ON IRREGULAR FIXED POINTS
S.K. Kaul

(received January 9, 1967)

Throughout this paper (X,d) will be a metric space with
metric d, and h a homeomorphism of X onto itself. For any
real number r> 0, and pe X, U(p,r) will denote the open
r-sphere about p . Any point p eX is called regular [3] if for
any given e >0 there exists a § > 0 such that d(p,y) <& implies

n
d(hn(p), h (y)) < ¢ for all integers n, where h" denotes the

iterates of h for n> 0, of h_1 for n< 0, and hO is the
identity. Any point of X which is not a regular point is called
an irregular point. Let I(h) denote the set of all the irregular
points of X and R(h) = X-I(h) . Lim inf and Lim sup are de-
fined as in [4].

We shall prove the following:

THEOREM 1. Let X be locally compact and connected.
If pelIlh), h(p) =p and I(h) is zero dimensional at p , then

there exists a q ¢ R(h) such that p e Lim sup hn(q) .
n-> + oo

1. LEMMA 1. Let peX, hip) =p and U, V be open sets
containing p such that ¢1VCU . Let NCV be a connected

n
set containing p . If there exists a y e N such that h (y) ¢ U
for some integer n , then there exists an x e¢N such that

h'(x) € cl U-V .
Proof. Suppose there does not exist any such point in N .

Set A=h"(N)N(X-clU) and B=h"(N)AV . Then A, B are
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n
non-empty, clANB =¢ = ANclB ,and AUB =h (N) . Hence,
A, B define a separation of hn(N) contradicting the fact that

hn(N) is connected. This proves the Lemma.

LEMMA 2. Let X be locally compact and connected. If
pe I(h), h(p) =p and X is O-dimensional at p , then for
sufficiently small €> 0, and U,V open sets containing p such
that ¢l VCU CU(p,e) and any r > 0 such that U(p,r)CV,

there exists a y eU(p,r) and an integer m such that hm(y)e cl U-V .

Proof. Since X is locally compact and p e I(h) there
exists an £ such that for any €< &, cl U(p,¢) is compact and
for any 6§ > 0 there exists a pair (x,n), where d(p,x) <6 and n

is an integer, such that d(hn(p), hn(x)) > ¢ . Since h(p) =p,
d(p, hn(x)) > €.

Let U,V and r be as in the Lemma. If X is locally
connected at p then the result follows from Lemma 1. Let us
suppose then that X is not locally connected at p . Assuming
that the Lemma is not true for some r we shall prove a contra-
diction.

Let {r } be a monotone sequence of real numbers con-

verging to zero and r1 =r . For all pairs (x,n) such that
d(p, hn(x))> e , where d(p,x)< r1 , and n is an integer, let

(x,, ni) denote one for which In1| is least.

1

For any y ¢ U(p,r) let c(y) denote the component of U(p, r)
containing y . Note then that X, ¢ c(p), since, from Lemma 1,
n

1
this leads to a contradiction because h (x1) ¢ U . Also
n

h 1[c(xi)] (cl U= ¢ . For if not then from the above assumption

! ny

h [c(xi)]ﬂ(cl U-V) =¢ and, therefore, h [C(X'l)] NV #¢ . But
n

then a separation of h 1[c(xi)] can be defined contradicting that

it is connected. It is clear from the same reasoning that
n -1 n1+1
h [C(Xi)] or h [C(Xi)] , depending upon whether n, is

positive or negative respectively, is contained in V .
508

https://doi.org/10.4153/CMB-1967-049-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-049-6

n -n
1
From the continuity of h and h 1 there exists an
n -n

s, > 0 such that if d(p,x) < 51 then h 1(x) eV and h 1(x) eV .

Set 61 = r'1 and 62 = min(s1,r1) . Again there exists, as above,

)< &, and n_ an integer, such that lnzl

a pair (xz,nz) , d(p, x >

2

n
is the least integer for which h Z(XZ) ¢ U . From the choice of

52 it is clear that lnzl > [nil . Iterating this process we get
pairs (Xi’ n. ) and numbers 61, i=1,... such that (1) Lim 61 =0
i .

i=>00

n:
and (2) h 1[(:(xi)]ﬂ cl U =¢ . Assuming without loss of generality
n.-1
that all n, are positive, we have furthermore, (3) h ! [c(xi)]CV
i

and (4)ni>nj if i>j.

All the elements C(Xi) are distinct for i=1,2,... and

from (1) all except a finite number of them intersect any open set
containing p . Therefore Lim inf C(Xi) contains p and is non-
i= 00
empty. Hence N = Lim sup C(Xi) is a connected set [4, (9.41),p.14]
1= 00

and contains p .

Clearly N C c(p) . Furthermore, since, cl[c(xi)]ﬂ boundary

U(p,r) # ¢ [4, (10.1),p.16] and boundary U(p,r) is compact,
NN boundary U(p,r) # ¢ . Hence N is non-degenerate.

Since I(h) is zero dimensional at p and N is connected
and non-degenerate there exists a y e N R(h) but y ¢ boundary
U(p,r) . Let d(V, X-U)= € s then e > 0 . From the regularity

of y there exists an 1> 0 such that d(x,y)<mn implies that

d(hn(x), hn(y)) < ¢ for all integers n . Since ye N = Lim sup c(x.),
o i o0 i
Uy, n) ﬂc(xi) # ¢ for infinitely many values of i . Let
n, n,
X € c(xi) N U(y,n) . Then d(h 1(x), h 1(y‘))< e But since

n: ns
h 1[C(Xi)] Ncl U = ¢ , from the choice of € h 1(y) ¢V . Again,

n.
by our assumption that the Lemma is not true h 1(y') ¢ clU-V ,

509

https://doi.org/10.4153/CMB-1967-049-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-049-6

n,
hence h 1(y) ¢ cl U . But, since ye c(p), Lemma 1 leads again
to a contradiction of the assumption. This completes the proof of
Lemma 2.

Proof of Theorem 1. Since p is irregular and h(p) = p
there exists an €> 0 such that U(p,e) is compact and for any
& > 0 there exists a pair (x,n), where d(x,p)< &, n is an

integer and d(p, hn(x)) > ¢ . Since I(h) is zero dimensional at p, and
p € I(h), there exists an open set V containing p such that

cl VCU(p,e), boundary VI(h)=¢ , and a =d(cl V, X-U(p,€))>0 .
Since X 1is connected,boundary V(M R(h) # 4 . Let

V.= {xd(x, V) < a/2ly, i=1,2,....

Let 61 > 0 and U(p,61) CV . From Lemma 2 there exists
n
€ U(p,61) and an integer n, such that h 1(y'l) e cl Vi-V .

ay1

It is easy to see that this process can be iterated to get a sequence
of positive real numbers {6} converging to zero, such that, for
i

each i, 1i=1,..., there exists a v, € U(p,6.) and an integer n
i i

n,
such that h 1(yi) e cl Vi-V and lnil > lnj[ if i>j . Since

n.
cl V1-V is compact, the sequence {h 1(y,)} contained in cl V1-V
i

has a convergent subsequence converging to a point q of cl V1—V .

We may assume without loss of generality that the above sequence

n, .
itself converges to q . Since h 1(y,) e clV -V and Lim a/Z1 =0
' ' i=> o0
ge boundary V CR(h) .
-n,
We claim that Lim h 1(q) =p . Let e > 0 be arbitrary.

i—> 00

Since qe R(h) there exists an n > 0 such that d(x, q) < n implies
n;

that d(hn(x), hn(q)) < 80/2 for all integers n . Since g= Lim h 1(y,) ,

i=> o0 !
n,
d(q, h 1(y,))< n for 1> N1 for some integer N1 . Hence
i z

n.
d(h 1(q), Yi) <e [2 for i> N1 . Again since Lim 6,1 = 0 there
o = .

i—> o0
exists an integer N2 such that §. < 50/2 for i> N2 , that is,
i 2z

d(p,yi)<so/2 for 1_>_N2 . Hence for i> max (N'l’ NZ) ,
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-n, -n,
d(h (@), p)<d(h (q), y,) +dly,p)<c_

i

This proves the above claim and hence the theorem.

2. EXAMPLE. Let {pi:i is an integer} be any set of real

numbers such that p. <p for each i, Lim p, =1 and
i i

i=> 00

i+1

Lim p, =-1. For each i let L. denote the line segment

i>-c0 | !

{(x,y):-1<x<1 and y =p.} in the Euclidean 2-space with the
- - i

usual topology and M. be its reflection in the line y = x . Let
i

L=y {Li: i is an integer} and M = U{Mi: i is an integer} .

Let

X =MULU{(-1,-1), (-1,1), (1,-1), (4, 1)}
have the relative topology. Let
h: X->X
be defined as follows:
= i = + d =+
h(pi, pj) (pi,pj) if p, =% 1 an pj +1

= (pi,p.

if p.=+1 and +1
JH) if pp=+1 an pJ.#_

= ,p.) if p. #+1 d p.=+11
(pi+1 p_]) Py #1 an pJ -
= P i L F+1 ..
(PyyyrPyyq) 3 Py 721 70
In the last case (p.,p.) is the initial end point of two line segments
i

whose terminal end points are (pi+1’ pj) and (pi’ pj+1) such that no

coordinate is 1 or -1 . For points of these line segments h is
defined by linear extension onto the line segments

d P,
[(piﬂ,pjﬂ), (pi+2,pj+1)] an [(piH,ij), (P4 pJ+2)]
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It is not difficult to see that h is a homeomorphism of X
onto itself. The set of points {(+1, pi)} U {(pi , 1)},

i=0,+1,... is the set of irregular non-fixed points of h and
{(1,1), (1,-1), (-1, -1), (1,-1)} is the set of fixed irregular
points of X under h . I(h) is zero dimensional and compact;
R(h) is connected and so is X . X is locally connected but not
locally compact at any point of I(h) . The points (-1,1) and
(1,-1) are fixed irregular points, but for no ye R(h) does

Lim sup hn(y) contain either of them (cf. Theorem 1).
n->+o

REMARK. It is interesting to compare Theorem 1 above
with similar results - Lemma 10 of [1] and Lemma 1 of [2].
Also one may ask the question whether the main theorem of [2]
can be obtained with fewer assumptions - in particular without
assuming X locally connected. The above example indicates,
however, that local compactness is essential.
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