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Abstract

In this paper, we study a two-period optimal insurance problem for a policyholder with mean-variance preferences

who purchases proportional insurance at the beginning of each period. The insurance premium is calculated by a

variance premium principle with a risk loading that depends on the policyholder’s claim history. We derive the time-

consistent optimal insurance strategy in closed form and the optimal constant precommitment strategy in semiclosed

form. For the optimal general precommitment strategy, we obtain the solution for the second period semi-explicitly

and, then, the solution for the first period numerically via an efficient algorithm. Furthermore, we compare the three

types of optimal strategies, highlighting their differences, and we examine the impact of the key model parameters

on the optimal strategies and value functions.

1. Introduction

Optimal insurance is a classical topic in actuarial science and insurance economics and has been an

active research topic ever since the seminal work of Arrow (1963). Researchers have explored this topic

from various perspectives, including by applying different premium principles, different optimization

criteria, and different types of insurance contracts, and by formulating the problem in a game-theoretic

context, among other extensions. The existing literature on optimal insurance, despite being extensive,

mostly assumes that the insurance premium is independent of policyholders’ claim history. However,

in insurance ratemaking, a reported claim leads to an increase in future premiums, which is seen as

a “golden rule” in practice and plays a pivotal role in the credibility models (see Part V in Klugman

et al., 2019). In the Handbook of Insurance, Pinquet (2013) writes that this golden rule is “almost

systematic in non-life insurance” and can be justified by actuarial neutrality and the incentives it creates

for risk prevention; see, for instance, Boyer and Dionne (1989) on automobile insurance and Ruser

(1985) on workers’ compensation insurance. Also, if policyholders have good claim history, then their

premiums are reduced to reflect this good history. We emphasize that both individual policyholders and

insurers purchasing reinsurance are subject to this golden rule; for the former, the bonus-malus system

frequently adopted in the pricing of automobile insurance is a good example, while Doherty and Smetters

(2005) provide evidence for the latter. Therefore, incorporating this golden rule into the study of optimal

insurance will lead to a more realistic model. In this paper, we study an optimal insurance problem under

a premium principle that takes into account the policyholder’s claim history and is consistent with the

golden rule.

In the classical one-period setup (see, for example, Arrow 1963), a buyer of insurance faces a ran-

dom loss Z and can purchase an insurance contract with indemnity I to mitigate this loss, which is

priced according to a premium principle π : I 7→ π (I) ∈R+. The buyer seeks an optimal insurance I∗ to

C© The Author(s), 2025. Published by Cambridge University Press on behalf of The International Actuarial Association. This is an Open Access

article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/asb.2025.10072 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2025.10072
https://orcid.org/0009-0004-6800-5059
https://orcid.org/0000-0003-0407-5360
https://orcid.org/0000-0002-7390-7979
mailto:jingyic@yorku.ca
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/asb.2025.10072


2 Jingyi Cao et al.

optimize her objective J

I∗ = arg max
I

J (x − Z + I(Z) − π (I)),

in which x is the buyer’s initial wealth, and x − Z + I(Z) − π (I) is her terminal wealth when she pur-

chases an insurance contract with indemnity I . Arrow (1963) assumes that π is given by a type of

expected-value premium principle, specifically, π (I) = f (EI) for some function f . Another popular

choice is the variance premium principle, π =E(I) + θ

2
V(I), in which θ ≥ 0 and V( · ) denotes the vari-

ance operator; Guerra and Centeno (2010) further propose an extended version, π =E(I) + g(V(I)), in

which g is an increasing function with g(0) = 0 (see also Chi 2012). In recent work, more general pre-

mium principles are considered; see Cao et al. (2024b) for a convex-type principle family and Jin et al.

(2024) for general distortion principles. However, one noticeable drawback of those premium principles

is that π is independent of the policyholder’s claim history. In other words, a policyholder who incurs

a loss every year would pay the same premium as a policyholder who never reports a loss, if the two

of them were to choose the same insurance contract. This independence of π upon the policyholder’s

experience contradicts the insurance ratemaking practice that places a surcharge on the policyholder’s

future premium whenever she files a claim (see Part V in Klugman et al. 2019 for standard credibility

theory).

To address the above drawback, we propose a novel premium principle that is based on the variance

premium principle,1 but takes into account the policyholder’s past claim information:

π (Yt−1, It) =E(It) + θ Yt−1

2
V(It), θ > 0, t = 1, 2, . . . . (1.1)

In (1.1), Yt−1 represents the policyholder’s claim habit at the beginning of period t, and It is the indemnity

function of the insurance contract covering period t; so, both Yt−1 and It are known at time t − 1, and

π (Yt−1, It) is the premium paid at time t − 1 in exchange for the coverage specified by It during (t − 1, t].

In addition, given Y0 ∈ [0, 1], the claim habit Yt−1 is updated to Yt by

Yt = vYt−1 + (1 − v)1{Zt>0}, t = 1, 2, . . . , (1.2)

in which v ∈ (0, 1) is a weighting factor, and Zt is the random loss variable in period t. Note that the effect

of past claims decays exponentially in (1.2), as for the more usual consumption habit; see Constantinides

(1990). The proposed premium principle in (1.1) inherits all the desirable properties of the usual vari-

ance premium principle, such as nonnegative safety loading, translation invariance, and additivity of

independent risks; see Table 5.1 in Kaas et al. (2008) (p. 122). To better understand it, consider a simple

example as follows. Suppose we are at time 0, the buyer chooses her insurance contract I1, and her initial

claim habit Y0 is known, then the premium she pays at time 0 for the first period is given by π (Y0, I1).

At the end of the first period, the loss Z1 is realized, and either Z1 = 0 (no loss) or Z1 > 0 (resulting in a

claim) occurs. If Z1 > 0, then Y1 = vY0 + (1 − v) > Y0, and the variance loading in (1.1) increases from

θY0/2 to θY1/2. As a consequence, the same coverage for the second period would require a higher pre-

mium, when compared to that for the first period. If Z1 = 0, then Y1 = vY0 < Y0, and the exact opposite

holds. Thus, we conclude that the proposed premium principle in (1.1) complies with the golden rule of

insurance ratemaking outlined earlier.

Because our premium principle depends on the policyholder’s claim history and because the claim

habit is updated dynamically via (1.2), a standard one-period model, as introduced in Arrow (1963),

is no longer appropriate; indeed, neither claim history nor dynamic updating is possible under a one-

period model. This motivates us to consider a two-period model, which is the minimum prerequisite to

study the effect of claim history on the policyholder’s insurance decision. We assume a priori that the

policyholder purchases proportional insurance at the beginning of each period;2 denote by α1 and α2,

1The usual variance premium principle is frequently used in the study of optimal insurance problems; see, for instance, Chi

(2012) and Liang and Yuen (2016).
2We remark that the optimal insurance is, indeed, proportional insurance, among all functional forms, under the usual variance

premium principle, for various optimization criteria; see Hipp and Taksar (2010) and Liang et al. (2020) for the criterion of
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both taking values in [0,1], the ceded proportion in period 1 and period 2, respectively. Under the claim-

dependent variance premium principle in (1.1), the buyer seeks an optimal strategy to maximize her

mean-variance (MV) preferences, J (X2) =E(X2) − γ

2
V(X2), in which X2 is the buyer’s terminal wealth

(at time 2), and γ > 0 is the risk aversion parameter. Although the literature on optimal insurance is rich

and extensive (see Gollier 2000 for a survey), we are not aware of any work that is closely related to the

research problem as described above. Nevertheless, several papers study optimal insurance under some

experience rating models that incorporate claim information or behavior, but they are vastly different

from ours. Venezia and Levy (1983) consider a bonus-malus system (BMS), under which a reported

claim leads to a penalty (malus) on future premium, a feature shared with our premium principle (1.1),

but in their model, the policyholder might hide certain losses to the insurer (called underreporting)

in order to receive the premium bonus. Under the expected value principle and utility maximization

criterion, they show that the optimal contract is deductible insurance. Cao et al. (2024a) obtain finer

results for a problem similar to the one in Venezia and Levy (1983). Jammernegg and Kischka (1994)

also study a discrete-time insurance decision-making problem under an experience rating system, but

their formulation of the policyholder’s decision is rather restrictive: the policyholder either buys full

insurance or does not buy any insurance. Lastly, Holtan (2001) solves for optimal insurance coverage

under a BMS, but the model suffers from several drawbacks, including studying the problem within a

classic one-period framework and assuming independence between premium discounts and insurance

contracts. Another form of performance-based premium is the retrospective premium, first discussed by

Meyers (1980, 2004). Unlike BMS or our approach, which adjust premiums based on the insured’s past

claim history, a retrospective premium depends on the insured’s future losses and is therefore random at

the beginning of the policy period. Specifically, the insured initially pays a deterministic basic premium

(for example, calculated using the expected value premium principle). Then, at the end of the policy

period, a reward or penalty is applied to the premium based on whether the realized loss is considered

small or large by the insurer. For applications of retrospective premium, see Landriault et al. (2024) for

optimal reinsurance design and Chen et al. (2016) for an optimal retrospective rating plan. Both works

focus on one-period optimization problems.

As already hinted, the buyer is endowed with MV preferences, and as an immediate consequence,

caution is warranted when we solve for the “optimal” MV insurance strategy. Indeed, MV problems

under dynamic multi-period or continuous-time models are time inconsistent, an issue well recognized

in the literature, and there are two popular notions regarding the optimality of MV problems, pioneered

by Strotz (1955). The first one is to treat the problem as a noncooperative game that the buyer plays

against her future selves (see Björk and Murgoci 2010 for a standard reference); the corresponding

solution is called the time-consistent equilibrium strategy. The second one is to assume that the buyer

solves the MV problem at time 0 and commits to an optimal strategy over the entire planning horizon;

the corresponding solution is called the optimal precommitment strategy (see Li and Ng 2000 and Zhou

and Li 2000). When it comes to dynamic MV (re)insurance problems, much of the existing literature

chooses the former notion, due to the analytical tractability of the extended system of Hamilton–Jacobi–

Bellman equations, while fewer papers aim to obtain the optimal precommitment insurance contract, in

particular under multi-period discrete-time models. For those adopting the time-consistent approach, we

refer to Zeng and Li (2011), Chen and Shen (2019), Cao et al. (2020), Li and Young (2022), and Yuan

et al. (2023) for a short list; as noted, papers that follow the precommitment notion are rather limited. In

a continuous-time framework, Li et al. (2017) demonstrate that the precommitment reinsurance strategy

is different from the time-consistent one, but without providing further analysis. Shen and Zou (2021)

conduct a detailed comparison of time-consistent and precommitment solutions to MV investment and

insurance problems. We further point out that the problem of optimal insurance under the MV criterion

minimizing ruin probability, and Li and Young (2021); Li and Young (2022) and Chen and Shen (2019) for maximizing MV

preferences.
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is no easy task even for a one-period problem; see Chi and Tan (2021), Boonen and Jiang (2022), and

Liang et al. (2023).3

In this paper, we obtain for both time-consistent and precommitment solutions of the policyholder’s

MV optimal insurance problem under the claim-dependent variance premium principle in (1.1). We

summarize our main contributions as follows:

• We obtain the time-consistent equilibrium strategy in closed form (see Theorem 3.1), which

depends strongly on the policyholder’s claim habit {Y0, Y1}.
• We obtain the optimal constant precommitment strategy in semiclosed form (see Theorem 4.1).

As is well known, solving for the optimal precommitment strategy in a multi-period model, as

the one considered here, is notoriously difficult.4 As such, the first step we take is to focus on

a subclass of strategies, namely, constant precommitment strategies (a1, a2) ∈ [0, 1]2, in which

both a1 and a2 are constants determined at time 0. Under this assumption, we show that the

optimal strategy can be found by solving two cubic equations each of which admits a unique

solution in [0, 1].

• We propose an efficient iterative algorithm to numerically solve for the optimal general pre-

commitment strategy. Note that for a general precommitment strategy (α1, α2), α1 ∈ [0, 1] is

still a constant but α2 might depend on the realization of the loss in period 1. Inspired by Li and

Ng (2000), we introduce a family of auxiliary problems, indexed by a free parameter λ, and

conclude that the optimal precommitment strategy coincides with the solution of the auxil-

iary problem under a specific parameter λ∗. However, our MV auxiliary problems are much

more challenging than those arising from the MV investment problems in Li and Ng (2000).

In particular, the solution of the auxiliary problem for period 2, α̃λ
2
, is already complex and

depends upon a binary condition and upon solving a cubic equation (see (4.10) and (4.11)).

Thus, when substituting α̃λ
2

into the wealth dynamics, we cannot obtain an analytical solution

of the auxiliary problem for period 1. We, thus, resort to numerical methods and propose an

iterative algorithm that efficiently computes the optimal general precommitment strategy, often

with fewer than 10 iterations (see Section 4.2).

• Furthermore, we compare the three different optimal strategies – the time-consistent equilib-

rium strategy, optimal constant precommitment strategy, and optimal general precommitment

strategy – in detail, and study the effect of the policyholder’s risk aversion parameter γ , initial

claim habit Y0, and weighting factor v (see (1.2)) on the optimal strategies and value functions.

In particular, both Y0 and v have a significant impact on the policyholder’s insurance decision.

The rest of the paper is organized as follows. In Section 2, we formulate the buyer’s dynamic optimal

insurance problem. In Section 3, we derive the buyer’s time-consistent insurance strategy. and Section 4

is then devoted to deriving the constant precommitment insurance strategy in semiclosed form and com-

puting the general precommitment strategy. In Section 5, we carry out numeric analyses for our main

results. Section 6 concludes the paper. We place all proofs in Appendices A, B, and C. In an online

appendix, we extend the study from a two-period setting to a general n-period setting.

2. Model

We consider a two-period insurance model and a buyer of insurance who is exposed to an insurable risk

Zi in period i, i = 1, 2; the extension to a general n-period model can be found in the online appendix.

Assume that Z1 and Z2 are independent and identically distributed as a nonnegative random variable Z ,

3Note that the time-inconsistency issue is not encountered in one-period models.
4Harry Markowitz first formulated and solved MV portfolio selection problems under a one-period model in 1952 (see

Markowitz 1952), but it took four decades until Li and Ng (2000) first extended the work of Markowitz (1952) to a multi-period

model in 2000, by utilizing a brilliant embedding technique (see Zhou and Li 2000 for the continuous-time version).
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which follows a mixture distribution of a point mass at 0 and a strictly positive random variable Z+. We

fix a filtered probability space (�, {Fi}i=0,1,2, P) and denote the expectation and variance operators under

P by E( · ) and V( · ), respectively. Define

µ := E(Z), σ 2 := V(Z), and q := P(Z > 0) ∈ (0, 1],

(equivalently, P(Z = 0) = 1 − q ∈ [0, 1)), and assume the variance of Z is finite (σ 2 < ∞). Note that the

mixture distribution of Z implies

µ = qµ̃ and σ 2 = qσ̃ 2 + q(1 − q)µ̃2, with µ̃ := E(Z+) and σ̃ 2 := V(Z+). (2.1)

Let F (resp. S = 1 − F) denote the cumulative distribution function (resp. survival function) of Z .

Remark 2.1 The loss variable Z (or its positive part Z+) is quite general and can be interpreted as the

aggregate loss in each period. Indeed, one can further assume that Z+ is given by an aggregate loss

model, such as the compound Poisson model (see Chapter 9 in Klugman et al. 2019).

To mitigate her risk exposure, the policyholder purchases proportional insurance from a representa-

tive insurer at the beginning of each period. She chooses the ceded proportion α1 at time 0 for period

1 and α2 at time 1 for period 2, with both taking values in [0, 1]. For convenience, we often denote the

policyholder’s insurance strategy by Eα := (α1, α2) and, when we call it a contract, we mean the two

proportional insurance coverages with ceded proportions α1 in period 1 and α2 in period 2, respectively.

For a chosen contract Eα, the policyholder transfers αiZi risk to the insurer and retains the remaining

(1 − αi)Zi risk in period i, i = 1, 2.

Practical insurance ratemaking models often adjust individual insureds’ premiums according to their

claim history (see Part V of Klugman et al. 2019). Inspired by this fact, we introduce a process {Yi}i=0,1

and call it the policyholder’s claim habit, which is defined as the weighted average of the number of the

previously filed claims. Specifically, denoting Y0 ∈ [0, 1], the policyholder’s claim habit at time 0, we

define Y1 by

Y1 = vY0 + (1 − v)1{Z1>0}, (2.2)

in which v ∈ [0, 1] is the weight placed on the previous claim habit, and 1· is an indicator function with

its subscript denoting the condition. We assume that the insurer applies the following variance premium

principle under claim habit to determine the premium for a proportional contract αi in period i:

π (αi, Yi−1) =E(αiZ) + θ · Yi−1

2
V(αiZ) = αiµ + θ · Yi−1 · α2

i
σ 2

2
, i = 1, 2, (2.3)

in which θ > 0 is a positive constant, and Y1 is given by (2.2). Note that the loading factor in (2.3),

θYi−1, is not a fixed constant but depends on the policyholder’s claim history via {Yi}i=0,1. Our proposed

premium in (2.3) generalizes the usual variance premium principle (see, for instance, Chi 2012 and

Liang and Yuen 2016), which is a special case of (2.3) with Y0 = Y1 (corresponding to v = 1). Please see

Remark 2.2 for a detailed explanation of the claim-habit-dependent variance premium principle in (2.3).

Remark 2.2. π in (2.3) is a function of two arguments: the first argument αi specifies the indemnity of

the contract αiZi for period i, and the second argument Yi−1 measures the policyholder’s heterogeneous

riskiness that is revealed by her claim history. First, if v = 1 in (2.2), the insurer ignores individual

claim history in pricing, and the principle in (2.3) recovers the usual variance premium principle with a

constant loading factor θ/2 (by setting Y0 = 1). Therefore, the proposed principle in (2.3) generalizes the

usual variance premium principle by taking into account claim history in ratemaking. Second, when the

policyholder files a claim (that is, when Z1 > 0) in period 1, we have Y1 > Y0 by (2.2), and the premium

loading in period 2 increases according to (2.3); the opposite occurs if there is no claim filed in period 1.

As such, the premium principle in (2.3) is consistent with most experience rating models used in practice.

For instance, consider a simple bonus-malus system in which the policyholder, starting from a rate class

with premium loading θY0, is moved to a class with higher premium loading θ (vY0 + (1 − v)) when

she files a claim in the previous period and to a class with lower premium loading θvY0 when she does
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not. Also, the claim habit defined in (2.2), which enters (2.3) as a factor, resembles partial credibility

models (see Part V of Klugman et al. 2019). Third, θ/2 is the maximum variance loading imposed by

the insurer. To see this, consider a policyholder who files a claim in every period; in this extreme case,

the claim habit asymptotically approaches its highest level of Y = 1.

In the actuarial literature, there are two main approaches for calculating premiums. The first approach

is based on a mathematical functional π , called a premium principle, which maps a contract indemnity

to a positive number. Examples include the expected-value premium principle and the variance pre-

mium principle; see Chapter 5 in Kaas et al. (2008) for an overview of popular premium principles. The

second approach is based on a statistical model, which first computes the base premium P̄ from risk

factors (called features or covariates) and, next, applies credibility theory to adjust for claim experience.

As an example, one popular choice for calculating the base premium P̄ is to rely on generalized linear

regression models (GLMs); next, given the past claim experience C̄, the individual premium for next

year is given by P = ZP̄ + (1 − Z)C̄, in which Z ∈ [0, 1] is the credibility factor, determined by some

credibility framework; see, for example, Part V “Credibility” in Klugman et al. (2019). Our proposed

premium principle in (2.3) unifies the advantages from both approaches: on one hand, it inherits analyt-

ical tractability from a well-established premium principle (that is, the variance premium principle); on

the other hand, it inherits practical features from experience ratemaking models, as discussed above.

Let {Xi}i=0,1,2 denote the buyer’s wealth process, in which X0 is the buyer’s initial wealth at time 0.

Here, Xi, i = 1, 2, clearly depends on the policyholder’s initial wealth, initial claim habit, and insurance

strategy, but we suppress this dependence for notational simplicity. However, we will use the precise

notation if confusion may arise or the dependence needs to be emphasized. For instance, X
(0,x,y),(α1 ,α2)

2

denotes the buyer’s wealth at time 2 starting with X0 = x and Y0 = y under the insurance strategy (α1, α2).

For a given insurance strategy Eα = (α1, α2), the buyer’s wealth follows the dynamics

Xi = Xi−1 − π (αi, Yi−1) − (1 − αi)Zi, (2.4)

for i = 1, 2, in which the premium principle π is given by (2.3).

The information available to the buyer at time 0 includes her initial wealth X0 and initial claim habit

Y0, so we set F0 = σ (X0, Y0) to be the σ -field generated by X0 and Y0. At time 1, she observes the loss

Z1 in period 1, so we set F1 = σ (X0, Y0, Z1); likewise, F2 = σ (X0, Y0, Z1, Z2). The buyer’s strategy must

be non-anticipative, which implies α1 ∈F0 and α2 ∈F1. We assume that the buyer knows both X0 and

Y0 at time 0; as such, the policyholder’s insurance strategy at time 0, α1 ∈F0, is a constant. However,

α2 ∈F1 is allowed to depend the loss Z1 of period 1, which in turn determines X1 and Y1 by (2.2) and

(2.4), respectively. Furthermore, both α1 and α2 take values in [0,1]; that is, neither over-insurance nor

short-selling insurance is permitted, as it should be in real life. To summarize, the set of all admissible

strategies, A, is given by

A= {Eα = (α1, α2):α1 ∈F0, α2 ∈F1, α1, α2 ∈ [0, 1]}. (2.5)

Some papers do not impose the constraint α ∈ [0, 1] and allow α ∈R; see, for example, Peng et al.

(2014).

The buyer of insurance is endowed with MV preferences, which are characterized by (see Li and Ng

2000)

J ( · ) := E( · ) − γ

2
V( · ),

in which γ > 0 balances the trade-off between “return” (mean) and “risk” (variance). Naturally, one

would maximize J (X2) over all feasible strategies Eα ∈A to find an “optimal” strategy. However, doing

so is problematic because of the so-called time inconsistency issue related to MV preferencesJ ; we refer

readers to Björk and Murgoci 2010 for a nice introduction of this topic. There exist different notations

of “optimality” associated with MV preferences (see Strotz 1955). In this work, we consider two types

of policyholders: both are aware of the inherent time inconsistency of MV preferences J , but tackle

it differently. The first type seeks a time-consistent (Nash) equilibrium strategy, which she will follow
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without imposing precommitment; the second type of policyholder obtains an optimal strategy at time

0 and commits to this strategy even though it may cease to be optimal at time 1. In Section 3, we use the

game-theoretical approach to find the time-consistent equilibrium strategy for the first-type policyholder.

In Section 4, we consider the second type policyholder and find the optimal precommitment strategy.

3. Time-consistent solution

In this section, the buyer of insurance is thrifty, in the terminology of Strotz (1955), when facing time

inconsistency of her MV preferences, and, in response, only considers those strategies, called time-

consistent strategies, that she will obey in the future without requiring commitment at an earlier time.

A standard time-consistent approach is the game-theoretical approach proposed by Björk and Murgoci

(2010), under which the buyer in different time periods are seen as different players in a game; thus, the

associated solution is often termed the (time-consistent, or Nash) equilibrium strategy. For discrete-time

models as ours, this approach boils down to solving the problem via backward induction from the last

period to the first period.

To start, define the buyer’s objectives J0 and J1 by

J0(x, y; α1, α2) =E0,x,y(X2) − γ

2
V0,x,y(X2), (3.1)

J1(x, y; α2) =E1,x,y(X2) − γ

2
V1,x,y(X2), (3.2)

in which the subscripts in E and V denote the conditions of Xi = x ∈R and Yi = y ∈ [0, 1] for i = 0 or

i = 1. Next, we provide a formal definition of the time-consistent equilibrium strategy below.

Definition 3.1. A strategy (α∗
1
, α∗

2
) is called a time-consistent equilibrium strategy if it satisfies

α∗
1
= arg max

α1

J0(x, y; α1, α
∗
2
), (3.3)

α∗
2
= arg max

α2

J1

(
X

(0,x,y),α∗
1

1 , Y1; α2

)
, (3.4)

in which X
(0,x,y),α∗

1

1 is the buyer’s wealth at time 1 starting from X0 = x and Y0 = y and by following strategy

α∗
1

in period 1, and Y1 is given by (2.2) with Y0 = y.

In Definition 3.1, the key to ensure time consistency is to impose the constraint α2 = α∗
2

in the buyer’s

optimization problem at time 0 as in (3.3). In other words, the buyer solves for her best strategy at time

0, assuming that she will follow α∗
2

in period 2. By (3.4), α∗
2

is the buyer’s best strategy at time 1 when

she follows α∗
1

in period 1. As such, upon finding (α∗
1
, α∗

2
) from (3.3) and (3.4) jointly, the buyer has no

incentive to deviate from it at time 1, preserving consistency in decision.

Definition 3.1 suggests that we should follow a backward approach to find the time-consistent equi-

librium strategy. To be precise, we first solve a general version of (3.4) at time 1 for an arbitrary pair of

initial conditions (X1, Y1) to obtain α∗
2

:= α∗
2
(X1, Y1); next, we solve (3.3) at time 0 given that the buyer

follows α∗
2

in period 2. We summarize the findings on the buyer’s time-consistent equilibrium strategy

in the next theorem, whose proof is given in Appendix A.

Theorem 3.1 The buyer’s time-consistent equilibrium strategy (α∗
1
, α∗

2
), in the sense of Definition 3.1,

is uniquely given by

α∗
1

:= α∗
1
(Y0) = γ

γ + θY0

{
1 + µθγ 2(1 − q)

2

(
Yh

(γ + θYh)2
− Yl

(γ + θYl)
2

)}

+
∧ 1, (3.5)

α∗
2

:= α∗
2
(Y1) = γ

γ + θY1

, (3.6)
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in which Y1 is given by (2.2), and Yh and Yl are the two possible values of Y1 defined by

Yh := Y1|{Z1 > 0} = vY0 + 1 − v and Yl := Y1|{Z1 = 0} = vY0. (3.7)

Based on α∗
2

in (3.6), we conclude that the policyholder’s equilibrium strategy in period 2 is negatively

correlated with her claim habit Y1 and the insurer’s loading factor θ , but is positively correlated with

her risk aversion parameter γ . These findings make intuitive sense because when Y1 or θ increases,

the insurance contract becomes more expensive, and when γ increases, the policyholder becomes more

risk averse and demands more coverage to reduce uncertainty. Interestingly, α∗
2

is independent of the

distribution information of Z2, but α∗
1

depends on the mean of the loss µ. The policyholder’s equilibrium

strategy in period 1, given by (3.5), is more complex, partially because we restrict α1 ∈ [0, 1], and the

critical point of f in (A3) might lie outside this interval.

We close this section with a brief discussion of the conditions under which α∗
1

is in the interior of

[0, 1]. In what follows, we fix the initial claim habit Y0 = y ∈ [0, 1], which implies Yh = yh and Yl = yl as

in (A1). By a straightforward calculation, one can show that

α∗
1
< 1 ⇐⇒ 2y(γ + θyh)2(γ + θyl)

2 + µγ 3(1 − q)(1 − v)
(
θ 2yhyl − γ 2

)
> 0,

α∗
1
> 0 ⇐⇒ µθγ 2(1 − q)(1 − v)

(
γ 2 − yhylθ

2
)
+ 2(γ + θyh)

2(γ + θyl)
2 > 0. (3.8)

From the above two conditions, one can easily establish simple, though not necessarily tight, sufficient

conditions leading to an interior solution. For instance, α∗
1
∈ (0, 1) if the probability of a positive loss q

equals 1. This result also holds when v = 1, which reduces the premium in (2.3) to the usual variance

premium principle. By using (3.8), one can show that if 2y − γµ(1 − q)(1 − v) > 0, then α∗
1
< 1. Overall,

the conditions for α∗
1
∈ (0, 1) are not strong, and in all of our numerical examples, we always obtain

α∗
1
∈ (0, 1). On the other hand, note that when the buyer is extremely risk averse (γ → ∞), the condition

in (3.8) no longer holds, and α∗
1
= 1, indicating full insurance.

4. Precommitment solution

In this section, the buyer of insurance is aware of the time inconsistency of her MV preferences but

chooses to precommit to her future behavior. As such, she solves her MV problem at time 0 and commits

to this optimal strategy throughout the planning horizon even though it may cease to be optimal at a

future time. The definition of the buyer’s time-inconsistent problem is given below.

Definition 4.1. A strategy (̂α1, α̂2) is called a (time-inconsistent) precommitment strategy if it

satisfies

(̂α1, α̂2) = arg max
(α1 ,α2)∈A

J0(x, y; α1, α2), (4.1)

in which X0 = x ∈R and Y0 = y ∈ [0, 1].

Note that (4.1) is significantly different from (3.3), although both are formulated at time 0; the key

difference is that there is no consistency constraint on α2 in (4.1). Although the MV insurance problem

has been studied under a static setting in, for instance, Chi and Tan (2021) and Boonen and Jiang (2022),

and is closely related to MV portfolio selection problems which are well studied in the literature (see

Li and Ng 2000), solving (4.1) is highly technical mainly due to the presence of the claim habit Y1 and

its involvement in the premium principle π defined by (2.3). As such, to tackle (4.1), we first restrict our

attention to constant strategies.

4.1 Constant strategies

In this subsection, we study (4.1) under the additional constraint that the buyer of insurance follows a con-

stant strategy (a1, a2) ∈ [0, 1]2, in which ai denotes the ceded proportion in period i, i = 1, 2. We remark
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that for a general strategy (α1, α2) ∈A, α2 ∈F1 is allowed to depend on X1 or Y1 (through the realization

of Z1), but for a constant strategy (a1, a2), both a1 and a2 are constants chosen by the buyer at time 0.

The proof of Theorem 4.1 is provided in Appendix B.

Theorem 4.1. Let ã2 ∈ (0, 1) denote the unique solution of g̃
c
(a2) = 0 and a2 ∈ (0, 1) the unique solution

of g
c
(a2) = 0, in which g̃

c
and g

c
are defined, respectively, by

g̃
c
(a2) = γ θ 2(1 − q)(1 − v)2

(γ + θy)qσ 2 − γ (1 − q)µ2

γ + θy
a3

2

+ 2

[
γ + θ (vy + q(1 − v)) + γ θ 2µ(1 − q)(1 − v)y

γ + θy

]
a2 − 2γ ,

(4.2)

and

g
c
(a2) = γ θ 2σ 2q(1 − q)(1 − v)2a3

2
+ 2

(
θ (vy + q(1 − v)) + γ

)
a2 − 2γ . (4.3)

Then, the optimal constant precommitment strategy (a∗
1
, a∗

2
) is given by (the threshold of ã2 is set equal

to ∞ if the denominator is 0)

(a∗
1
, a∗

2
) =





(
2γ + γ θµ(1 − q)(1 − v)(̃a2)

2

2(γ + θy)
, ã2

)
, if ã2 ≤

√
2y

γµ(1 − q)(1 − v)
,

(1, a2), if ã2 >

√
2y

γµ(1 − q)(1 − v)
.

(4.4)

Equations (4.2) and (4.3) are both cubic equations in a2; as such, it is unlikely to derive analytical

sensitivity results on how model parameters affect the optimal constant precommitment strategy (a∗
1
, a∗

2
).

Instead, in Section 5.3, we conduct numerical analysis to fulfill this task. In the special case when q = 1

(loss occurs with a probability of 1) or v = 1 (π reduces to the usual variance premium principle), (4.2)

and (4.3) reduce to linear equations, and we obtain the following corollary, in which we observe that the

optimal constant precommitment strategies increase in the buyer’s risk aversion γ and decrease in both

the safety loading factor θ and initial claim habit y.

Corollary 4.1. When q = 1, we have a∗
1
= γ

γ+θy
and a∗

2
= γ

γ+θ(vy+1−v)
. When v = 1, we have a∗

1
= a∗

2
= γ

γ+θy
.

In both cases, a∗
i

increases in γ and decreases in θ and y, for i = 1, 2.

4.2 General strategies

In this subsection, we study the general precommitment strategy (α1, α2) for Problem (4.1). Recall that

for a general strategy (α1, α2) ∈A, α2 depends on X1 or Y1 through the realization of Z1, but for a constant

strategy (a1, a2), both a1 and a2 are chosen at time 0. Obtaining the optimal MV precommitment strategy

in a discrete-time setting is highly nontrivial. Li and Ng (2000) are the first to obtain the precommitment

strategy for a multi-period MV portfolio optimization problem, and the key is the so-called embedding

method, which embeds the original problem (one single challenging problem) into a family of auxiliary

problems, parameterized by a parameter λ ∈R. These auxiliary problems are time consistent and can

be solved relatively easily; after solving them, we select a special parameter λ∗ under which the corre-

sponding auxiliary problem is equivalent to the original MV problem and, hence, the solution of the

auxiliary problem under λ∗ is the optimal precommitment strategy we are looking for. Following their

approach, we adopt this embedding technique and outline below the roadmap for solving the optimal

precommitment strategy (̃α1, α̃2) for Problem (4.1).
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• We first introduce a family of auxiliary problems indexed by parameter λ with objective

function Gλ
0

defined by

Gλ

0
(x, y; α1, α2) =E0,x,y

(
λX2 − γ

2
X2

2

)
. (4.5)

Note that we can write Gλ
0

in the form of Gλ
0
=E0,x,y(φ(X2)), and the nonlinearity is inside

the (conditional) expectation. In comparison, J0 involves
(
E0,x,y(X2)

)2
, and the nonlinearity is

outside the (conditional) expectation, which is known to cause time inconsistency (see, for

instance, Björk and Murgoci 2010). Denote the optimal strategy to the auxiliary problem in

(4.5) by (̃αλ
1
, α̃λ

2
),

(̃αλ

1
, α̃λ

2
) = arg max

(α1 ,α2)∈A
Gλ

0
(x, y; α1, α2). (4.6)

• With (̃αλ
1
, α̃λ

2
) obtained for all λ ∈R, Theorem 2 of Li and Ng (2000) shows that (̂α1, α̂2) to the

original problem in (4.1) equals (̃αλ∗
1

, α̃λ∗
2

), in which λ∗ solves

λ∗ = 1 + γ E0,x,y

(
X

(̃αλ∗
1

, α̃λ∗
2

)

2

)
. (4.7)

Following the above methodology, we first solve for the optimal strategy (̃αλ
1
, α̃λ

2
) in (4.6) to the aux-

iliary problem, for any λ ∈R. To that end, we apply the dynamic programming principle (DPP) and

define the value function at time 0 and time 1, respectively, by

Gλ

0
(x, y) := max

(α1 ,α2)∈A
Gλ

0
(x, y; α1, α2) and Gλ

1
(x, y) := max

α2∈[0,1]
Gλ

1
(x, y; α2), (4.8)

in which Gλ
1
(x, y; α2) =E1,x,y

(
λX2 − γ

2
X2

2

)
. The DPP implies

Gλ

0
(x, y) = max

α1∈[0,1]
E0,x,y

(
Gλ

1

(
X

(0,x,y),α1

1 , Y1

))
, (4.9)

in which X
(0,x,y),α1

1 is the buyer’s wealth at time 1 starting from the initial condition (X0 = x, Y0 = y) and

following strategy α1 in period 1, and Y1 is given by (2.2) with Y0 = y. (4.9) suggests that we can follow

a backward approach to solve the auxiliary problem in (4.6), which is nearly identical to the one used

in Section 3. However, the essential difference is that the consistency condition is imposed a priori (as

a constraint) in Definition 3.1, but is satisfied automatically for the auxiliary problems, thanks to the

DPP (4.9). Theorem 4.2 characterizes the optimal strategy α̃λ
2

for period 2 for any λ ∈R, whose proof

is postponed to Appendix C.

Theorem 4.2. The optimal strategy of the auxiliary problem in period 2 of (4.8) is given by

α̃λ

2
=
{

α+
2 , if γ θyσ 2 + 2

(
λ − γ (x − µ)

)
> 0,

1, if γ θyσ 2 + 2
(
λ − γ (x − µ)

)
≤ 0,

(4.10)

in which α+
2 is the unique positive solution of

γ (θyσ )2α3

2
+ 2

(
λθy + γ − γ (x − µ)θy

)
α2 − 2γ = 0. (4.11)

Although α̃λ
2

is available semi-explicitly, solving for α̃λ
1

through (4.9) is highly nontrivial because

(4.11) does not admit a closed-form solution, and the constraint α2 ≤ 1 might be binding, as shown in

(4.10). There is little hope of finding an analytical solution to α̃λ
1
, so we rely on numerical methods for

obtaining α̃λ
1

in the next section.

With (̃αλ
1
, α̃λ

2
) for all λ ∈R in hand, according to (4.7), λ∗ can be determined implicitly by (4.7), with

E0,x,y

(
X

(̃αλ∗
1

, α̃λ∗
2

)

2

)
= x − 2µ − θyσ 2

(
α̃λ∗

1

)2

2
− θσ 2

2
E0,x,y

(
Y1 ·

(
α̃λ∗

2

)2

)
. (4.12)
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Table 1. Model parameters in the base case.

Parameter Symbol Value

Policyholder’s degree of risk aversion γ 0.5

Policyholder’s initial claim habit y 0.5

Policyholder’s initial wealth x 10

Gamma distribution (κ , η) (2,1)

Probability of a loss P(Z > 0) q 0.8

Insurer’s variance loading parameter θ 1

Weight on the previous claim habit v 0.5

By Theorem 2 of Li and Ng (2000), we have

α̂1 = α̃λ∗
1

and α̂2 = α̃λ∗
2

. (4.13)

In Section 5.1, we elaborate on how α̃λ
1

and ultimately, (̂α1, α̂2) can be solved numerically.

5. Numerical study

In this section, we conduct a detailed numerical study for three key purposes. First, we numerically solve

for the optimal general precommitment strategy discussed in Section 4.2. Second, we compare the three

different optimal strategies considered in the previous two sections. Third, we investigate how various

model parameters affect the three optimal strategies.

To start, we set up a base case as follows. The loss variable Z follows a mixture distribution of a point

mass at 0 and a Gamma distributed random variable Z+ with probability density function

fZ+(z) = (z/η)κ e−z/η

zŴ(κ)
, z > 0, with Ŵ(κ) =

∫ ∞

0

tκ−1e−tdt, κ > 0.

The model parameters in the base case are summarized in Table 1. Note that given the parameters in

the base case, the mean and variance of Z+ are given by µ̃ = κη = 2 and σ̃ 2 = κη2 = 2, respectively.

Furthermore, we obtain E(Z) = qµ̃ = 1.6 and V(Z) = qσ̃ 2 + q(1 − q)µ̃2 = 2.24.

5.1 Numerical solution of the general precommitment strategy

The goal of this subsection is to illustrate how we numerically solve for the optimal general precommit-

ment strategy (̂α1, α̂2) defined by (4.1). First, we follow the two-step approach introduced in Section 4.2

to obtain the optimal strategy (̃αλ
1
, α̃λ

2
) in (4.6) of the auxiliary problem for all λ. Second, we solve the

implicit equation in (4.7) to identify the “optimal” parameter λ∗ and use (4.13) to obtain α̂1 = α̃λ∗
1

and

α̂2 = α̃λ∗
2

. We outline the details for each step below.

In the first step of finding (̃αλ
1
, α̃λ

2
), note that the buyer’s initial wealth x and initial claim habit y are

known at time 0, with x = 10 and y = 0.5 as in Table 1. In addition, α̃λ
2

is obtained semi-explicitly by

(4.10) and can be easily computed by checking which condition holds in (4.10) and, then, solving the

cubic equation in (4.11). Thus, α̃λ
1

is given by

α̃λ

1
= arg max

α1∈[0,1]

Gλ

0
(x, y; α1, α̃λ

2
) = arg max

α1∈[0,1]

E0,x,y

(
λX2 − γ

2
X2

2

)
,

in which X2 = X
(0,x,y),(α1 ,̃αλ

2
)

2 . Given a fixed strategy α1, we can efficiently compute Gλ
0
(x, y; α1, α̃

λ
2
) because

E0,x,y(X2) and E0,x,y(X
2
2
) are easily obtainable via (C1) and (C2), along with (4.10). This motivates us

to propose the following iterative improvement algorithm to search for the optimizer α̃λ
1
: At step k,

we search for the maximizer of Gλ
0
(x, y; α1, α̃λ

2
) over n equally spaced points of [mk, Mk] ⊂ [0, 1] (we

initiate [m1, M1] = [0, 1] and choose n = 50); denote the maximizer by α̃
λ,k

1 . If |̃αλ,k

1 − α̃
λ,k−1

1 | < ǫ (we
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Figure 1. α̃λ
1

as a function of λ.

set ǫ = 10−6), we stop and obtain α̃λ
1
≈ α̃

λ,k

1 . Otherwise, we set mk+1 = max{̃αλ,k

1 − 1/2k, 0} and Mk+1 =
min{̃αλ,k

1 + 1/2k, 1} and, then, proceed to step (k + 1). We plot α̃λ
1

as a function of λ in Figure 1 and

observe that α̃λ
1

decreases as λ increases. This result is intuitively pleasing because with the increase

of λ, the buyer of insurance places more weight on maximizing her expected wealth, but the insurance

is sold above its actuarially fair value, so she will purchase less insurance.

In the second step, the key is to solve the implicit equation in (4.7), which we reproduce below for

convenience

λ∗ = 1 + γ E0,x,y

(
X

(̃αλ∗
1

, α̃λ∗
2

)

2

)
=: ϕ(λ∗). (5.1)

Recall that the expectation in (5.1) can be explicitly computed by (4.12). Because the solution λ∗ is

a fixed point of ϕ, we adopt an iterative algorithm that computes λk+1 = ϕ(λk) and stops whenever

|λk+1 − λk| < ǫ. For an initial value of λ0 = 0, we find that the algorithm converges in 8 iterations with

λ8 = 4.1677 = λ∗, when the error is ǫ = 10−6; see the convergence plot in Figure 2. Normally, the choice

of the initial value λ0 has a major effect on the rate of convergence, but this is not the case here. Our

extensive numerical work (not shown here) shows that the convergence of λn to λ∗ is insensitive to the

choice of the initial value λ0 and is efficient (within 10 iterations). Finally, once we obtain λ∗, we use

(4.13) and the algorithm in the first step with λ = λ∗ to obtain α̂1 = α̃λ∗
1

and α̂2 = α̃λ∗
2

.

5.2 Comparison of the three optimal strategies

In this subsection, we compare the three different optimal strategies for the policyholder’s MV insurance

problem. Recall that the time-consistent equilibrium strategy (TC for short) is stated in (3.5)–(3.6) in
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Figure 2. Convergence of λn to λ∗ = 4.1677.

Theorem 3.1, the optimal constant precommitment strategy (CP for short) is given by (4.4) in Theorem

4.1, and the optimal general precommitment strategy (GP for short) is found by the two-step approach

introduced in Section 4.2 and implemented in Section 5.1.

In the subsequent study, we write α∗
i

to denote a generic value of the optimal strategy, not just the

equilibrium TC strategy as before, in period i (i = 1, 2), and we write X∗
2

to denote the corresponding

terminal wealth. Also, note that for all three strategies, α∗
1

is a constant; α∗
2

depends on Z1 (the loss in

period 1) for the equilibrium TC and optimal GP strategies, but α∗
2

is again a constant for the optimal

CP strategy, as suggested by its name. This explains why we compare α∗
1

directly but E(α∗
2
) for the

three optimal strategies. We also compare the corresponding expectations E0(X
∗
2
), variances V0(X∗

2
),

and objective values E0(X
∗
2
) − γ

2
V0(X∗

2
), in which the subscript 0 is short for the initial condition triple

(0, x, y). Before we present our results, we emphasize that both the time-consistent equilibrium and

precommitment strategies are valid solutions of the MV problems, and we do not rank them in terms of

superiority. With that in mind, we first fix the model parameters as in the base case (see Table 1) and

present the comparison results in Table 2.

We summarize the findings in Table 2 and highlight several observations as follows. First, the policy-

holder achieves the highest objective value at time 0 when she follows the optimal GP strategy, a result

that we anticipate due to the definition in (4.1). Second, the optimal GP strategy yields the lowest mean

and variance of the terminal wealth, while the optimal CP strategy leads to the highest in both mea-

sures. We remark that both mean and variance are affected by the mean-variance trade-off parameter γ

(which is set to 0.5 for the results in Table 2). Third, the three optimal strategies are close to each other

in (expected) value for both periods. A closer look shows that the optimal GP strategy has the biggest

α∗
1
, and the equilibrium TC strategy has the biggest E0[α

∗
2
].
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Table 2. Comparison of the three optimal strategies.

α∗
1

E0(α∗
2
) E0(X

∗
2
) V0(X

∗
2
) E0(X

∗
2
) − γ

2
V0(X∗

2
)

Time consistent (TC) 0.5007 0.4533 6.5272 1.2565 6.2131

Constant precommitment (CP) 0.5070 0.4190 6.5282 1.3331 6.1950

General precommitment (GP) 0.5086 0.4204 6.5041 1.1374 6.2198
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Figure 3. Efficient frontier under three optimal strategies.

The original MV objective of Markowitz was a bivariate function, and we follow the convention to

convert it into a univariate objective by introducing a trade-off parameter γ . As already noted, the com-

parison results in Table 2 are obtained under a specific value of γ , namely, γ = 0.5. To have a better look

at the performance of the optimal strategies, we vary the parameter γ but keep other parameters the same

as in Table 1 and plot the efficient frontier – that is, mean against variance – in Figure 3. Again, because

both the mean and variance are conditioned at time 0, we expected the efficient frontier under the opti-

mal GP strategy to be the best among the three, which is indeed the case. We also observe from Figure 3

that the equilibrium TC strategy yields a better efficient frontier than the optimal CP strategy.

Next, we perform Monte Carlo simulations to gain further insight into the policyholder’s terminal

wealth X∗
2

under the different optimal strategies. For the parameters specified in the base case in Table 1,

we plot the histograms of X∗
2

under each of the three optimal strategies in Figure 4. Note that in all

panels of Figure 4, we exclude the special scenario for which there are no claims in both periods, that

is, the scenario of Z1 = Z2 = 0, with a probability of (1 − q)2 = 0.04. We observe from Figure 4 that

the terminal wealth X∗
2

under the optimal GP strategy has the lowest variance, as its histogram is most
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Figure 4. Histogram for the terminal wealth under different optimal strategies (γ = 0.5).

Note: All parameters are the same as those specified in the base case. We exclude the special scenario

for which there are no losses in both periods.

Figure 5. Histogram for the terminal wealth under different optimal strategies (γ = 0.1).

Note: All parameters are the same as those specified in the base case except for γ = 0.1. We exclude the

special scenario for which there are no losses in both periods.

concentrated around the mean. However, we comment that such a result is sensitive to the policyholder’s

risk aversion, measured by γ . Keeping all parameters unchanged, except for changing γ from 0.5 to 0.1,

we replot the three histograms in Figure 5. The three histograms now have a similar shape, and it is

difficult to tell, by the naked eye, which strategy produces the lowest variance.

5.3 Sensitivity analysis

In this subsection, our focus shifts to the sensitivity analysis of the optimal strategies, and their associ-

ated value functions with respect to the model parameters. In this study, we examine the following key

parameters: the policyholder’s risk aversion parameter γ , the policyholder’s initial claim habit y = Y0,

and the weight on the previous habit v (which helps determine the claim habit Y1 via (2.2)). The model

parameters equal those for the base case (see Table 1), except for the parameter that we study, which will

vary over a reasonable range. Also recall that the optimal insurance strategy for period 1, denoted by α∗
1
,

is a constant, but the optimal insurance strategy for period 2, denoted by α∗
2
, is allowed to depend on the

realization of Z1 for the equilibrium TC and optimal GP strategies. Therefore, similar to the comparison

in Table 2, we investigate the effect of a chosen model parameter on α∗
1

and on the expected value of α∗
2
.

We first study the effect of the policyholder’s risk aversion parameter γ on decision-making and plot

the optimal (expected) insurance strategies and the (time-0) value functions as a function of γ over [0, 3]
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Figure 6. Effect of the risk aversion parameter γ on optimal strategies and value functions.
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Figure 7. Effect of initial claim habit y on the optimal strategies and value functions.

in Figure 6. It is intuitively pleasing to see that both α∗
1

and E(α∗
2
) are increasing functions of γ because

risk aversion toward random losses is the reason the policyholder purchases insurance for those losses.

As γ → 0 (risk-neutral policyholder), we observe α∗
1
→ 0 and α∗

2
→ 0, and the convergence speed is

fast and nearly identical for all three optimal strategies. However, for large enough γ (say γ > 1), the

difference among the three optimal strategies in period 2 is easily visible. We also plot the time-0 value

function, J0(x, y; α∗
1
, α∗

2
) in (3.1), associated with each of the three optimal strategies. As expected, the

optimal GP strategy always achieves the highest value of J0, and it appears that the equilibrium TC

strategy yields a higher J0 value than the optimal CP strategy. These two findings are consistent over the

subsequent studies, and we do not repeat them.

The next parameter we study is the policyholder’s initial claim habit y = Y0. Recall that we consider

a claim-habit dependent variance premium principle, given by (2.3), and the larger the claim habit, the

more expensive the insurance contract. Thus, what we observe from the left and middle panels in Figure 7

is fully anticipated; policyholders with higher claim habit have lower insurance demand. When y → 0,

we have α∗
1
→ 1 (full insurance) for all three strategies because the insurance contract is actuarially fair

when y = 0, and a risk-averse policyholder buys full insurance in this case. However, the same does not

apply to α∗
2

for period 2, due to the fact that, even given y = Y0 = 0, the policyholder’s claim habit Y1

used in pricing for period 2 can be strictly positive (recall Y1 = (1 − v)1{Z1>0}).

Figure 8 analyzes v ∈ [0, 1], the weighting factor placed on the previous claim habit when calculating

the new claim habit. Recall that Y1 = vY0 + (1 − v)1{Z1>0} and Y0 = y is a fixed constant. As such, as v

increases, Y1 might increase or decrease, depending on whether a loss occurs in period 1. For the chosen

parameters, α∗
1

decreases with respect to v, but for other parameter values (not shown here), there is no

https://doi.org/10.1017/asb.2025.10072 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2025.10072


ASTIN Bulletin 17

0 0.2 0.4 0.6 0.8 1

0.5

0.505

0.51

0.515

0.52

0.525

0.53

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

6.16

6.17

6.18

6.19

6.2

6.21

6.22

6.23

6.24

6.25

Figure 8. Effect of the weighting factor v on the optimal strategies and value functions.
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Figure 9. Effect of the loss probability q on the optimal strategies and value functions.

definite monotonicity of α∗
1

with respect to v. Also, E0[α
∗
2
] and the value functions are not necessarily

monotonic with respect to v. It is interesting that, when Y1 is independent of the loss in period 1 (that

is, v = 1 and the premium in (2.3) reduces to the usual variance premium principle), the equilibrium

TC strategy and the optimal CP strategy coincide in both periods. Furthermore, we can show, by noting

Y1 = Y0 = y given v = 1, that the equilibrium TC (optimal CP) strategies in both periods are the same

and equal to

α∗
1
= α∗

2
= γ

γ + θy
,

which recovers the result obtained in Corollary 3.1 of Li and Young (2021).

The last parameter we study is the probability of a positive loss occurs in any period, that is, q =
P(Z > 0) ∈ (0, 1). We plot the impact of q on the optimal strategies and value functions in Figure 9. As

q increases, the policyholder faces the trade-off between increasing her coverage, due to increased loss

probability, and reducing her coverage, due to increased premium. This complex trade-off might explain

the nonmonotonic behavior of α∗
1

and E(α∗
2
). The only exception is E(α∗

2
) under the time-consistent

notion, for which we can show analytically from (3.6) that E(α∗
2
) always decreases with respect to q. The

time-0 value functions decrease with respect to q for all three notions of optimality, which is intuitively

pleasing.

5.4 Comparison with deductible insurance

In the main analysis, we make an a priori assumption that the policyholder purchases proportional

insurance to mitigate her risk exposure in both periods. This assumption allows us to derive analytical
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Table 3. Comparison of proportional insurance and deductible insurance.

Proportional insurance Deductible insurance

Time consistent 6.2131 5.9508

Constant precommitment 6.1950 5.9328

General precommitment 6.2198 5.9505

results in Sections 3 and 4. Although several studies have shown the optimality of proportional insurance

under the usual variance premium principle (see Footnote 3), we conduct an ex post comparison of the

performance between the optimal proportional insurance and the corresponding deductible insurance

under the same premium level.

Recall that we consider three different notions of MV optimal strategies—time consistent, constant

precommitment, and general precommitment. Under each notion, we obtain the optimal strategies,

(α∗
1
, α∗

2
), either analytically or numerically, which in turn lead to two premiums π ∗

1
and π ∗

2
by (2.3).

We now assume that the policyholder spends the same premiums π ∗
1

and π ∗
2

on deductible insurance,

with deductibles d1 and d2 in the two periods, respectively. Specifically, we establish the equations

π ∗
i
=E

(
(Zi − di)+

)
+ θYi−1

2
V
(
(Zi − di)+

)
, i = 1, 2,

and solve them numerically to obtain the corresponding deductibles d1 and d2. After that, we compute

the policyholder’s MV objective value under the deductible insurance (d1, d2) by

E0,x,y

(
X

(d1 ,d2)

2

)
− γ

2
V0,x,y

(
X

(d1 ,d2)

2

)
,

in which X
(d1 ,d2)

2 = x − π ∗
1
−
(
Z1 ∧ d1

)
− π ∗

2
−
(
Z2 ∧ d2

)
. See Table 2 for results of one comparison.

With the same model parameters as in Table 1, we obtain the policyholder’s MV objective value

under the three optimal proportional insurance and their corresponding deductible insurance in Table 3.

We observe that, under all three notions of optimality, the optimal proportional insurance yields a higher

MV objective value than the deductible insurance with the same premiums. Furthermore, this finding

is robust with respect to different values of the model parameters, which we confirm by an extensive

numerical study (not shown here to save the pages but is available upon request). To summarize, the

comparison study in this section numerically demonstrates the desirability of proportional insurance

over deductible insurance under a generalized variance premium principle (2.3) and, thus offers further

support to our a priori assumption that the policyholder purchases proportional insurance.

6. Conclusion

We study an optimal insurance problem for a buyer of insurance in a two-period discrete model. A novel

feature of our model is that the insurer applies a variance premium principle that depends on the poli-

cyholder’s claim history; under the proposed premium rule, the (unit) premium increases in period 2 if

the policyholder files a claim in period 1, which is consistent with experience ratemaking models used

by practicing actuaries. The buyer purchases proportional insurance at the beginning of each period and

seeks an optimal strategy to maximize MV preferences. We solve for both the time-consistent equilib-

rium strategy and the optimal precommitment strategy; note that the majority of the literature only solves

for one particular optimal strategy for MV problems. We obtain the time-consistent equilibrium strategy

in closed form (see Theorem 3.1) and the optimal constant precommitment strategy in semiclosed form

(see Theorem 4.1). For the optimal general precommitment strategy, we find its solution in period 2

in semiclosed form (see (4.10)) and characterize its solution in period 1 via an implicit equation (see

(4.13)); based on our analytical results, we propose a numerical algorithm that can compute the optimal
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general precommitment strategy efficiently. Last, we conduct a detailed comparison of the three opti-

mal strategies and study how several key model parameters affect the policyholder’s decision and value

function. Our model can be easily extended to an n-period problem, and the methodology introduced in

the main paper can be applied to numerically obtain the corresponding optimal strategies (see the online

appendix).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/asb.2025.10072.
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Appendix

A. Proof of Theorem 3.1

Proof. Step 1. We solve for α∗
2
= arg maxα2

J1(x, y; α2) at time 1 for an arbitrary pair (X1, Y1) = (x, y) ∈
R× [0, 1].

Given X1 = x and Y1 = y, we use (2.4) and (2.3) to obtain the buyer’s terminal wealth X2 := X
(1,x,y),α2

2

under strategy α2 by X2 = x − π (α2, y) − (1 − α2)Z2 = x − µα2 − θyσ 2

2
α2

2
− (1 − α2)Z2. Using the above

result and (3.2), we have

α∗
2
= arg max

α2

J1(x, y; α2) = arg max
α2

θyα2

2
+ γ (1 − α2)

2 = γ

γ + θy
.

Note that γ and θ are given positive constants, and y = Y1 ∈ [0, 1]. As such, we have α∗
2
∈ [0, 1] without

constraint and α∗
2
∈F2, as required by the admissibility definition in (2.5).

Step 2. We solve for α∗
1
= arg maxα1

J0(x, y; α1, α∗
2
), in which α∗

2
is obtained above.

Assuming that the buyer will follow α∗
2
= γ

γ+θY1
in period 2, her terminal wealth X2 := X

(0,x,y),(α1 ,α∗
2

)

2 is

given by

X2 = x − µα1 − θyσ 2

2
α2

1
− (1 − α1)Z1 − µγ

γ + θY1

− θY1σ
2

2

(
γ

γ + θY1

)2

− θY1

γ + θY1

Z2.

Note that Z1 and Z2 are independent, but Y1 depends on Z1 via (2.2).

For the above X2, we obtain

E0,x,y(X2) = x − 2µ − θyσ 2

2
α2

1
− θγ 2σ 2

2
E0,x,y

[
Y1

(γ + θY1)2

]
.
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Note that the last expectation term above is independent of the buyer’s strategy α1 and, thus, can be

omitted when optimizing J0 with respect to α1.

Regarding the variance V0,x,y(X2), we have

V0,x,y(X2) =V0,x,y

(
(1 − α1)Z1 +

{
γµ

γ + θY1

+ θγ 2σ 2

2
· Y1

(γ + θY1)2

}

︸ ︷︷ ︸
=: g (Y1)

+ θY1

γ + θY1︸ ︷︷ ︸
=: h (Y1)

Z2

)

= (1 − α1)2σ 2 + 2(1 − α1)C0,x,y

(
Z1, g (Y1) + h (Y1)Z2

)
+V0,x,y

(
g (Y1) + h (Y1)Z2

)
,

in which C denotes the covariance operator under P. Note that the last variance term V0,x,y

(
g (Y1) +

h (Y1)Z2

)
is independent of the buyer’s strategy α1 and, thus, can be omitted in the optimization. To

analyze the covariance term, we first introduce Yh and Yl defined in (3.7), which are the two possible

values of Y1 depending on whether the policyholder files a claim; the subscripts h and l in (3.7) refer to

“high” and “low,” respectively. Further, for a fixed Y0 = y ∈ [0, 1], define A

yh := vy + 1 − v and yl := vy. (A1)

We compute E0,x,y

(
Z1 g (Y1)

)
= (1 − q) E0,x,y

(
Z1g (Y1)

∣∣Z1 = 0
)
+ q E0,x,y

(
Z1g (Y1)

∣∣Z1 > 0
)
= g (yh)µ and

similarly, E0,x,y (Z1 · h (Y1)Z2) =E0,x,y (Z1h (Y1)) ·E(Z2) = h (yh) µ2. Therefore, we obtain the covariance

term by

C0,x,y

(
Z1, g (Y1) + h (Y1)Z2

)
= (1 − q)µ

[(
g (yh) + µ h (yh)

)
−
(

g (yl) + µ h (yl)
)]

= (1 − q)µγσ 2

2

(
γ θyh

(γ + θyh)2
− γ θyl

(γ + θyl)
2

)
.

Thus, the following equivalence holds

α∗
1
= arg max

α1∈[0,1]

J0(x, y; α1, α∗
2
) = arg max

α1∈[0,1]

f (α1), (A2)

in which f is defined by

f (α1) = − θyα2
1
σ 2

2
− γ

2

[
(1 − α1)

2σ 2 + (1 − α1)(1 − q)µθγ 2σ 2

(
yh

(γ + θyh)2
− yl

(γ + θyl)
2

)]
. (A3)

Note that f defined in (A3) depends on the policyholder’s initial claim habit value, Y0 = y, but is

independent of her initial wealth X0 = x.

We proceed to show that f has a unique maximizer in [0, 1]. By its definition in (A3), we easily see

that f is differentiable on (0,1). By differentiating f, we obtain

f ′(α1) = −(γ + θy)σ 2 · α1 + γ σ 2

{
1 + µθγ 2(1 − q)

2

(
yh

(γ + θyh)
2
− yl

(γ + θyl)
2

)}
,

and f
′′
(α1) = −(γ + θy)σ 2 < 0. Therefore, α∗

1
defined in (A2) is unique and given by the expression in

(3.5). This completes the proof.

B. Proof of Theorem 4.1

Proof. Under a constant strategy (a1, a2), the buyer’s terminal wealth X2 is given by

X2 = x − µa1 − θyσ 2

2
a2

1
− (1 − a1)Z1 − µa2 − θY1σ

2

2
a2

2
− (1 − a2)Z2,

in which x = X0 and y = Y0. We obtain

E(X2) = x − 2µ − θyσ 2

2
a2

1
− θσ 2

E(Y1)

2
a2

2
,

V(X2) = θ 2σ 4
V(Y1)

4
a4

2
+ σ 2(1 − a2)2 + θσ 2

C(Z1, Y1) (1 − a1)a2

2
+ σ 2(1 − a1)2,
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in which E(Y1) = vy + q(1 − v), V(Y1) = q(1 − q)(1 − v)2, and C(Z1, Y1) = µ(1 − q)(1 − v). Therefore,

maximizing J0(x, y; a1, a2) is equivalent to minimizing f
c
(a1, a2) defined by

f
c
= θya2

1
+ θE(Y1)a

2

2
+ γ

(
θ 2σ 2

V(Y1)

4
a4

2
+ (1 − a2)2 + θC(Z1, Y1) (1 − a1)a2

2
+ (1 − a1)2

)
.

Given a2, we first minimize f
c

over a1. By
∂fc

∂a1
(a1, a2) = 0, we obtain

â1(a2) = 2γ + γ θ C(Z1, Y1) a2
2

2(γ + θy)
.

As f
c
(a1, a2) is convex in a1, subject to the constraint a1 ∈ [0, 1], f

c
(·, a2) is minimized at â1(a2) ∧ 1.

By noting that â1(a2) ≤ 1 ⇐⇒ √
γC(Z1, Y1)a2 ≤ √

2y (recall that a2 ≥ 0), we define the minimized

value as

w (a2) = f
c

(
â1(a2) ∧ 1, a2

)
=
{

f
c
(â1(a2), a2) =: w1(a2), a2 ≤ ζ ,

f
c
(1, a2) =: w 2(a2), a2 > ζ ,

in which ζ =
√

2y

γC(Z1 ,Y1)
if C(Z1, Y1) 6= 0, and ζ = ∞ if C(Z1, Y1) = 0.

Next, we minimize w ( · ) over a2 ∈ [0, 1]. For w1(a2), a straightforward calculation shows that

w ′
1
(a2) = g̃

c
(a2), which is defined in (4.2). Note that, by using (2.1), we obtain (γ + θy)qσ 2 − γ (1 −

q)µ2 = θyqσ 2 + γ q2σ̃ 2 > 0, which shows that the coefficient of the a3
2
-term in g̃

c
is strictly positive. By

a straightforward calculation, we obtain w ′′
1

(a2) > 0, w ′
1
(0) = −2γ < 0, and w ′

1
(1) > 0. Thus, the equa-

tion w ′
1
(a2) = 0, or equivalently g̃

c
(a2) = 0, admits a unique solution which happens to lie in (0, 1); denote

this unique solution by ã2. Subject to the constraint a2 ≤ ζ , we conclude that w1 is minimized at ã2 ∧ ζ .

For w 2(a2), we first obtain w ′
2
(a2) = g

c
(a2), which is defined in (4.3). Similarly, we carry out compu-

tations to get w ′′
2

(a2) > 0, w ′
2
(0) = −2γ < 0, and w ′

2
(1) > 0. In consequence, the equation w ′

2
(a2) = 0, or

equivalent g
c
(a2) = 0, admits a unique solution, which we denote by a2 ∈ (0, 1). Subject to the constraint

a2 > ζ , w 2( · ) is minimized at a2 ∨ ζ ; note that if ζ ≥ 1, then w (a2) = w1(a2) on [0, 1]. Next, we show

that ã2 and a2 must lie on the same side of the threshold ζ . To see this, by comparing w ′
1
( · ) and w ′

2
( · ),

we have

w ′
1
(a2) = w ′

2
(a2) + γ θ 2

C(Z1, Y1)

γ + θy

(
2y − γC(Z1, Y1)a2

2

)
a2.

Therefore, at a2 = ζ =
√

2y

γC(Z1 ,Y1)
, w ′

1
(ζ ) = w ′

2
(ζ ), and we analyze the following two mutually exclusive

scenarios: (1) w ′
1
(ζ ) = w ′

2
(ζ ) ≥ 0 and (2) w ′

1
(ζ ) = w ′

2
(ζ ) < 0. In the first scenario, ã2 ≤ ζ and a2 ≤ ζ ,

from which we obtain that w (a2) = w1(a2) is minimized at ã2 ∧ ζ = ã2. As such, a∗
2
= ã2 and a∗

1
= â1 (̃a2),

corresponding to the first case in (4.4). In the second scenario, ã2 > ζ and a2 > ζ , which implies that

w (a2) = w 2(a2) is minimized at a2 ∨ ζ = a2. Therefore, a∗
2
= a2 and a∗

1
= 1, corresponding to the second

case in (4.4). This completes the proof.

C. Proof of Theorem 4.2

Proof. Step 1. We solve max
α2∈[0,1]

Gλ
1
(x, y; α2) at time 1.

Given X1 = x and Y1 = y, we use (2.3) and (2.4) to obtain the buyer’s terminal wealth X2 := X
(1,x,y),α2

2

under strategy α2 by X2 = x − µα2 − θyσ 2

2
α2

2
− (1 − α2)Z2, which implies C

E1,x,y(X2) = x − µ − θyσ 2α2
2

2
, (C1)

E1,x,y(X
2

2
) = (1 − α2)2σ 2 + (x − µ)2 +

(
θyσ 2α2

2

2

)2

− (x − µ)θyσ 2α2

2
. (C2)
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Then, maximizing Gλ
1
(x, y; α2) is equivalent to minimizing g

p
, defined by

g
p
(α2) := λθyα2

2
+ γ

[
(1 − α2)

2 +
(

θyσα2
2

2

)2

− (x − µ)θyα2

2

]
.

By differentiating g
p
(α2), we obtain g ′

p
(α2) = γ (θyσ )2α3

2
+ 2

(
λθy + γ − γ (x − µ)θy

)
α2 − 2γ and

g ′′
p

(α2) = 3γ (θyσ )2α2
2
+ 2

(
λθy + γ − γ (x − µ)θy

)
. By Descartes’ rule of signs, the equation g ′

p
(α2) = 0

admits a unique positive solution; denote this solution by α+
2 (that is, g ′

p
(α+

2 ) = 0). Moreover,

g ′′
p

(α+
2

) = 3γ (θyσ )2(α+
2

)2 + 2
(
λθy + γ − γ (x − µ)θy

)

= 2γ (θyσ )2(α+
2

)2 + 2γ

α+
2

> 0.

Thus, α+
2 is the unique minimizer of g

p
(α2) on [0, ∞). Because g ′

p
(0) = −2γ < 0, α+

2 < 1 if

and only if g ′
p
(1) > 1, in which g ′

p
(1) = γ (θyσ )2 + 2

(
λθy − γ (x − µ)θy

)
. Therefore, the solution of

maxα2
Gλ

1
(x, y; α2) is given by (4.10).
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