one has an exact sequence
QL ®v,Q} — v, QL - HA(Gri(K;)) — R'v,Q} — R, Q)

by the distinguished triangle.

The map oc*Qli — v*f)}; obtained as a composition of the natural inclusion
a*Qli — rx*Qli &) v*Q% and the first map in the sequence Coincidgs with the map
induced by the natural map from the normalization FI% of F to X. We can check
that this map is surjective. Hence, we have

H(Gri(K})) = Ker[R'v,Q}, — R'v,QL].
On the other hand, one has an exact sequence

R'v,0QL(log F)(—F) — R'v,Q}, — R'v,Q.
Therefore we have a surjection

R'v,Q}(log F)(—F) — H*(Gri(K})).

If X is analytically isomorphic to the coordinate axis of C" or X is isolated, then
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one can show that this map is an isomorphism, equivalently that
wV,p) = dim(Rlv*Q%/(log F)(=F)),. (We omit the proof of this fact.) For example,
if (7, p) = (RDP) x (C', 0), then u(V, p) = 0, where (RDP) means the germ of a sur-
face rational double point.

Denote by Weil(V, p) (resp. Cart(V, p)) the Abelian group of Weil divisors (resp.
Cartier divisors) on (V,p). Then define o(V,p) to be the rank of
Weil(V, p)/Cart(V, p).

LEMMA 1.4. Assume that w(X,p) =0 for all pe Xy Then the map f is an
isomorphism.

Proof. By Lemma 1.3, the map f§ is surjective. We only have to prove the
injectivity. The map f fits into the exact sequence

HY (X, R'n, Q% (log E)(—E)) - HZ (X, @) L w2k, Q% (log E)(—E)).
By the same argument as [Na-St, Theorem 1], the map
d: R'm, Q% (log E)(—E) — R'n, Q3 (log E)(—E)
is a surjection. Since u(X, p) =0, we have an exact sequence (cf. Remark)
1.QL — 1.0 — R'n,QL(log E)(—E) — 0.
Let us consider the commutative diagram
QL — R'7.QL(log E)—E)

T T )
.0 —> Rln*Oj((—E).

We shall prove that the vertical map on the left-hand side is surjective. First note
that we have taken 7 in such a way that C := n~'(Z¢) is a simple normal crossing
divisor. Since X has rational singularities, we see that H'(C, O¢) = 0. By the mixed
Hodge structure on H'(C, Z), we know H(C, QL) =0. Therefore H'(C, C) = 0.
This implies that R'n,Cr = 0. Look at the spectral sequence E}*? := R‘/n*f}% which
converges to EPTM:= R'Yn,Cp. Then Ell*o = coker(n,Op — n*fl}g) because
n*éi- =0. Since E/’=E!"=0, we conclude that the map .0 — n*ﬁg is
surjective.

Now by the commutative diagram, the map

d: R'm,O3(—E) - R'n, Q% (log E)(—E)

is surjective, hence R! n*Qé(log E)(—E) = 0. From this it follows that the first term of
the exact sequence is zero. [
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We shall next investigate dim H%(i’, Qi}(log E)(—E)).
PROPOSITION 1.5.

dim H3(X, Q% (log E)(—E)) = Zpes, (V. p) + o(V. p)}

Proof. Note  that H%(X’, Qi—((log E)Y—E)) is the dual space to
EBpezoRln*Q}((log E),. Then we have the result by the following lemma:

LEMMA 1.6. Let (V,p) be the germ of a rational Gorenstein singularity of dim 3
which can be realized as an open subset of a complex algebraic variety. Set
2 = Sing(V). Assume that X is a one-dimensional locally trivial flat deformation
of a surface rational double point outside p. Let v: V — V be a resolution such that
v-\(2) = F is a divisor with simple normal crossings. Then R'v,Q}(log F) has its
support only at p and its dimension is p(V, p) + a(V, p).

Proof. Take Rv, of the exact sequences:

0— Qli/ — Qlf/(lOgF) — Opm — 0,
0 — Qb (log F)(—F) = Q}, — O}, — 0,

where FI' is the normalization of F. Note that R'v,Opo — RZV*Q% is injective. This
is proved in the following manner. It is enough to prove that the composition
@: R'v,Opo — R*v, Q5 — R*v,Qypy is injective. Let F; (1 <i<k) be irreducible
components of FI%' which are contracted to p by v. Now define
@; = Aei(Ng ) - H'(F, O) — H*(F;, Q). The map ¢ is then identified with
®;;. It is enough to prove that ¢; are all injective. We can choose an effective divisor
B C V so that —B is v-ample. Take an F,. We may assume that H'(F}, OF)#0
because, if H'(F;, Or) = 0, then ¢, is obviously injective. The F; then has a fibration
over an irregular curve C; whose general fiber /; is isomorphic to P'. Since (B.;) < 0,
B contains F; as an irreducible component and (F;./;) < 0. This implies that ¢, is an
injection.

By an argument used in the proof [Na-St, Theorem (1.1)], one has
R*,Q} (log F)(—F) = 0. Since

HY(Gri(Ky)) = Ker[R'n, QL — R'n,Ql)
CI. emark), the second exact sequence yields the exact sequence
(cf. Remark), th d q yields th q

0 — HX(Grp(K,)) - R'v.QL — R'v,Q — 0.

On the other hand, since R'v, O po — R2V*QII~/ is an injection, the first exact sequence
yields the excat sequence

v.Opo — R'v, Q5 — R'v, Q5 (log F) — 0.
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Let us consider the composite v,Opo — Rlv*Q}/ — Rlv*fllF. The cokernel of the
composite has support at p and its dimension as a C vector space is a(V, p). Then
the result follows from the two exact sequences just above. O

The following lemma will be useful in the next proposition.

LEMMA 1.7. Let X be the same as above. Then the natural map
20V 2 2/ % 2\ - L

H (X, Q5 (log E)(—E)) — H(X,Q%) is an injection.
Proof. Taking the dual, we need to show the map

1/ v 1 /v 1
H'(X,QL) - H'(X,QL(log E))

is surjective. By the theory of mixed Hodge structure, it suffices to show that the map
H?*(X,C) — H*(X \ E, C) is surjective. By the exact sequence

H*(X,C) - HX \ E,C) > Hy(X,C) > H}X,C),
we only have to prove that 1 is injective. Let 1*: H3(X,C) — H3(E, C) be the dual
map of 1. Note that * is the map of mixed Hodge structure. Let F be the Hodge
filtration of the mixed Hodge structure. Since GriH?*(E, C) = Gry H*(E, C) = 0,
we have to show that the maps z;?‘:GriFH3(X ,C) — Gr}H3(E, C) are surjective
for i =1, 2. In the exact sequence

HA(X, Q%) =5 HA(E, OF) - H (X, QL(log E)(—E)),
the last term vanishes because it is dual to

H(X, Q% (log E)) = H(X, ©x) = 0.

Hence i is surjective.
Let EY (resp. EU) be the normalization of E (resp. the double locus of E). By
taking H? of the exact sequence

0 e f)g d QIE[()J —> QIE[” e O
we see that the map HX(E, QL) — H*(EV, QL) is surjective. Compose this with 1*
and take the conjugation. Then we see that H'(X, Q%() — H'(E", 02) is surjective.
Since

Gr2H(E,C) = H'(E, Q%) =~ H'(EY, Q%)),

the 15 is surjective. a

PROPOSITION 1.8. Let X and X be the same as above and let
a(X) := rankz Weil(X)/Cart(X). In the diagram (3), dimim(y o ) = a(X).
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Proof. By Lemma 1.7, we calculate the dimension of the image of the composed
map

Hi (X, 0y) > HY(X,Q3(log EX(—E)) - H*(X,Q}).
This map is factorized as
Hi (X, 0y) > HA(X, Q3 (log EY(—E)) - Ha(X, Q%) — HX(X,Q3).

Note here that the first map is surjective by Lemma (1.3). Taking the dual of these
maps we have the sequence of maps

H'(X,QL) - @pes,(R'1.0QL), ® Oy, —
— @pex,(R'm Q5 (log E), ® Ox,, — Hi (X, Ox)*

The last map here is an injection. By taking Rz, of the exact sequence
0— Q}( —> Q}((IOgE) — OE[()] — 0,

we have an injection Rln*Q}/n*(’)Em — R'n*Qk(log E). Therefore, we need to cal-
culate the dimension of

im[H' (X, Q) — @pex,(R' 1 Q%) /(.00 ],
which is nothing but a(X). O
We are now in a position to state the Main Theorem:

THEOREM 19. Let X be a Calabi-Yau threefold with rational Goren-
stein singularities. Let X, be the set of dissident singular points of X
and put U:=X\ZXy. Then the coboundary map ¢ :H'(U,Op)
— H%O(X, Oy) = HgO(X, T}) has the following properties:

(1) The map ¢ coincides with the natural map ¢: Ext'(QL, Oy) — HO(X, T})) if one
identifies H'(U, @) (resp. HgO(X, T}) with a subspace of Extl(Q}, Oyx) (resp.
H(X,TY)) by the natural inclusion defined in Proposition 1.2. Moreover,
o~ (HY,(X, T}) = H\(U, ®y).

(2) dimim(¢) = Zpes {u(X, p) + o(X, p)} — o(X).

) If (X, p) =0 forall p € Zo, then dimim(¢) = Ze5,0(X, p) — a(X).

Proof. (1) restates Propositions 1.1 and 1.2 except the final part. If
@(0) € HY (X, T}) for { € Ext'(Qy, Ox), then { is sent to zero by the composed
map Ext!(Q}, Oy) - Ext'(Q}, Oy) — H(U, T})), hence ( is contained in
H\(U, ).
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(2), (3): Consider the diagram

H'\(x\(U), Qx(log E)(—E)) — HAX,Qx(og EX—E)) — HX(X, Q% (log EX—E))

T o7 ©)

HX(U, ®y) 2, H2,(X,0y)

By Lemma 1.3 and Propositions 1.5 and 1.8,
dimKer(y) = Zpex, (X, p) + o(X, p)} — o(X).

Then (2) follows from the diagram above. Note that if the assumption of (3) holds,
then the map f is an isomorphism by Lemma 1.4. O

2. Applications

Letf: X — X be a birational morphism from a smooth Calabi—Yau threefold X to a
singular Calabi-Yau threefold X. Assume that Exc(f) =: D is a smooth surface
having a conic bundle structure over f(D) = P!, and that £, has no multiple fiber
and has exactly n reducible fibers. Let k = p(X) — p(X).

In this section, we shall give a mathematical proof of the following result due to
Morrison—Seiberg.

THEOREM 2.1. If n = 3, then the Kuranishi space Def(X) of X is smooth, and
dim Def(X) = dim Def(X) + 2n — 2 — k.

Proof. The smoothness of Def(X) is already proved in [Gr 2].

Note that X has dissident points on f(D) corresponding to reducible fibers of f/p.
Let p € Zy be one of these points. Since the singular locus X C X is smooth at
p, W(X,p) = dim(le*Qi?(log D)(—D)),. In our case we have an exact sequence

0 — R'£.Q}(log D)(—D) - R'£.Q} — R'£.Q), — 0.

By the formal function theorem, we can check directly that R! f*Qi} ~ R'£,QL
which implies that u(X, p) =0.

Since f~!(p) is a line pair in a conic bundle D — X, Pic(X, f~'(p)) = Z®*. On the
other hand, D is irreducible around f~'(p). Therefore o(X,p) = 1.

By [Gr 2], there is an exact sequence

0> F — Ty — Op(4—D* — 0,

where F has the support on o; HY (X, T) = H(X, F). By Theorem 1.9(1), (3), we
see that dim(im(¢p) N H(X, F)) = n — o(X). Note that ¢(X) =k — 1.

On the other hand, we have the following result:
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LEMMA 2.2. The composed map Extl(Qﬁ(, Oyx) - H(P', Op1(4 — D%) of ¢ and
HY(X,Ty) — H(P!, Op1 (4 — D?)) is surjective.
Proof. According to [Gr 2], by the exact sequence

+1 1 VoAl

we have a commutative diagram with exact rows

&

HOExt'(Ker(y), Oy) — H?*((Ker(y)*) = Ext’(Ker(y), O3)

/ll gl 1l (6)

T, — HUEX!'(f*Q), 0x) —  H*(Hom(f*QY, 0y)) 4 Ext(f*QY, Oy)

Note here that Extl(f*Q}, Oy) = T}( and that the map 4 is injective.

By the argument in [Gr2, Theorem(1.9)], 7 is injective, hence Ker(d) = Ker(5'). By
the diagram above, HO(Ext!(f*Qy, O)) is generated by H(Ext!(Ker(y), O5) and
the image of the map T — H(Ext'(f*QY, Ox)).

On the other hand, the support of the sheaf f.Ext!(Ker(y), Oy ) is contained in Xy
and there is an exact sequence (cf. [Gr 2, Theorem (1.4)])

0 — filxt'(Ker(y), Oy) — fiéxt' (F*QY, O3) — Opi(4 — D*) — 0.

Hence HO(P', Opi(4 — D%)) = Coker(2), which implies our claim. O

Proof Continued. Since D3> =8 —n, by Lemma 2.2, we have
dimim [Ext!(Q}, Ox) — H'(X, T))] =2n -2 — k.

One may assume that the map Def(X) — Def(X) is unramified by deforming X
slightly if necessary. In particular, one may assume that the map
H'(X, 0;) — Ext'(QL,Oy) is injective. Since J+®7 20Oy, and since any
deformation of X induces a locally trivial deformation of the small neighborhood
of D C X, we have H'(X,®y) = H'(X, ©5). Now the theorem follows from the
exact sequence

0— H'(X,0y) - Ext'(Q}, Ox) - H'(X, T}). O

THEOREM 2.3. Let X and X be as above. Assume n=>4. Then X has a flat
deformation to a smooth Calabi—Yau threefold.

Proof. The condition n > 4 implies that dim Def(X) > dim Def(X) by Lemma 2.2.
By [Gr2, Lemma 1.6], if we take a general 1-parameter deformation X — A! of X,
then, after possibly making a finite base change over A', there is a small partial
resolution X’ — X with &’ — A! flat such that X", (¢ # 0) has Q-factorial terminal
singularities. By [Na-St, Theorem (1.3)], X has a flat deformation to a smooth
Calabi—Yau threefold. Since X has finitely many crepant partial resolutions, and
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since Def(X) is smooth, there is a crepant partial resolution X’ such that
Def(X’) — Def(X) is surjective. This X’ should satisfy

(a) dim Def(X”) > dim Def(X), and
(b) X’ is smoothable by a flat deformation.

If X’ = X, nothing to prove. we shall derive a contradiction when X’ is not X.
Assume that X’ has nonisolated singularities. Then X" is obtained from X by flopping
some (—1, —1)-curves Ciy, ..., C; in reducible fibers of f|,, and by contracting the
proper transform D' of D to a curve along rulings. Let X’ " be the smooth threefold
obtained from X by the flops, and let f’:)?/ — X’ be the birational contraction
of D’ to a curve, for which we will define the number » and k' in the same way
as above. By the construction, we have W =n—1[, kK > k — 1. By Theorems 1.9

and Theorem 2.1, we calculate dim T}(,, in terms of dim T}(, = dim T}(, n and k' :

(1) If ' <2, then dimTY, = dim T, +n' — k' + 1.
(2) If ' >3, then dim T}, = dim T}, 421’ =2 — K.

Then we conclude that dim 7} > dim 7}, when n > 4, a contradiction.

Assume that X’ has only isolated singularities. Then X’ is obtained from X by
flopping some (—1, —1)-curves Cj, ..., C; in reducible fibers of f|, and by con-
tracting (—1, —1)-curves Cjq, ..., Cs in reducible fibers to points. Note that X’
has only ordinary double points. In the calculation of dim T%,, the flopping curves
have no effects, hence we may assume that /=0 (equivalently that X = X /).
Let F; (1 <j<p) be a generator of Pic(X) ® Q. Let r be the rank of the
matrix (G, F))q<i<s1<j<p- Then, by the definition of k, we should
have s—r<n—k+1. By [Fr], dimTﬂ(, = dimT}( +s—r. Thus we have
dim T}, < dim T}( + n — k + 1. On the other hand, by Theorem 1.9 and Lemma 2.2,
dim T}, = dim T} +2n — k — 2. Since dim T}, < dimT},, we obtain n < 3, a con-
tradiction.
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