ON IRREGULAR FIXED POINTS

S.K. Kaul

(received January 9, 1967)

Throughout this paper (X,d) will be a metric space with metric d, and h a homeomorphism of X onto itself. For any real number r>0, and $p\in X$, U(p,r) will denote the open r-sphere about p. Any point $p\in X$ is called $\underline{regular}$ [3] if for any given $\epsilon>0$ there exists a $\delta>0$ such that $d(p,y)<\delta$ implies $d(h^n(p), h^n(y))<\epsilon$ for all integers n, where h^n denotes the iterates of h for $h^n(y)$ of $h^n(y)$ for $h^n(y)$ of $h^n(y)$ is the identity. Any point of $h^n(y)$ which is not a regular point is called an irregular point. Let $h^n(y)$ denote the set of all the irregular points of $h^n(y)$ and $h^n(y)$ is the identity $h^n(y)$. Lim inf and $h^n(y)$ are defined as in [4].

We shall prove the following:

THEOREM 1. Let X be locally compact and connected. If $p \in I(h)$, h(p) = p and I(h) is zero dimensional at p, then there exists a $q \in R(h)$ such that $p \in Lim \ sup \ h^n(q)$.

1. LEMMA 1. Let $p \in X$, h(p) = p and U, V be open sets containing p such that $cl\ V \subset U$. Let $N \subset V$ be a connected set containing p. If there exists a $y \in N$ such that $h^n(y) \notin U$ for some integer n, then there exists an $x \in N$ such that $h^n(x) \in cl\ U-V$.

<u>Proof.</u> Suppose there does not exist any such point in N . Set $A = h^n(N) \cap (X - cl\ U)$ and $B = h^n(N) \cap V$. Then A , B are

Canad. Math. Bull. vol. 10, no. 4, 1967

non-empty, cl $A \cap B = \phi = A \cap cl B$, and $A \cup B = h^n(N)$. Hence, A, B define a separation of $h^n(N)$ contradicting the fact that $h^n(N)$ is connected. This proves the Lemma.

LEMMA 2. Let X be locally compact and connected. If $p \in I(h)$, h(p) = p and X is 0-dimensional at p, then for sufficiently small $\epsilon > 0$, and U, V open sets containing p such that $cl\ V \subset U \subset U(p,\epsilon)$ and any r > 0 such that $U(p,r) \subset V$, there exists a $y \in U(p,r)$ and an integer m such that $h^m(y) \in cl\ U-V$.

<u>Proof.</u> Since X is locally compact and $p \in I(h)$ there exists an $\bar{\epsilon}$ such that for any $\epsilon \leq \bar{\epsilon}$, cl $U(p,\epsilon)$ is compact and for any $\delta > 0$ there exists a pair (x,n), where $d(p,x) < \delta$ and n is an integer, such that $d(h^n(p), h^n(x)) > \epsilon$. Since h(p) = p, $d(p, h^n(x)) > \epsilon$.

Let U, V and r be as in the Lemma. If X is locally connected at p then the result follows from Lemma 1. Let us suppose then that X is not locally connected at p. Assuming that the Lemma is not true for some $\, \mathbf{r} \,$ we shall prove a contradiction.

Let $\{r_n\}$ be a monotone sequence of real numbers converging to zero and $r_1 = r$. For all pairs (x, n) such that $d(p, h^n(x)) > \epsilon$, where $d(p, x) < r_1$, and n is an integer, let (x_1, n_1) denote one for which $|n_1|$ is least.

For any y ϵ U(p,r) let c(y) denote the component of U(p,r) containing y. Note then that $x_1 \notin c(p)$, since, from Lemma 1, this leads to a contradiction because $h^{-1}(x_1) \notin U$. Also $h^{-1}[c(x_1)] \cap cl U = \varphi$. For if not then from the above assumption $h^{-1}[c(x_1)] \cap (cl U - V) = \varphi$ and, therefore, $h^{-1}[c(x_1)] \cap V \neq \varphi$. But then a separation of $h^{-1}[c(x_1)]$ can be defined contradicting that it is connected. It is clear from the same reasoning that $h^{-1}[c(x_1)]$ or $h^{-1}[c(x_1)]$, depending upon whether $h^{-1}[c(x_1)]$ positive or negative respectively, is contained in V.

From the continuity of h^{1} and h^{1} there exists an $s_1 > 0$ such that if $d(p,x) < s_1$ then $h^{1}(x) \in V$ and $h^{-1}(x) \in V$. Set $\delta_1 = r_1$ and $\delta_2 = \min(s_1, r_1)$. Again there exists, as above, a pair (x_2, n_2) , $d(p, x_2) < \delta_2$ and n_2 an integer, such that $|n_2|$ is the least integer for which $h^{1}(x_2) \notin U$. From the choice of δ_2 it is clear that $|n_2| > |n_1|$. Iterating this process we get pairs (x_1, n_1) and numbers δ_1 , i=1,... such that (1) Lim $\delta_1 = 0$ and (2) $h^{1}(c(x_1)) \cap cl U = \phi$. Assuming without loss of generality that all n_1 are positive, we have furthermore, (3) $h^{1}(c(x_1)) \subset V$ and (4) $n_1 > n_1$ if i > j.

All the elements $c(\mathbf{x}_i)$ are distinct for $i=1,2,\ldots$ and from (1) all except a finite number of them intersect any open set containing p. Therefore Lim inf $c(\mathbf{x}_i)$ contains p and is non- $i \to \infty$ empty. Hence $N = \lim_{i \to \infty} \sup_{i \to \infty} c(\mathbf{x}_i)$ is a connected set [4, (9.1),p.14] $i \to \infty$ and contains p.

Clearly $N \subset c(p)$. Furthermore, since, $cl[c(x_i)] \cap$ boundary $U(p,r) \neq \phi$ [4, (10.1), p.16] and boundary U(p,r) is compact, $N \cap$ boundary $U(p,r) \neq \phi$. Hence N is non-degenerate.

Since I(h) is zero dimensional at p and N is connected and non-degenerate there exists a y ϵ N \cap R(h) but y \notin boundary U(p,r). Let d(V, X-U) = ϵ_{o} ; then $\epsilon_{o} > 0$. From the regularity of y there exists an $\eta > 0$ such that d(x,y) < η implies that d(h^n(x), h^n(y)) < ϵ_{o} for all integers n. Since y ϵ N = Lim sup c(x_i), i $\rightarrow \infty$ U(y, η) \cap c(x_i) \neq φ for infinitely many values of i. Let x ϵ c(x_i) \cap U(y, η). Then d(h (x), h (y)) < ϵ_{o} . But since h (c(x_i)) \cap cl U = φ , from the choice of ϵ_{o} , h (y) \notin V. Again, by our assumption that the Lemma is not true h (y) \notin cl U-V,

hence h $(y) \notin cl U$. But, since $y \in c(p)$, Lemma 1 leads again to a contradiction of the assumption. This completes the proof of Lemma 2.

Proof of Theorem 1. Since p is irregular and h(p)=p there exists an $\epsilon>0$ such that $U(p,\epsilon)$ is compact and for any $\delta>0$ there exists a pair (x,n), where $d(x,p)<\delta$, n is an integer and $d(p,\ h^n(x))>\epsilon$. Since I(h) is zero dimensional at p, and $p\in I(h)$, there exists an open set V containing p such that cl $V\subset U(p,\epsilon)$, boundary $V\cap I(h)=\varphi$, and $a=d(cl\ V,\ X-U(p,\epsilon))>0$. Since X is connected, boundary $V\cap R(h)\neq \varphi$. Let $V_{;}=\{x:d(x,V)< a/2^{\frac{1}{2}}\}$, $i=1,2,\ldots$

Let $\delta_1>0$ and $U(p,\delta_1)\subset V$. From Lemma 2 there exists a $y_1\in U(p,\delta_1)$ and an integer n_1 such that $h^{-1}(y_1)\in \operatorname{cl} V_1-V$. It is easy to see that this process can be iterated to get a sequence of positive real numbers $\{\delta_i\}$ converging to zero, such that, for each $i, i=1,\ldots,$ there exists a $y_i\in U(p,\delta_i)$ and an integer n_i such that $h^{-1}(y_i)\in\operatorname{cl} V_i-V$ and $|n_i|>|n_j|$ if i>j. Since $\operatorname{cl} V_1-V$ is compact, the sequence $\{h^{-1}(y_i)\}$ contained in $\operatorname{cl} V_1-V$ has a convergent subsequence converging to a point q of $\operatorname{cl} V_1-V$. We may assume without loss of generality that the above sequence itself converges to q. Since $h^{-1}(y_i)\in\operatorname{cl} V_i-V$ and $\lim_{i\to\infty}a/2^i=0$ $i\to\infty$

We claim that $\lim_{i\to\infty} h^{-n}(q) = p$. Let $\epsilon_0 > 0$ be arbitrary. $i\to\infty$ Since $q\in R(h)$ there exists an $\eta>0$ such that $d(x,q)<\eta$ implies that $d(h^n(x),h^n(q))<\epsilon_0/2$ for all integers n. Since $q=\lim_{i\to\infty} h^{n_i}(y_i)$, $i\to\infty$

 $\begin{array}{l} \text{d}(\textbf{q}, \text{ h}^{i}(\textbf{y}_{i})) < \eta \quad \text{for } i \geq \textbf{N}_{1} \quad \text{for some integer} \quad \textbf{N}_{1} \; . \quad \text{Hence} \\ \\ \text{d}(\textbf{h}^{-n_{i}}(\textbf{q}), \text{ y}_{i}) < \epsilon_{0}/2 \quad \text{for } i \geq \textbf{N}_{1} \; . \quad \text{Again since } \underset{i \rightarrow \infty}{\text{Lim}} \quad \delta_{i} = 0 \quad \text{there} \\ \\ \text{exists an integer} \quad \textbf{N}_{2} \quad \text{such that} \quad \delta_{i} < \epsilon_{0}/2 \quad \text{for } i \geq \textbf{N}_{2} \; , \quad \text{that is,} \\ \\ \text{d}(\textbf{p}, \textbf{y}_{i}) < \epsilon_{0}/2 \quad \text{for } i \geq \textbf{N}_{2} \; . \quad \text{Hence for } i \geq \max{(\textbf{N}_{1}, \textbf{N}_{2})} \; , \end{array}$

$$d(h^{-n}_{i}(q), p) \le d(h^{-n}_{i}(q), y_{i}) + d(y_{i}, p) < \epsilon_{0}.$$

This proves the above claim and hence the theorem.

2. EXAMPLE. Let $\{p_i : i \text{ is an integer}\}$ be any set of real numbers such that $p_i < p_{i+1}$ for each i, $\lim_{i \to \infty} p_i = 1$ and $\lim_{i \to \infty} p_i = -1$. For each i let $\lim_{i \to \infty} p_i = -1$. For each $\lim_{i \to \infty} p_i = -1$ in the Euclidean 2-space with the usual topology and $\lim_{i \to \infty} p_i = -1$ in the Euclidean 2-space with the usual topology and $\lim_{i \to \infty} p_i = -1$ in the Euclidean 2-space with the usual topology and $\lim_{i \to \infty} p_i = -1$ and $\lim_{i \to \infty} p_i =$

$$X = M \cup L \cup \{(-1, -1), (-1, 1), (1, -1), (1, 1)\}$$

have the relative topology. Let

$$h: X \rightarrow X$$

be defined as follows:

$$\begin{aligned} h(p_i, p_j) &= (p_i, p_j) & \text{if } p_i = \pm 1 \text{ and } p_j = \pm 1 \\ &= (p_i, p_{j+1}) & \text{if } p_i = \pm 1 \text{ and } p_j \neq \pm 1 \\ &= (p_{i+1}, p_j) & \text{if } p_i \neq \pm 1 \text{ and } p_j = \pm 1 \\ &= (p_{i+1}, p_{j+1}) & \text{if } p_i \neq \pm 1 \neq p_j \end{aligned}$$

In the last case (p_i, p_j) is the initial end point of two line segments whose terminal end points are (p_{i+1}, p_j) and (p_i, p_{j+1}) such that no coordinate is 1 or -1. For points of these line segments h is defined by linear extension onto the line segments

$$[(\mathbf{p_{i+1}}, \mathbf{p_{j+1}}) \;,\; (\mathbf{p_{i+2}}, \mathbf{p_{j+1}})] \quad \text{ and } \quad [(\mathbf{p_{i+1}}, \mathbf{p_{j+1}}) \;,\; (\mathbf{p_{i+1}}, \mathbf{p_{j+2}})] \;\;.$$

It is not difficult to see that h is a homeomorphism of X onto itself. The set of points $\{(\pm\ 1\ ,\ p_i)\}\cup\{(p_i\ ,\ \pm 1)\}$, i = 0, ± 1 , . . . is the set of irregular non-fixed points of h and $\{(1,1)\ ,\ (1,-1)\ ,\ (-1,-1),\ (1,-1)\}$ is the set of fixed irregular points of X under h . I(h) is zero dimensional and compact; R(h) is connected and so is X . X is locally connected but not locally compact at any point of I(h) . The points (-1,1) and (1,-1) are fixed irregular points, but for no y ϵ R(h) does

Lim sup $h^n(y)$ contain either of them (cf. Theorem 1). $n \rightarrow +\infty$

REMARK. It is interesting to compare Theorem 1 above with similar results - Lemma 10 of [1] and Lemma 1 of [2]. Also one may ask the question whether the main theorem of [2] can be obtained with fewer assumptions - in particular without assuming X locally connected. The above example indicates, however, that local compactness is essential.

REFERENCES

- 1. T. Homma and S. Kinoshita, On homeomorphisms which are regular except for a finite number of points. Osaka Math. Jour. 7 (1955), p.29-38.
- 2. S.K. Kaul, On almost regular homeomorphisms. To be published in Canadian Journal of Math.
- 3. B.v. Kerékjártó, Topologische charakterisierung der linearen Abbildungen. Acta. litt. ac. Sci., Szeged, 6 (1934), p.235-62.
- 4. G.T. Whyburn, Analytic Topology. Amer. Math. Soc. Coll. Publ, 1942.

University of Calgary