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EXIT TIMES FOR A CLASS OF RANDOM WALKS:
EXACT DISTRIBUTION RESULTS

BY MARTIN JACOBSEN

Abstract

For a random walk with both downward and upward jumps (increments), the joint
distribution of the exit time across a given level and the undershoot or overshoot at crossing
is determined through its generating function, when assuming that the distribution of
the jump in the direction making the exit possible has a Laplace transform which is a
rational function. The expected exit time is also determined and the paper concludes
with exact distribution results concerning exits from bounded intervals. The proofs use
simple martingale techniques together with some classical expansions of polynomials
and Rouché’s theorem from complex function theory.

Keywords: One-sided exit; mean exit time; two-sided exit; partial eigenfunction;
overshoot
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1. Introduction

The object of study in this paper is nonlattice, one-dimensional random walks (Xn)n≥0 in
discrete time and their exits from an interval. The main result characterises the joint distribution
of the exit time and the overshoot at exit in terms of a suitable generating function G. For any
given values of the arguments of G, the results are also given as a function of the initial state
X0 ≡ x of the random walk, and the emphasis is on models where this dependence on x is
particularly simple, viz. a finite linear combination of exponentials x �→ eγ x . This requires
that the distribution of the increments Xn −Xn−1 in the direction of the exit has a special form:
below it is assumed that either the Laplace transform is a rational function (class R) or the
density is a linear combination (class LE ) of exponentials. The finitely many γ -values are
found as solutions to a Cramér–Lundberg equation, while the coefficients for the terms eγ x are
either determined explicitly or found as solutions to a system of linear equations.

The method used is that developed in [5], [6], [7], and [8] for much more complicated
continuous-time models. A main purpose here is to show that the method applies also in
discrete time and that, for random walks, it is possible to obtain explicit formulae that appear
to be simpler than those found elsewhere, and may well in part be new—certainly they are not
easy to locate in the literature.

Much of the existing literature on random walks deals with asymptotic results: a major
reference is [2]. As for exact results concerning exit problems, early contributions can be found
in [11, Sections 9, 10, 11], [12], and [17, Sections 17, 21, 24, 25] (only walks on integer lattices
are treated in [17]). There is a host of contributions by Soviet/Russian/Ukrainian authors,
classical (Rogozin, Pechenskii, A. A. Borovkov, Zolotarev, and others) as well as new. Some
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52 M. JACOBSEN

recent references, notably on two-sided exit problems, include [3], [4], [9], and [10] with results
quite different in form from those presented here.

It is natural to compare random walks in discrete time with Lévy processes in continuous
time, where there is a huge literature on exit problems. A much favoured case for obtaining
simple explicit results is that of spectrally one-sided Lévy processes (one-sided jumps), where
at exit the process will hit the exit level precisely (exit by creeping). For nonlattice random
walks, there is no analogue of this so the problem of dealing with the overshoot is forced upon
you. For Lévy processes where the exit is caused by a jump across the boundary, Wiener–Hopf
factorisations are a favourite tool, often combined with an assumption that the jumps causing
the exit be of phase type (class PH ); see, e.g. [1] and [16].

The three classes of jump distributions, R, LE , and PH , are all dense in the class of all
distributions on R+ with R containing the other two and LE containing the nondense class
of hyper-exponential distributions (i.e. mixtures of exponentials). The results presented below
depend on the explicit form of the distribution considered, i.e. the polynomials determining
the Laplace transform of a class R distribution, the coefficients, and exponential parameters
determining a class LE density. In general, for a given class PH distribution, the explicit
class R or class LE representation is not readily available and, indeed, the existing class PH
results are of a different form from those given here (see, e.g. [1, Lemma 1]).

For existing class R results for Lévy processes, see, e.g. [15] (a paper closely related
to [5] and [6]) and [14]. For random walks, in [3], [4], [9], and [10] the authors used
the concept of semicontinuity, i.e. the case where the downward or upward jumps have an
exponential distribution (geometric distribution in the lattice case). Recently, in their work [13]
on meromorphic Lévy processes the authors used jump distributions that are infinite mixtures
of exponentials.

It should be noted that Wiener–Hopf factorisations are not used anywhere below. In fact,
as shown in Section 2, the ‘partial eigenfunction’ method used below applies to any Markov
process (Jacobsen and Jensen [8] provided a non-Lévy continuous-time example) and any exit
region, and in that generality Wiener–Hopf methods are of course meaningless. What then
makes the random walk case simple and tractable is the fact that in the setup used here, the
partial eigenfunctions have a simple form.

The layout of the paper is as follows: the general result is given in Section 2 and in Section 3
we discuss the one-sided exit problem for crossing a level below the initial state using one-sided
class R increments; in Section 4 we determine the expected exit time and in Section 5 we treat
two-sided exits using two-sided class LE increments.

2. A general result on exit times for Markov chains

Let (Xn)n≥0 be a homogeneous Markov chain in discrete time with state space (E, E). Write
p(x, dy) for the transition probability and P for the transition operator of the chain,

Pf (x) =
∫

E

f (y) p(x, dy) = Exf (X1),

acting on the space of bounded and measurable f : E → R.
For a given A ∈ E with A �= ∅ and A �= E, consider the hitting time τA = τA(X1, X2, . . .)

given by
τA = inf{n ≥ 1 : Xn ∈ A}

with inf ∅ = ∞. For g : A → R bounded and measurable and 0 < t < 1, we have the
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following result characterising the function f0 : R → R given by

f0(x) = Ex[tτAg(XτA
); τA < ∞], x ∈ Ac, f0(x) = g(x), x ∈ A.

Theorem 1. Suppose that φ : E → R is a bounded and measurable function satisfying

Pφ(x) = t−1φ(x), x ∈ Ac, φ(x) = g(x), x ∈ A. (1)

Then φ = f0. Conversely, φ = f0 satisfies (1).

Proof. For any n ∈ N, write

tτA∧nφ(XτA∧n) = φ(X0) +
n∑

k=1

1{τA≥k} tk(φ(Xk) − Ex[φ(Xk) | Xk−1])

+
n∑

k=1

1{τA≥k} tk(Pφ(Xk−1) − t−1φ(Xk−1)). (2)

The first sum corresponds to a martingale (in the filtration Fn = σ(X0, . . . , Xn)) and in the sec-
ond sum each term vanishes because of (1). Taking expectations then gives Ext

τA∧nφ(XτA∧n) =
φ(x), and letting n → ∞, using dominated convergence and the definition of φ(x) for x ∈ A,
φ = f0 follows.

For the converse, define τ̃A = τA(X2, X3, . . .) and note that τA = τ̃A + 1 on (X1 ∈ Ac).
Therefore,

f0(x) = tEx[g(X1); X1 ∈ A] + tEx[t τ̃A; X1 ∈ Ac] = tPf0(x),

since, by the Markov property,

Ex[t τ̃A; X1 ∈ Ac] = Ex[f0(X1); X1 ∈ Ac].
In the terminology of Jacobsen [6], [7], a φ satisfying the first condition in (1) is a partial

eigenfunction for P corresponding to the eigenvalue t−1.

3. One-sided exit times for random walks

Now let (Xn)n≥0 denote a random walk with a fixed initial value X0 ≡ x ≥ 0 and, for n ≥ 0,

Xn+1 = x − Y1 − · · · − Yn, X0 ≡ x,

with (Yn)n≥1 an independent and identically distributed sequence of R-valued random variables
with distribution F . Define the one-sided exit time

τ0 = inf{n ≥ 1 : Xn < 0}
(with inf ∅ = ∞) and the overshoot

Z0 := −Xτ0 = |Xτ0 |,
defined only on the set (τ0 < ∞).

In order to make the exit of the random walk below the level 0 possible, it is assumed
throughout the paper that

p := P(Yn > 0) > 0.
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By imposing a suitable structure on the distribution of the downward jumps of the random
walks, i.e. the distribution of the strictly positive Yn, we shall be able to derive explicit
expressions for the joint transform

Ex[tτ0 e−ζZ0; τ0 < ∞], 0 < t ≤ 1, ζ ≥ 0. (3)

For ζ = 0 and 0 < t < 1, this yields the moment generating function

Ext
τ0 =

∞∑
n=1

tnPx(τ0 = n).

For ζ = 0 and t = 1, we obtain the exit probability Px(τ0 < ∞) and, for ζ > 0 and t = 1,

the marginal (possibly deficient) Laplace transform for the distribution of the overshoot Z0
appears.

The transition operator P for the random walk is given by

Pf (x) =
∫

f (x − y) F (dy),

and, from Theorem 1, it follows directly that, for 0 < t < 1 and ζ ≥ 0, the joint transform (3)
is determined by finding the unique bounded and measurable function φ satisfying

Pφ(x) = t−1φ(x), x ≥ 0, φ(x) = eζx, x < 0. (4)

The t = 1 case is special and will be discussed below.
Consider the distribution F of the Yn and write it in the form

F(dy) = pF+(dy) + qF−(dy),

where 0 < p ≤ 1, q = 1 − p, F+(dy) is a probability on R++ = (0, ∞) (the strictly negative
jumps of the random walk), and F− is a probability on R− = (−∞, 0] (the nonnegative jumps
for the random walk). Introduce the Laplace transforms

L+(ν) =
∫

(0,∞)

e−νyF+(dy), ν ∈ C, Reν ≥ 0, (5)

L−(ν) =
∫

(−∞,0]
e−νyF−(dy), ν ∈ C, Reν ≤ 0.

Of course, for the relevant values of ν,

L+(ν) = E[e−νYn | Yn > 0], L−(ν) = E[e−νYn | Yn ≤ 0],
with the qualification that if p = 1 (the random walk is strictly decreasing), F− is irrelevant.

The main assumption we shall make concerning the structure of F+ is that L+ be a rational
function (class R from the introduction),

L+(ν) = P+(ν)

R+(ν)
, Reν ≥ 0, (6)

with P+ and R+ polynomials, standardised so that they have no common roots. We write m ≥ 1
for the degree of R+ and note that then P+ is of degree less than m.
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It is assumption (6) that will ensure that the partial eigenfunctions φ(x) from (4) have a
simple form as linear combinations of m exponentials in x for x ≥ 0; see (10) below.

The form of (6) immediately permits a well-defined analytic extension,

L̄+(ν) = P+(ν)

R+(ν)
, Reν < 0,

to the negative half of the complex plane, except for the finitely many singularities νs matching
the roots of R+, all of which necessarily satisfy Reνs < 0. Note that representation (5) of
L̄+(ν) is invalid unless Reν < 0 is sufficiently close to 0.

The distributions with Laplace transforms as in (6) all have Lebesgue densities (see, e.g.
Equation (1.1) of [14], where structure (6) was also used). An important subclass (the class
LE from the introduction) that we shall use later is given by

F+(dx) =
m∑

j=1

αjµj e−µj x dx, x > 0, (7)

with, e.g. 0 < µ1 < · · · < µm, all αj ∈ R, and αj �= 0 (but not necessarily αj > 0,

corresponding to mixtures of exponentials) with
∑

j αj = 1, and, of course, it must hold that
the density is greater than or equal to 0 for all x > 0.

The fact that F+ always has a density implies in particular that we are disregarding all
random walks on lattices such as Z. Also, note that τ0 = inf{n ≥ 1 : Xn ≤ 0}, Px−almost
surely (Px-a.s.) for all x ≥ 0: from time 1 onwards, it is impossible for the random walk to hit
the level 0 exactly.

We shall also make one assumption concerning the distribution F− of the upward jumps: the
Laplace transform L−(ν) is assumed to have an analytic extension from C− = {z ∈ C : Rez ≤
0} to an open set S ⊃ C−. Formally, this is required for the proof of Lemma 1 below, but the
conclusions of the lemma and Theorem 2 may well be valid in great generality without this
assumption. The assumption implies in particular that F− is light tailed in the sense that all
moments of F− are finite.

Let 0 < t ≤ 1, and consider the Cramér–Lundberg equation

pL̄+(γ ) + qL−(γ ) = t−1, γ ∈ C, Reγ ≤ 0. (8)

Lemma 1. For 0 < t < 1, the Cramér–Lundberg equation (8) has precisely m solutions γ ,
counted with multiplicity, with Reγ < 0.

Proof. Rewrite (8) as tpP+(γ ) + tqR+(γ ) − R+(γ ) = 0. Because of the analyticity of
L− just assumed, the result follows from Rouché’s theorem from complex function theory by
showing that, for sufficiently large K > 0 and γ ∈ C such that either Reγ < 0, |γ | = K or
Reγ = 0, |Imγ | ≤ K, it holds that

|tpP+(γ ) + tqR+(γ )L−(γ )| < |R+(γ )|, (9)

since then tpP+(γ ) + tqR+(γ ) − R+(γ ) will have the same number of roots in the domain
{γ ∈ C : Reγ < 0, |γ | < K} as R+(γ ), i.e. m roots for large enough K . Because t < 1, (9)
follows easily because |L−(γ )| ≤ 1, while |P+(γ )| < |R+(γ )| for sufficiently large |γ | and,
using (5), we have |L+(γ )| ≤ 1, i.e. |P+(γ )| ≤ |R+(γ )| if Reγ = 0.
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Theorem 2. For any 0 < t < 1 such that the m t-dependent solutions γ1, . . . , γm to the
Cramér–Lundberg equation (8) are distinct, it holds, for all x ≥ 0 and ζ ≥ 0, that the joint
transform (3) is given by

Ex[tτ0 e−ζZ0; τ0 < ∞] =
m∑

i=1

cie
γix, x ≥ 0, (10)

where

ci = R+(γi)

R+(ζ )

∏
j �=i (ζ − γj )∏
j �=i (γi − γj )

. (11)

Remark 1. If in (8), γi with Reγi < 0 is a root of multiplicity r > 1, in (10) we need r terms∑r
j=1 cij x

j−1eγix , where the coefficients are found using a generalisation of Lemma 2 below.

Remark 2. In Lemma 1 of [1] the authors considered a (continuous-time) Lévy process with
downward jumps of phase type. Their formula (16) is closely related to (10) above, but a
notable qualitative difference is that the formulae in the lemma rely explicitly on the relevant
Wiener–Hopf factorisation.

The proof uses the following elementary polynomial expansions, also used in [5] and [6],
where a polynomial is identified through its values at sufficiently many given points.

Lemma 2. Let r ∈ N, and let � denote a polynomial of degree less than or equal to r . Then,
for any choice of r + 1 distinct complex numbers δ1, . . . , δr+1 and all z ∈ C,

�(z) =
r+1∑
i=1

�(δi)

ρ\i (δi)
ρ\i (z), (12)

where ρ\i (z) = ∏
1≤j≤r+1, j �=i (z − δj ).

We shall refer to expansion (12) as the expansion of � using the centres δj .

Proof of Theorem 2. Define, cf. (10) and (11),

φ(x) =

⎧⎪⎨
⎪⎩

m∑
i=1

cie
γix, x ≥ 0,

eζx, x < 0.

The result follows if we show that φ is a partial eigenfunction, see ( 4) and (3). We find that,
for x ≥ 0,

Pφ(x) = q

∫
(−∞,0]

m∑
i=1

cie
γi (x−y) F−(dy) + p

∫
(0,x]

m∑
i=1

cie
γi (x−y) F+(dy)

+ p

∫
(x,∞)

eζ(x−y) F+(dy), (13)

which is required to equal t−1 ∑m
i=1 cieγix . The first term on the right-hand side of (13) equals

q

m∑
i=1

cie
γixL−(γi) =

m∑
i=1

cie
γix(t−1 − pL̄+(γi))
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using (8); hence, the identity Pφ(x) = φ(x)/t becomes

−
m∑

i=1

cie
γixL̄+(γi) +

∫
(0,x]

m∑
i=1

cie
γi (x−y) F+(dy) +

∫
(x,∞)

eζ(x−y) F+(dy) = 0 (14)

for x ≥ 0. We show this by computing the Laplace transform: let θ ≥ 0, multiply by e−θx, and
Lebesgue integrate x from 0 to ∞. Then (14) becomes

−
m∑

i=1

ciL̄+(γi)
1

θ − γi

+ L+(θ)

m∑
i=1

ci

1

θ − γi

+ 1

θ − ζ
(L+(ζ ) − L+(θ)) = 0 for θ ≥ 0.

Solving for L+(θ) gives

L+(θ) =
∑m

i=1 ciL̄+(γi)/(θ − γi) − L+(ζ )/(θ − ζ )∑m
i=1 ci/(θ − γi) − 1/(θ − ζ )

=
∑m

i=1 ciL̄+(γi)(θ − ζ )π\i (θ) − π(θ)L+(ζ )∑m
i=1 ci(θ − ζ )π\i (θ) − π(θ)

, (15)

where, for z ∈ C and 1 ≤ i ≤ m,

π\i (z) =
∏

1≤i′≤m, i′ �=i

(z − γi′), π(z) = (z − γi)π\i (z) =
m∏

i′=1

(z − γi′).

We shall show that expression (15) for L+(θ) holds by using (12) to argue that

P+(θ) = K

m∑
i=1

ciL̄+(γi)(θ − ζ )π\i (θ) − Kπ(θ)L+(ζ ), (16)

R+(θ) = K

m∑
i=1

ci(θ − ζ )π\i (θ) − Kπ(θ), (17)

with K = −R+(ζ )/π(ζ ), and the proof of the theorem will then be complete.
With the polynomial R+ being of degree m, consider expansion (12) of R+ with centres

γ1, . . . , γm, ζ , i.e.

R+(θ) =
m∑

i=1

R+(γi)

(γi − ζ )π\i (γi)
(θ − ζ )π\i (θ) + R+(ζ )

π(ζ )
π(θ).

Referring to the value of K and (11), it is immediately verified that this tallies with (17). Using
the same centres for the expansion of P+, it is also clear that the expansion agrees with (16)
when recalling that R+(ζ )L+(ζ ) = P+(ζ ) and R+(γi)L̄+(γi) = P+(γi).

Example 1. An instructive case is when q = 0 and x = 0: trivially, then τ0 = 1, P0-a.s., so
referring to (10) we should have

∑m
i=1 ci = t with the ci given by (11) with ζ = 0 . But, by

(8), L̄+(γi) = t−1 for all i; hence, R+(γi) = tP+(γi) so

m∑
i=1

ci = t

R+(0)

m∑
i=1

P+(γi)

π\i (γi)
π\i (0) = t

P+(0)

R+(0)
= t,

since we recognise the sum in the middle as the expansion of P+(0) using the centres γ1, . . . , γm.
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Remark 3. Suppose that F+ is given by (7). We may then use (14) directly to find the partial
eigenfunction φ, assuming of course that the m solutions γ to (8) with Reγ < 0 are distinct,
and find that the ci in (10) solve the linear equation system

m∑
i=1

ci

1

µj + γi

= 1

µj + ζ
, 1 ≤ j ≤ m. (18)

To see that these solutions agree with the ci from (11), observe first that

L+(θ) =
m∑

i=1

αiµi

µi + θ

so that we may take

R+(z) =
m∏

i=1

(µi + z).

Inserting expression (11) for the ci into (18), we find that

m∑
i=1

R+(γi)

π\i (γi)

µj + ζ

µj + γi

π\i (ζ ) = R+(ζ ).

Using the fact that R+(−µj ) = 0, a quick check shows that this is the expansion of R+(ζ )

using the centres γ1, . . . , γm, −µj .

Consider now the problem of determining

Ex[e−ζZ0; τ0],
corresponding to taking t = 1 in (3). If φ is bounded and satisfies (4) with t = 1, from
Exφ(Xτ0∧n) = φ(x) for x ≥ 0, it follows by dominated convergence that

Ex[e−ζZ0; τ0 < ∞] + lim
n→∞ Ex[φ(Xn); τ0 > n] = φ(x).

If ξ := EYn ≥ 0, we have Px(τ0 < ∞) = 1; hence,

Ex[e−ζZ0; τ0 < ∞] = φ(x), ζ ≥ 0, x ≥ 0. (19)

If ξ < 0, the same identity holds provided that limx→∞ φ(x) = 0, since then limn→∞ φ(Xn)

= 0, Px-a.s.
In order to determine φ, it is an obvious idea to consider the Cramér–Lundberg equation (8)

for t = 1, i.e.
pL̄+(γ ) + qL−(γ ) = 1, γ ∈ C, Reγ ≤ 0, (20)

which always has the solution γ = 0. Without going into the details of the proof we then have
the following results corresponding to the two cases ξ > 0 and ξ < 0:

(i) if ξ > 0, (20) has the solution γm = 0 and precisely m − 1 solutions γ1, . . . , γm−1
(counted with multiplicity) satisfying Reγi < 0,

(ii) if ξ < 0, (20) has precisely m solutions γ1, . . . , γm (counted with multiplicity) satisfying
Reγi < 0.
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The ξ = 0 case is deliberately left out; however, although then γ = 0 is a root in (20) of
multiplicity 2, we believe that (21) below is still valid in the form corresponding to case (i).

Theorem 3. Let ξ �= 0, and let γ1, . . . , γm be the solutions to (20) described above for cases
(i) and (ii). If these solutions are distinct, it holds, for all ζ ≥ 0, that

Ex[e−ζZ0; τ0 < ∞] =
m∑

i=1

cie
γix, x ≥ 0, (21)

where

ci = R+(γi)

R+(ζ )

∏
{j : j �=i}(ζ − γj )∏
{j : j �=i}(γi − γj )

.

Note that, if ξ < 0, the candidate
∑m

i=1 cieγix for the partial eigenfunction φ satisfies
limx→∞ φ(x) = 0, as it should in order that (19) be valid.

Taking ζ = 0 in (21) we obtain Px(τ0 < ∞). For case (ii), we obtain

Px(τ0 < ∞) =
m∑

i=1

R+(γi)

R+(ζ )

∏
{j : j �=i}(−γj )∏

{j : j �=i}(γi − γj )
eγix,

while, for case (i), since the ci for i = 1, . . . , m− 1 contain the factor −γm = 0 and, therefore,
are equal to 0, we simply obtain Px(τ0 < ∞) = cm = 1, as we should!

4. The expected exit time

In this section we shall determine the expected exit time Exτ0 when ξ = EYn > 0. With
ξ > 0, it is standard that Exτ0 < ∞ and if EY 2

n < ∞ (automatic with the assumptions we have
made about F+ and F−), it also holds that

lim
n→∞ Ex[Xn; τ0 > n] = 0, x ≥ 0, (22)

a fact that will be used below. (A quick proof of (22) is as follows. Write

Ex[Xn; τ0 > n] = Ex[Xn − nξ − x; τ0 > n] + (nξ + x)Px(τ0 > n).

Because Exτ0 < ∞, the last term on the right-hand side tends to 0 as n → ∞. By the Cauchy–
Schwarz inequality, the first term is less than or equal to (n var Y1 Px(τ0 > n))1/2 → 0.)

Rather than treating all F+ with a rational Laplace transform, we shall assume that F+ is of
the form (7); see Remark 3.

Theorem 4. Suppose that ξ > 0 and that F+ is given by (7). Also, assume that the solutions
γ1, . . . , γm−1 to (20) with Reγi < 0 are distinct. Then, for x ≥ 0, the expected exit time is
given by

Exτ0 = x

ξ
+ B +

m−1∑
i=1

c◦
i eγix, (23)

where B, c◦
1, . . . , c

◦
m−1 are the solutions to the linear system of equations

m−1∑
i=1

c◦
i

µj

µj + γi

+ B = 1

ξµj

, 1 ≤ j ≤ m. (24)
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Proof. Define

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

ξ
x + B +

m−1∑
i=1

c◦
i eγix, x ≥ 0,

0, x < 0.

We claim that
Pφ(x) = φ(x) − 1, x ≥ 0. (25)

If true, from

φ(Xτ0∧n) = φ(x) +
n∑

k=1

1{τ0≥k}(φ(Xk) − Ex[φ(Xk) | Xk−1])

+
n∑

k=1

1{τ0≥k}(Pφ(Xk−1) − φ(Xk−1))

(cf. (2)), it follows that
Exφ(Xτ0∧n) = φ(x) − Exτ0 ∧ n.

Since, for y ≥ 0, φ(y) = C◦y plus a bounded function, by (22), Ex[φ(Xn); τ0 > n] converges
to 0 and since Exτ0 ∧ n ↑ Exτ0 by monotone convergence and φ(Xτ0) = 0 on (τ0 < ∞) (i.e.
Px-a.s.), we conclude that 0 = φ(x) − Exτ0, proving (23).

It remains to establish (25), which is easily done by direct calculation: introducing ξ− =∫
(−∞,0] y F−(dy) and F̄+(y) = F+((y, ∞)), we find that

Pφ(x) = qξ−1x − qξ−1ξ− + qB + q

m−1∑
i=1

c◦
i eγixL−(γi) + pξ−1x(1 − F̄+(x))

− pξ−1
∫

(0,x]
y F+(dy) + pB(1 − F̄+(x)) + p

m−1∑
i=1

c◦
i

∫
(0,x]

eγi (x−y) F+(dy).

By partial integration,
∫
]0,x] y F+(dy) = −xF̄+(x) + ∫ x

0 F̄+(y) dy, and, by (20),

q

m−1∑
i=1

c◦
i eγixL−(γi) =

m−1∑
i=1

c◦
i eγix(1 − pL̄+(γi)).

Using these two facts together with the form of F+, which in particular gives L̄+(z) =∑m
j=1 αjµj/(µj + z), it is seen that (25) is equivalent to the equation

−1 = −qξ−1ξ− − p

m−1∑
i=1

c◦
i eγix

m∑
j=1

αj

µj

µj + γi

− pξ−1
m∑

j=1

αj

µj

(1 − e−µj x)

− pB

m∑
j=1

αj e−µj x + p

m−1∑
i=1

c◦
i eγix

m∑
j=1

αj

µj

µj + γi

(1 − e−(µj +γi )x).

On the right-hand side, the terms with some eγix cancel out, the constant terms yield −qξ−1ξ−−
pξ−1∑m

j=1 αj/µj = −1, and the exponential e−µj x appears with the coefficient

pξ−1 αj

µj

− pBαj − p

m−1∑
i=1

c◦
i αj

µj

µj + γi

,

which is equal to 0 because of (24).
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When the downward jumps for the random walk are exponential, the result is particularly
simple.

Corollary 1. Suppose that ξ > 0, and let F+(dx) = µe−µx dx for x > 0, where µ > 0. Then

Exτ0 = x

ξ
+ 1

µξ
.

5. Two-sided exits

Throughout this section, it is assumed that 0 < p < 1, i.e. it is possible for the random walk
to jump down as well as up.

Let a < b ∈ R with a ≤ 0 ≤ b, and start the random walk from x ∈ [a, b]. Consider the
exit time

τab = inf{n ≥ 1 : Xn < a or Xn > b},
which is finite Px-a.s. Also, define the events

Ga = (Xτab
< a), Gb = (Xτab

> b),

corresponding to the random walk exiting from the interval [a, b] by jumping across the lower
boundary a or the upper boundary b. Finally, define the downward overshoot at exit and the
upward overshoot at exit by

Za = (a − Xτab
) 1Ga , Wb = (Xτab

− b) 1Gb
.

In this section we shall determine the joint transforms of τab and the downward/upward
overshoot. This requires not only that F+ is, e.g. of class R but that the same is also true
for F−. In order to simplify, we assume in the remainder of the section that F+ is given by ( 7)
with F− also of class LE ,

F−(dx) =
l∑

j ′=1

βj ′νj ′eνj ′xdx, x < 0,

with all νj ′ > 0 and distinct, and all βj ′ �= 0 with
∑

i′ βj ′ = 1, and the density of course
required to be greater than or equal to 0 for x < 0.

We now have

L̄+(z) =
m∑

i′=1

αi′
µi′

µi′ + z
, L̄−(z) =

l∑
j ′=1

βj ′
νj ′

νj ′ − z
,

and note that, for 0 < t < 1, the Cramér–Lundberg equation (8),

p

m∑
j=1

αi′
µi′

µi′ + z
+ q

l∑
j ′=1

βj ′
νj ′

νj ′ − z
= 1

t
, (26)

has precisely m solutions γ1, . . . , γm (counted with multiplicity) with Reγi < 0 and precisely
l solutions δ1, . . . , δl (counted with multiplicity) with Reδj > 0. If t = 1 and ξ > 0, (20)
has precisely m − 1 solutions γ1, . . . , γm−1 with Reγi < 0 and precisely l solutions δ1, . . . , δl

with Reδj > 0, and we write γm = 0 for the remaining solution 0. If t = 1 and ξ < 0, (20)
has precisely m solutions γ1, . . . , γm with Reγi < 0 and precisely l − 1 solutions δ1, . . . , δl−1
with Reδj > 0, and we write δl = 0 for the remaining solution 0.
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Theorem 5. Let 0 < t ≤ 1, ζ ≥ 0, ρ ≥ 0, and K , L ∈ R . Define γ1, . . . , γm and δ1, . . . , δl

as the solutions to the Cramér–Lundberg equation (26) in the manner just described. Assume
that all the solutions are distinct. Then, for a ≤ x ≤ b,

Ex[Ktτabe−ζZa ; Ga] + Ex[Ltτabe−ρWb ; Gb] =
m∑

i=1

cie
γix +

l∑
j ′=1

dj eδj x, (27)

where the ci and dj are the solutions to the linear equation system

m∑
i=1

ci

eγia

µi′ + γi

+
l∑

j=1

dj

eδj a

µi′ + δj

= K

µi′ + ζ
, 1 ≤ i′ ≤ m,

m∑
i=1

ci

eγib

νj ′ − γi

+
l∑

j=1

dj

eδj b

νj ′ − δj

= L

νj ′ + ρ
, 1 ≤ j ′ ≤ l.

Proof. We just outline the proof of (27). Referring to the technique from Section 2, the task
is to find a function φ such that with

φ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Le−ρ(x−b), x > b,
m∑

i=1

cie
γix +

l∑
j=1

dj eδj x, a ≤ x ≤ b,

Ke−ζ(a−x), x < a,

we have
Pφ(x) = t−1φ(x)

for a ≤ x ≤ b, since then
Ext

τabφ(Xτab
) = φ(x), (28)

as desired. (It should be noted that φ is automatically bounded and that, as n → ∞,
Ex[φ(Xn); τab > n] → 0 since τab < ∞, Px-a.s. The latter is needed for obtaining (28)
when t = 1.)

Computing Pφ(x) explicitly (tedious but easy) for a ≤ x ≤ b yields an expression which
is a linear combination of the exponential functions eγix, eδj x and e−µi′x, e−δj ′x . Referring to
(26), it is verified that the linear combination of eγix and eδjix is precisely t−1φ(x). Because of
(27 ), it is also verified that the coefficient to each of the exponentials e−µi′x and e−δj ′x equals 0.

Remark 4. It suffices to take (K, L) = (1, 0) in order to find Ex[tτabe−ζZa ; Ga] and (K, L) =
(0, 1) in order to find Ex[tτabe−ρWb ; Gb]. Having both these transforms of course immediately
gives (27).
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