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ON COMPLEX PROJECTIVE HYPERSURFACES

by J. W. BRUCE

(Received 15th August 1979)

In this paper we prove various results concerning monodromy groups associated with
nonsingular complex projective hypersurfaces. Most of these results are already known
but proofs are either unavailable or are algebraic and require a lot of machinery. The
groups in question are those obtained from the second Lefschetz theorem (see (1))
applied to (a) the general Veronese variety, (b) a nonsingular projective hypersurface.
By embedding the monodromy group of an extraordinary local isolated singularity
(discovered by Libgober (8)) in these global monodromy groups we obtain necessary
and sufficient conditions for the global groups to be finite. For case (a) we also obtain
information on the structure of the dual to the Veronese variety which is of use when
considering the monodromy group. The author gratefully acknowledges the financial
support of the Stiftung Volkswagenwerk for a vist to the IHES during which this paper
was written.

1.

In what follows H#(A; R) denotes the reduced singular homology groups of a space
A with coefficients in some ring R; if R is omitted integer coefficients are understood.
The fundamental group of A is denoted by irx(A), the omission of a base point is for
notational convenience and will cause no problems. Finally Pm denotes complex
projective space of dimension m, Pm the dual space of hyperplanes in Pm.

We first consider the Veronese variety V. If d is an integer greater than zero the
space of all projective hypersurfaces in P" of degree d forms a projective space PN of

dimension N=\ ) — 1. Let F o , . . . , FN be the set of basis monomials of degree d in

n + 1 variables: we have a well defined embedding F = (F0,... ,FN): Pn—*PN, and
V = F(Pn) is the Veronese variety of type (n, d).

Given any smooth variety [/ <= Pm let U denote the dual variety of tangent hyper-
planes H e Pm. If we now set X = {(y, H) e PN x PN : H<£ V, y e H n V} and denote the
obvious projection X—* PN — V by <1>, this is a locally trivial fibre bundle and if W is a
typical fibre we wish to study the representation of /rr1(P

N - V) as a group of auto-
morphisms of the R module H*(W; R).

We now consider the structure of V, indeed we give another interpretation of 4>. If
PN is the space of hypersurfaces as above let D denote the subset of singular such.
Setting X! = {(x, F )eP" x P N - D : F(x) = O} and denoting projection X1-*PN-D by
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<£x we have a commuting diagram

* •

p»-D >PNV

where d^x, F) = (F(x), F*), 02(F) = F* and F* = (a o , . . . , aN)* is the hyperplane
N

iXi = 0. Moreover 61 and 62 are diffeomorphisms and the natural extension of 82
o
takes D to V.

A theorem of Zariski (see (6)) asserts that for generic lines L (resp. planes P) in PN

the homomorphism induced by the inclusion i71(L - V) —> TTI(PN — V) (resp.
ir1(P— v)—»ir1(P

N — V)) is a surjection (resp. an isomorphism). Consequently it would
be advantageous to describe some stratification of V (or equivalently D) down to
codimension 1 at least. This we now do, working with D and assuming d S 3; for d = 2
see the last part of Section 2.

Consider the polynomials FePN whose hypersurfaces {F = 0}<= Pn are of the follow-
ing types:

(i) F = 0 has at least 3 singularities,
(ii) F = 0 has 2 singularities one of which is not of type Au

(iii) F = 0 has 1 singularity which is not of type At or A2.
(Here A t and A2 are the first two simple singularities, see for example (2)). In each
case F satisfies at least 3 conditions and the set of such F form a constructible subset of
PN of codimension 3. (See (12) p. 37 for a definition of constructible set). The
complement of this set in D is the disjoint union of the following sets:

(i) those F with F = 0 having 1 Ax singularity,
(ii) those F with F = 0 having 2 At singularities,
(iii) those F with F = 0 having 1 A2 singularity.
We shall refer to these sets respectively as Ax, 2AU A2.

Theorem 1.1. (a) D is an irreducible hypersurface in PN.
(b) Aj, 2A1; A2 are constructible smooth subsets of PN.
(c) Locally at F e 2 A t the triple (PN,D,2A1) is analytically equivalent to (CN,

{y€CN: yo-yi = 0}, {yeCN: yo=y1 = 0}) at 0eCN.
(d) Locally at FeA2 the triple (PN,D,A2) is analytically equivalent to (CN, {ye

CN: y3o = y\}, {y etN:yo = yi = 0} at 0eCN.

Proof. Let G denote the projective general linear group PGL(n +1, C). There is a
natural action of G on PN by "change of co-ordinates", a:G*PN-+PN.

(a) If L={FePN:F = 0 has a singularity at ( 1 : 0 . . . : 0)} clearly L is a linear
subspace of PN, and D = a ( G x L ) will be irreducible because G and L are.

Parts (b), (c) and (d) are proved by the same method as that employed in (4) where
the case n = d = 3 is considered. For example when considering A2 we take as our
normal form

l,..., xn))+fd(x0, . . . , x n )
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where fi is homogeneous of degree j and the degree of x0 in any monomial of fd is
Sd—4. We also exclude all f3 and fd which give singularities on F = 0 other than at
(1: 0 : . . . : 0) and the singularity here is clearly an A2. For any fixed Fo in the above
form one easily verifies that the space of forms F+ f^Xo"1 + 2̂*0 is transverse to the G
orbit of Fo. The methods described in (4) now show that the A2 stratum meets the
transversal precisely when t1 = t2 = 0 and so is smooth. It is constructive by Chevalley's
theorem (12, p. 37) since we have a constructive normal form. Assertion (d) is proved
as in (4) by showing that our transversal is essentially a versal unfolding of an A2

singularity, the parameters in the normal form being redundant. The set of singular
hypersurfaces in the transversal is thus identified with the discriminant set of a versal
unfolding of x\ + .. . + x2

i_1 + xi
n, and thus is locally the product of a cusp with some

affine space.

Corollary 1.2. A generic line in PN (resp. PN) meets D (resp. V) in a finite set of
points. The corresponding hypersurfaces (resp. hyperplane sections) have a single Aj
singularity.

Corollary 1.3. A generic plane section ofD (resp. V) is an irreducible curve with only
double points and cusps for its singularities.

We now return to the study of the monodromy group of 4>:X—»PN — V; let W
denote a fibre of * . The first Lefschetz hyperplane theorem asserts that the inclusion
W ^ V induces an isomorphism in Hp, p S n — 1. But V is diffeomorphic to Pn so using
Poincare duality HP(W) = Z for p even and pi=n — 1, and it is 0 for p odd and
p ^ n -1. It is also easy to see that Hn-!(W) is free, and we calculate its rank as follows.
If Wt is a fibre of $>x (i.e. a hypersurface in P") and b is a generator of ^(P"), W1 has
dual Chern class (l + db), and so its total Chern class c(W1) = (l + b)n+1(l + db)~1| Wj.
If /x resp. p/ are the canonical generators of H2n(P") resp. H2n_2(W1) then
(fc""11 W1; ij.') = {dbn, fi), where (, ) is the Kronecker product. So the Euler charac-
teristic x(W) = x(W1) = (cn^1(Wl),lx') = d-1{(l-d)n+1 + (n + l)d-l}, and hence rank
Hn_l(W) = £(l + (-l)n+1) + d-\(d-l)n+l + (-l)n+\d-l))}. (Compare Milnor and
Stasheff 11, §11) but beware of the mistake in problem 16.D). Now rank Hn_1(P") =
Kl + (-l)"+ 1) so the space of vanishing cycles for <&, Van ^ c H ^ - ^ W ) has dimension
d-1{(d-D"+ 1 + ( -D" + 1 (d - l )} and we have | ( l + (-l) l l+1) invariant cycles.

It is amusing to use the Zeuthen Segre formula (1) to compute the number of
singular members of a generic pencil of hyperplane sections of V, i.e. the degree of V
or D. All members of the pencil have a codimension two linear subspace of PN in
common, the axis of the pencil, which intersects V in a variety which is the complete
intersection of two nonsingular hypersurfaces U and W say. The dual class of U D W is
d2b2 while c(UD W) = (l + b)n+2(l + db)~2 | l / n W. It follows that

If /x2 is the number of singular members of the (generic) pencil the Zeuthen Segre
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formula states that

X(P") = X(V) = 2 • X{W)-X(Un W) + ( - 1 ) > 2

from which it follows that \L2 = {d-l)"(n +1).
It is also of interest to compute the number of double points 8 and cusps K in the

plane section of Corollary 1.3. This can be done for n = 1,2 as follows.
For n = 1 we claim that this section is the dual of the generic rational plane curve of

degree d, Cd. For if Q has the parametric equations (x0: x^ x2) = (/0(y0, yi): /i(y0, yi):
2 2

/2(y0, yi)) the line £ AjXj = 0 is tangent to Cd if and only if the discriminant of £ A/; is
o o

zero. The curve Cd has degree d, class 2(d-l), 3(d-2) inflexions and § (d - l ) (d -2 )
double points which are its only singularities. By Plucker's formulae Cd has degree
2 ( d - l ) , 2 (d-2) (d-3) = 5 double points and 3(d-2) = K cusps.

For n = 2 let Vx be a generic projection of the Veronese surface V <= PN, AT =
§n(n + 3), into P3. The dual Vx can be identified with a plane section of the dual V.
Since V1 is the image of a generic projection its numerical characters are those of V,
and provided one believes the formulae of Cayley these are easily computed. Indeed in
the notation of Baker (3) p. 162 the degree of V is d2 = /x0, the genus of a general
section p = j(d - l)(d - 2), so the rank of a general section ^ = 3d(d -1). The class jx2

of V we computed above is 3(d -1 ) 2 , while the type v2 of V is 6(d -1)2 (this follows,
for example, because the arithmetic genus pa of V vanishes, since V is rational). The
numbers we now require are T (resp. i) the number of tangent planes through a generic
point which are bitangential (resp. inflexional). A short computation shows that
T = 3 / 2 ( d - l ) ( d - 2 ) ( 3 d 2 - 3 d - l l ) (our S) while i = 12(d-l)(d-2) (our K).

2.

Libgober in his paper (8) produced a very degenerate isolated singularity which
occurs on hypersurfaces of degree d in Pn. If we set

fc = xi + xi-1 + x2xt1+ . . . +xn_1x^-1 + c, Fe=x$fe(xjxo,..., xjxo)
the singularity in question is f0 = 0, which appears on the hypersurface Fo = 0, and is
weighted homogeneous with weights

(MA MA 1 (<*- iy+(-D f c + 1 (

A short computation shows that this singularity has Milnor number f =
d~1{(d-l)n + 1 + ( - l ) n + 1 (d- l )} (see (8) but beware of the misprint on p. 199, there is a
sign missing in (ii)). Choose a sufficiently small ball neighbourhood B for f0 at
(0, . . . , 0 ) e C n (corresponding to (1: 0 : . . . :0)ePn); for small c the variety / c = 0
intersects B in a smooth manifold homotopy equivalent to a wedge of £ ( n - l ) -

spheres. We may choose arbitrarily small constants A 1 ; . . . , An such that / 0 +Z K*t =0
i

has nondegenerate critical points all inside B (see (10) Appendix B). In fact using
Mather's results on generic projections (9) one can ensure that the resulting critical
values are distinct. For if graph /0 = {(x,/0(x)): x e C } consider the map graph /o~*C
induced by the projection (x, t)>~*t. By (9) we may choose a linear map Cn + 1-»C
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arbitrarily close to the above projection inducing a map graph /0-»C with generic
singularities i.e. only Ax critical points with distinct critical values. Such a linear map is
of the form (x, t)1"^! ftXj +s • t with the ft small and s close to 1; choose Af = s"1 • ft.

Working with PN, D and <!>! we consider the pencil of hypersurfaces a(F0+

= 0- There are £ critical points of this pencil corresponding to a = \,
1 / \
b = — (critical values of / 0+Z î*i )• Fixing c sufficiently small the usual procedure (see

\ i /

(7)) associates to each critical point a vanishing cycle in fc = 0. They (or rather their
inclusions in H^^F,. = 0)) are also vanishing cycles for <j>x; we now show that these
vanishing cycles remain independent after inclusion.

Set {Fc=0}=W, {/c = 0}DB = N, W-int.N = M, S = dB, dM = dN = K, h = the
monodromy transformation of /0 and An the characteristic polynomial of h. Fixing d we
have a family of polynomials An; we claim that A2m(l) = l, A2m_1(l) = d for m § l .
Clearly A1 = (td-l)(t-l)~1, so h1(l) = d (compare (10)). Libgober shows that
An+1An = (fd(d-1 )"-l)(t (d-1 )"-l)-1 so AB+1(1) An(l) = d and the result is clear. The
Wang sequence of the Milnor fibration N<Z*S — K—*S1 is

Since A(l)^0 the homomorphism h-l is an isomorphism so Hn(S-K;Q) = 0. By
Alexander and Poincare duality Hn(S-K;Q) = Hn-2(K;Q) = Hn_1(K;Q) = 0. It fol-
lows from the universal coefficient theorem that Hn-x(K) is finite. We now consider the
Mayer Veitoris sequence of the decomposition W = MUN,

Since Hn_!(JC) is finite its image in ffn_1(N), which is free, is zero, so the homomorph-
ism H^-^N)©^}—*Hn_1(W) is injective. Reverting to rational coefficients and count-
ing dimensions it is clear that the inclusions of the vanishing cycles in N are a basis for
the space of vanishing cycles in Hn_!(W;Q). By the Picard-Lefschetz formula the
monodromy operators for f0 associated with the vanishing cycles elt... ,ee say are
determined by their intersection matrix as are the corresponding operators in the global
monodromy group. We have thus shown:

Theorem 2.1. The local monodromy group off0 - 0 is isomorphic to a subgroup of the
global monodromy group of ^ j .

One easily checks that f0 is simple (as in (2)) if and only if (n, d) = (1, d), (2, 3), (2,4)
or (3.3). If /o is not simple its monodromy group is infinite for by (2) any such
singularity specializes to a simple elliptic singularity Ek k = 6,7 or 8. Consequently the
monodromy group of f0 will have a subgroup with some quotient isomorphic to the
monodromy group of some Ek which by (5) are all infinite. On the other hand if n is
even the monodromy group will not be finite since the operators are not reflexions.
One can now deduce one half of

Corollary 2.2. The monodromy group of <I>i (or <I>) is finite if and only if (n, d) =
(1, d), (3, 3) and it is then respectively S(d — 1) (symmetric group), W(E6) (the Weyl
group of type E6).
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The actual assertion that the group is finite is trivial in the first case, for the second
compare Todd (13); W(E6) is indeed the group of symmetries of the 27 lines on the
cubic surface.

Let us now clear up the excluded case d = 2. Any quadric can be written as
n
X qyXiX, = 0, with q;, = qn and we stratify the space of quadrics by the rank of the matrix
°
(%)• These strata are orbits under the natural G action with representatives £ xf,

o
O ^ r ^ n . If r i n - 1 one easily checks that the orbit has codimension S 3 . Thus a
generic plane section of the variety D gives a nonsingular plane curve of degree n +1,
and ir1(P

N -D) is cyclic of order n + 1.
For the monodromy we note that if we replace fc above by x\ + x\ + .. . + x* + c the

same procedure works, when n is odd, for A = (f + (-l)"+ 1) . It follows that the
monodromy representation is the canonical epimorphism Zn+1—»Z2 for « °dd, while for
n even the monodromy group is obviously trivial.

Note that in all cases we can also locate the invariant cycle when n is odd (there are
no invariant cycles when n is even). For choosing a |(n + l) plane cutting Wtransver-
sally and missing B we obtain an (n — 1) cycle whose intersection number with each of
the et is zero.

3.

The methods of Section 2 can be used to obtain results on the monodromy group of a
nonsingular complex projective hypersurface. One simply notes that x?+xf~1x0+
*2X3~1+ • • • +Xn-ixi~1 + Xn+i = xi is a nonsingular projective hypersurface, and the
plane x0 = x^+j cuts this in a hypersurface with a singularity of the type described in
Section 2. It is not difficult now to choose a generic pencil of hyperplane sections of the
above hypersurface one of whose elements is close to x0 = Xn+1, and embed the local
monodromy group of the singularity in the global monodromy group of the hypersur-
face. The details are left to the reader.
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