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Abstract Locally harmonic manifolds are Riemannian manifolds in which small geodesic spheres are
isoparametric hypersurfaces, i.e., hypersurfaces whose nearby parallel hypersurfaces are of constant
mean curvature. Flat and rank one symmetric spaces are examples of harmonic manifolds. Damek–
Ricci spaces are non-compact harmonic manifolds, most of which are non-symmetric. Taking the limit of
an ‘inflating’ sphere through a point p in a Damek–Ricci space as the center of the sphere runs out to
infinity along a geodesic half-line γ starting from p, we get a horosphere. Similarly to spheres, horospheres
are also isoparametric hypersurfaces. In this paper, we define the sphere-like hypersurfaces obtained by
‘overinflating the horospheres’ by pushing the center of the sphere beyond the point at infinity of γ along
a virtual prolongation of γ. They give a new family of isoparametric hypersurfaces in Damek–Ricci spaces
connecting geodesic spheres to some of the isoparametric hypersurfaces constructed by J. C. Dı́az-Ramos
and M. Domı́nguez-Vázquez [17] in Damek–Ricci spaces. We study the geometric properties of these
isoparametric hypersurfaces, in particular their homogeneity and the totally geodesic condition for their
focal varieties.

1. Introduction

A hypersurface in a Riemannian manifold is called isoparametric if its nearby parallel
hypersurfaces have constant mean curvature. B. Segre [40] proved that isoparametric

hypersurfaces of the Euclidean space R
n are the tubes about a k -dimensional subspace
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2 B. Csikós and M. Horváth

for some 0 ď k ď n´1. A systematic study of isoparametric hypersurfaces was initiated
by É. Cartan [4]. Cartan proved that in spaces of constant curvature, a hypersurface

is isoparametric if and only if the multiset of its principal curvatures is constant and

he also classified these hypersurfaces in hyperbolic spaces, where, in addition to tubes
about totally geodesic subspaces, the family of isoparametric hypersurfaces contains also

horospheres. The classification of isoparametric hypersurfaces in the sphere turned out to

be a much more subtle problem. This is related to the fact that although all isoparametric

hypersurfaces in the Euclidean and hyperbolic spaces are homogeneous, H. Ozeki and
M. Takeuchi [35], [36], and D. Ferus, H. Karcher, and H.-F. Münzner [23] found infinitely

many non-homogeneous isoparametric hypersurfaces in spheres. The classification of

isoparametric hypersurfaces in spheres has been achieved in a sequence of papers by
J. Dorfmeister and E. Neher [20], T. E. Cecil, Q.-S. Chi, and G. R. Jensen [5], Q.-S.

Chi [6], [7], [8], [9], and R. Miyaoka [32], [33]. A detailed survey of the history of the

classification of isoparametric hypersurfaces in spaces of constant curvature can be found
in Q.-S. Chi [10].

There are also many results on the classification of isoparametric hypersurfaces in

rank one symmetric spaces. Regular orbits of isometric cohomogeneity one actions

are always isoparametric, so it is a natural step to classify such actions. As for rank
one symmetric spaces of non-compact type, J. Berndt and H. Tamaru [2] classified

these actions on the complex hyperbolic spaces and on the Cayley hyperbolic plane,

and later J. C. Dı́az-Ramos, M. Domı́nguez-Vázquez, and A. Rodŕıguez-Vázquez [18]
complemented their result by a classification of cohomogeneity one isometric actions

on the quaternionic hyperbolic space up to orbit equivalence. Later J. C. Dı́az-Ramos

and M. Domı́nguez-Vázquez [16] constructed a family of non-homogeneous isoparametric
hypersurfaces in complex hyperbolic spaces, based on which J. C. Dı́az-Ramos, M.

Domı́nguez-Vázquez, and V. Sanmart́ın-López [19] could complete the classification of

isoparametric hypersurfaces in complex hyperbolic spaces.

Harmonic manifolds have many properties in common with flat and rank one symmetric
spaces, which are harmonic as well, so it is natural to investigate isoparametric

hypersurfaces also in harmonic manifolds. Locally harmonic manifolds were introduced

by E. T. Copson and H. S. Ruse [11] as Riemannian manifolds admitting a non-constant
harmonic function in a punctured neighbourhood of any point p which depends only on

the distance of the variable point from p. A. J. Ledger [30] showed that a locally symmetric

space is locally harmonic if and only if it is flat or has rank one. In 1944 A. Lichnerowicz
[31] conjectured that locally harmonic manifolds of dimension 4 are necessarily locally

symmetric spaces and posed the question whether this holds in higher dimensions as
well. The Lichnerowicz conjecture was proved by A. G. Walker [42] in dimension 4,

and by Y. Nikolayevsky [34] in dimension 5. Z. I. Szabó [41] proved the Lichnerowicz
conjecture for manifolds having compact universal covering space. G. Knieper [28]

confirmed the Lichnerowicz conjecture for all compact harmonic manifolds without focal

points or with Gromov hyperbolic fundamental groups. As for the non-compact case,
the answer to the question of Lichnerowicz is negative in infinitely many dimensions

starting at 7. E. Damek and F. Ricci [15] noticed that certain solvable extensions of

some Heisenberg-type Lie groups become globally harmonic manifolds if we choose a
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Sphere-like isoparametric hypersurfaces in Damek–Ricci spaces 3

suitable left invariant Riemannian metric on them, but they happen to be symmetric
only if the used Heisenberg-type group has a center of dimension 1, 3, or 7. We refer

to the book [3] by J. Berndt, F. Tricerri, and L. Vanhecke for more details on Damek–

Ricci spaces. At present harmonic symmetric spaces and Damek–Ricci spaces are the
only known examples of harmonic manifolds. In 2006 J. Heber [25] showed that a simply

connected homogeneous harmonic manifold is either flat, or a rank one symmetric space,

or a Damek–Ricci space. The existence of non-homogeneous harmonic manifolds is still

an open problem.
There are many characterisations of harmonic manifolds. We refer to [3, Section 2.6]

for a list of the most important ones. E. T. Copson and H. S. Ruse [11] proved

that local harmonicity holds if and only if small geodesic spheres are isoparametric
hypersurfaces. For a non-compact, complete, connected, simply connected, and locally

harmonic manifold, the exponential map at any point p is a diffeomorphism between the

tangent space at p and the manifold; in particular, there are no conjugate points along
geodesic curves, and all geodesic spheres are isoparametric hypersurfaces.

If M is a complete, connected, and simply connected Riemannian manifold with no

conjugate points, ξ P TpM is a unit tangent vector, γ : R Ñ M is the geodesic curve with

initial velocity ξ “ γ1p0q, then the Busemann functions b`
ξ and b´

ξ of ξ are defined as

b˘
ξ pxq “ lim

tÑ˘8
bξ,tpxq, where bξ,tpxq “ dpx,γptqq ´ |t|.

Horospheres are the level sets of Busemann functions. For r P R, the equation bξ,rpxq “ 0

defines the geodesic sphere Σγ
r of radius |r| centered at γprq, respectively. As r tends

to ˘8, these ‘inflating’ spheres tend to the opposite horospheres Σγ
˘8 with equation

b˘
ξ pxq “ 0. This family of geodesic spheres and horospheres belong to a one-parameter

family of hypersurfaces parameterised by r P R̄ “ RYt´8,8u. (Strictly speaking, spheres

of radius 0 are not hypersurfaces, but we think of them as degenerate hypersurfaces.)
In general, one can prove only C1-differentiability of the Busemann functions and the

horospheres [21]; however, A. Ranjan and H. Shah [38] proved that in a non-compact,

complete, connected, simply connected, and harmonic manifold, both Busemann functions
and horospheres are analytic.

In the case of a harmonic manifold, the union of the family Σγ
r , r P R̄ is the union of

two opposite horoballs tangent to one another at p. Applying the maximum principle for

hypersurfaces [22, Theorem 1], these two horoballs cover the whole space if and only if
Σγ

´8 “ Σγ
`8 and the horospheres are minimal hypersurfaces, which happens if and only

if the harmonic manifold is Euclidean [28, Proposition 2.4]. Thus, in the non-flat case,

there is a gap between the two opposite horoballs.
In the case of the real hyperbolic space, using Poincaré’s conformal model on a Euclidean

ball, the spheres and horospheres Σγ
r , r P R̄ are those members of a parabolic pencil of

Euclidean spheres that are contained in the closure of the model. The gap between the
two opposite horoballs is covered by those members of the pencil that are sticking out

of the model. Intrinsically, the intersection of a protruding sphere with the model is a

parallel hypersurface of a hyperplane orthogonal to the geodesic curve γ.
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4 B. Csikós and M. Horváth

Having in mind the example of the hyperbolic space, the following question seems to be
interesting for an arbitrary non-compact, non-flat, simply connected complete harmonic

manifold.

Question 1.1. Is there a kind of natural (analytic) prolongation of the family Σγ
r that

fills the gap between the horospheres Σγ
´8 and Σγ

`8?

There are several ways to define what we mean by an analytical prolongation of the

family Σγ
r . One approach, which will be used below is that we try to write the equation of

Σγ
r in a form F px,φprqq “ 0, where φ : R̄ Ñ r´1,1s is a homeomorphism, which is analytic

on R, and F : M ˆ r´1,1s Ñ R is an analytic function. Then we extend the domain of F
by analytic continuation as far as possible, and prolong the family of spheres Σγ

r with the

hypersurfaces Σ̃γ
θ defined by the equations F px,θq “ 0 for |θ| ą 1.

Question 1.2. If there is an analytic extension, then what can we say about the geometry

of the hypersurfaces Σ̃γ
θ for |θ| ą 1?

For example, it was proved by Z. I. Szabó [41] that in a harmonic manifold, the volume

of the intersection of two geodesic balls of small radii depends only on the radii and

the distance between the centers. The authors proved in [13, 14] that this property
characterises harmonic manifolds even if this property is assumed only for balls of the

same radius. It seems to be an interesting question whether analogous theorems can be

proved for overinflated spheres. Some results in this direction were obtained by S. Kim
and J. H. Park [27].

The main goal of this paper is to construct the family of ‘overinflated spheres’ Σ̃γ
θ for

|θ| ą 1 in the Damek–Ricci spaces, and study their geometric properties. As it can be

expected, all the hypersurfaces Σ̃γ
θ are isoparametric. The overinflated spheres are tubes

about their focal varieties, which are known to be minimal submanifolds.

The paper is structured as follows. In Sections 2, 3, and 4, we collect preliminaries

that will be needed later on isoparametric functions, on Damek–Ricci spaces and on the
J2-condition for v-vectors in the Damek–Ricci Lie algebra. Most of the facts listed here

are known, but we add some proofs for the sake of the reader.

As the underlying Lie group of Damek–Ricci spaces is an exponential Lie group, Damek–
Ricci spaces can be modelled on the Lie algebra of this Lie group. In Section 5, we

introduce the so-called half-space model of Damek–Ricci spaces, which will be more useful

for our constructions. For example, in Theorem 5.1, we show that geodesic lines are

represented in the half-space model by the intersection of the model with a conic section
or a straight line sticking out of the model. Thus, the corresponding conic section or

straight line provides a virtual continuation of the geodesic line beyond its points at

infinity.
Concentric geodesic spheres are the level sets of the distance function dx0

from the

common center x0 of the spheres. In Section 6, we find a modification Dx0
of the

distance function dx0
such that the modified function has the same level sets as dx0

,
but the modified function Dx0

makes sense also if the point x0 is moving out of the

half-space model into the complementary half-space. In Theorem 6.1, we verify that

the functions Dx0
are isoparametric for every point x0 of the affine space containing
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the half-space model. In Section 7, we compute the equation of the focal varieties Fx0
of

the isoparametric hypersurfaces obtained as the regular level sets of the functions Dx0
.

Based on the results of preceding sections, Section 8 answers Question 1.1 in Damek–

Ricci spaces by constructing an analytic prolongation of the family of spheres Σγ
r

explicitly. Members of the prolongation are level sets of the functions Dx0
passing through

p “ γp0q, where x0 is running over those points of the conic section or straight line

containing the geodesic line γ that do not belong to the half-space model. When γ is

contained in an ellipse in the half-space model, the prolongation yields a continuous
transition between the opposite horospheres Σγ

˘8. However, if γ is contained in a parabola

or a straight line such a transition is obstructed by the lack of the definition of the function

Dx0
for the case when x0 is a point at infinity of the projective closure of the affine space

containing the half-space model. To fix this problem, we compute the limit of a suitable

rescaling of the function Dx0
as x0 tends to infinity along the parabola or straight line

containing γ. It turns out that the limit depends on γ, so it will be denoted by Dγ
f.

The limit functions Dγ
f are isoparametric, consequently their regular level sets are tubes

about the singular level set Fγ
f of Dγ

f. The regular level sets of the functions Dγ
f belong

to the family of isoparametric hypersurfaces constructed by J. C. Dı́az-Ramos and M.

Domı́nguez-Vázquez [17].
In Section 9, we study the family of geodesic curves meeting a given focal variety Fx0

or Fγ
f orthogonally. These geodesic curves intersect each tube about the focal variety

orthogonally. In the case of Fx0
, we prove that the prolongations of these geodesics meet

at the point x0, and conversely, any geodesic curve, the prolongation of which goes through

x0 intersects the focal variety Fx0
orthogonally at some point p. We also prove that the

points at infinity of the geodesic separate the points x0 and p harmonically along the
prolongation of γ. This implies that for a given geodesic curve γ for all points p of γ,

except for at most one point p˚, there is a unique focal variety of the type Fx0
that meets

γ at p orthogonally, and the focal varieties of the form Fη
f can meet γ orthogonally only

at the exceptional point p˚. If the exceptional point p˚ exists, then Fγ
f is defined and

meets γ orthogonally at p˚. We prove that in a symmetric Damek–Ricci space, no other

focal varieties of the type Fη
f can intersect γ orthogonally at p˚, but if the space is not

symmetric, such focal varieties can exist.
If a Damek–Ricci space is symmetric, then the focal varieties constructed in this paper

are totally geodesic submanifolds. The general case is considered in Section 10. We prove

that if the space is not symmetric, then none of the focal varieties of the form Fx0

are totally geodesic. However, each focal variety Fx0
has at least one point p such that

Fx0
is the image of TpFx0

under the exponential map expp. The set of such points is

homeomorphic to the set of vectors satisfying the J2-condition. Focal varieties of the

form Fη
f behave differently. They are homogeneous, so they are either totally geodesic or

do not have such a point. It will be proved that the focal variety Fη
f is totally geodesic

if and only if a certain vector which defines it uniquely up to left translation satisfies the

J2-condition. We remark that totally geodesic submanifolds of Damek–Ricci spaces have
been classified by S. Kim, Y. Nikolayevsky, and J. H. Park [26]. They showed that they

are either subgroups (‘smaller’ Damek–Ricci spaces) or isometric to rank-one symmetric

spaces of negative curvature. When the ambient Damek–Ricci space is not symmetric,
totally geodesic focal varieties Fη

f belong to the first group.
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6 B. Csikós and M. Horváth

Section 11 is devoted to the study of homogeneity of the overinflated spheres. They are
all homogeneous in the symmetric case. In a non-symmetric Damek–Ricci space, it will

be proved that tubes about a focal variety are homogeneous exactly in those cases, when

the focal variety is totally geodesic.
Finally, in Section 12, we give an explicit formula for the mean curvature of the

overinflated spheres as a function of their tube radius about their focal variety.

2. Isoparametric functions

Definition 2.1. A smooth function F : M Ñ R defined on a Riemannian manifold M

is said to be isoparametric if there exist a continuous function a : F pMq Ñ R and a C2

function b : F pMq Ñ R such that

ΔF “ a˝F and }∇F }
2

“ b˝F. (1)

The geometrical meaning of the second, so-called transnormality condition is that

nearby regular level sets of F are parallel hypersurfaces. The mean curvature H of a

hypersurface Σ can be expressed as H “
1

dimΣh, where h is the trace of the shape operator
of Σ (with respect to a fixed unit normal). The following proposition shows that the

regular level sets of an isoparametric function are isoparametric hypersurfaces and gives

a formula for their mean curvature.

Proposition 2.2. If F is an isoparametric function satisfying equations (1), then the

trace h of the shape operator of a regular level set F´1pcq of F with respect to the unit

normal vector field N “
∇F?
b˝F

is expressed by

h “
´2apcq ` b1pcq

2
a

bpcq
.

Proof. In an open neighbourhood of any point p P F´1pcq, the vector field N can be

extended to an orthonormal frame E1, . . . ,En´1,En “ N, where n is the dimension of the
manifold. Then using the equations

x∇En
N,Ny “ 0; ∇Ei

F “ 0 for 1 ď i ă n; and ∇EnppqF “ x∇F ppq,Enppqy “
a

bpcq,

we obtain

hppq “

n´1
ÿ

i“1

x´∇EippqN,Eippqy “

n
ÿ

i“1

x´∇EippqN,Eippqy “

n
ÿ

i“1

B

´∇Eippq

ˆ

∇F
?
b˝F

˙

,Eippq

F

“ ´
ΔF ppq
a

bpcq
´∇Enppq

ˆ

1
?
b˝F

˙

x∇F ppq,Enppqy “ ´
apcq
a

bpcq
`

b1pcq

2
a

bpcq

Definition 2.3. The singular level sets of an isoparametric function F are called the

focal varieties of F.

There are some fundamental results of Q. M. Wang [43] and J. Ge and Z. Tang [24] on

isoparametric functions.
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Theorem 2.4 [43],[24]. For an isoparametric function F on a connected and complete

Riemannian manifold,

(i) only the minimal and maximal values of F can be singular;

(ii) the focal varieties of F are smooth minimal submanifolds;

(iii) the regular level sets of F are tubes about either of the focal varieties, having

constant mean curvature.

The following proposition is useful if we want to compute the radius of the tubes

appearing in case (iii) of Theorem 2.4.

Proposition 2.5 [43]. Let F be an isoparametric function which attains its minimal

value c0, and let c ą c0 be an arbitrary regular value of F. Then the level set F´1pcq is a

tube of radius rpcq about the focal variety F´1pc0q, where the radius rpcq is given by the
converging improper integral

rpcq “

ż c

c0

dx
a

bpxq
.

3. Damek–Ricci spaces

Damek–Ricci spaces are solvable Lie groups equipped with a left-invariant Riemannian
metric. To construct a Damek–Ricci space, we have to fix

• a Euclidean linear space ps,x,yq with an orthogonal decomposition s “ vk zk a,
where a is a 1-dimensional subspace spanned by a given unit vector A P a;

• a representation J : Clpz,qq Ñ Endpvq of the Clifford algebra Clpz,qq of the
quadratic form q : z Ñ R, qpZq “ ´xZ,Zy such that

}JZV } “ }Z}}V } @Z P z, V P v. (2)

Equation (2) implies also the identities

xJZV1,JZV2y “ }Z}
2
xV1,V2y and xJZV1,V2y “ ´xV1,JZV2y @Z P z, V1,V2 P v.

We can equip the linear space n“ vkz with a Lie algebra structure such that rn,zs “ t0u

and rv,vs Ď z, defining the Lie bracket of U,V P v by

xrU,V s,Zy “ xJZU,V y @Z P z. (3)

If v “ t0u or z “ t0u, then n is commutative; otherwise n is a 2-step nilpotent Lie algebra

with center z.

Equation (3) implies immediately that kervpadUq “ pJzUqK X v, where kervpadUq

abbreviates the intersection kerpadUq X v. Hence, v has an orthogonal direct sum

decomposition

v “ kervpadUq kJzU “ RU k
`

kervpadUq XUK
˘

kJzU (4)

for any U P v.
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8 B. Csikós and M. Horváth

We can introduce a solvable Lie algebra structure on s with the Lie bracket

rV `Z `sA,U `X ` tAs “

ˆ

s

2
U ´

t

2
V

˙

` prU,V s `sX ´ tZq.

The simply connected, connected Lie group S with Lie algebra s, equipped with the

left invariant Riemannian metric induced by x,y is a Damek–Ricci space. We shall denote

the normal Lie subgroup of S corresponding to the Lie algebra n by N ŸS.
There is a classification of Damek–Ricci spaces (i.e., a classification of the possible

input data for the construction of a Damek–Ricci space). Every Damek–Ricci space is

harmonic. The Damek–Ricci spaces corresponding to the degenerate cases dimv “ 0 or
dimz“ 0 are isometric with a real hyperbolic space RHn. The further rank one symmetric

spaces CHn, HHn, and OH2 are also among the Damek–Ricci spaces, with dimz “ 1,3,7,

respectively, but none of the other Damek–Ricci spaces are symmetric. See [3, Sections
3.1.2, 4.1.2, 4.4] for details.

We collect some useful formulae in s. Denote by n and m the dimension of v and z,

respectively. Let E1, . . . ,En be an orthonormal basis of v, F1, . . . ,Fm be an orthonormal

basis of z, and A P a be the unit vector introduced above. The Lie algebra structure on
n is given by the structure constants Ci,j,αp1 ď i,j ď n, 1 ď α ď m) appearing in the

decomposition rEi,Ejs “
řm

α“1Ci,j,αFα. When there is no danger of confusion, we write

Cijα instead of Ci,j,α.

Lemma 3.1. Setting Jα “ JFα
, we have JαpEiq “

řn
j“1CijαEj.

Proof. The formula follows from xJαpEiq,Eky “ xrEi,Eks,Fαy.

Lemma 3.2. The structure constants satisfy the identities

Cijα “ ´Cjiα,
n
ÿ

k“1

CikαCkjα “ ´δij @ i,j,α.

Proof. The first equation follows from the skew-symmetry of the Lie bracket, the second

identity can be obtained by evaluating the identity J2
Z “ ´}Z}2Idv on the basis vectors

Z “ Fα.

Lemma 3.3 [3, p. 25]. For any U,V P v and for any X P z, we have

rJXU,V s ´ rU,JXV s “ ´2xU,V yX.

Proof. Polarising the identity J2
Z “ ´}Z}2Idv, we obtain

JXJY `JY JX “ ´2xX,Y yIdv (5)

If Y P z is an arbitrary element, then this gives

xrJXU,V s ´ rU,JXV s,Y y “ xJY JXU,V y ´ xJY U,JXV y

“ xJY JXU,V y ` xJXJY U,V y “ ´2xU,V yxX,Y y

and this implies the statement.
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Equation (5) provides also the identity

xJXV ,JY V y “ ´
@

1
2 pJY JX `JXJY qV ,V

D

“ xX,Y y}V }
2. (6)

Lemma 3.4. For V P v, let PV : v Ñ JzV be the orthogonal projection onto JzV . Then

for any V ,V1,V2 P v, we have

xrV ,V1s,rV ,V2sy “ }V }
2
xPV pV1q,PV pV2qy.

Proof. The statement is true for V “ 0. If V ‰ 0, then
!

1
}V }

JαV : 1 ď α ď m
)

is an

orthonormal basis of JzV by (6), and

xrV ,V1s,rV ,V2sy “

m
ÿ

α“1

xFα,rV ,V1sy ¨ xFα,rV ,V2sy

“

m
ÿ

α“1

xJαV ,V1y ¨ xJαV ,V2y “ }V }
2
xPV pV1q,PV pV2qy.

Rewriting the obtained identity in the form

xJrV ,V1sV ,V2y “ xrV ,V1s,rV ,V2sy “ }V }
2
xPV pV1q,PV pV2qy “ x}V }

2PV pV1q,V2y,

we get the following corollary.

Corollary 3.5 [12, Eq. (1.8)]. For any V ,V1 P v, we have

JrV ,V1sV “ }V }
2PV pV1q.

Lemma 3.6. We have also the identity

n
ÿ

i“1

xrEi,V s,rEi,W sy “ mxV ,W y @V ,W P v.

Proof. Write V and W as a linear combination V “
řn

j“1VjEj and W “
řn

k“1WkEk.

Then
n
ÿ

i“1

xrEi,V s,rEi,W sy “

n
ÿ

i,j,k“1

xrEi,Ejs,rEi,EksyVjWk “

n
ÿ

i,j,k“1

m
ÿ

α“1

CijαCikαVjWk

“

m
ÿ

α“1

n
ÿ

j,k“1

˜

n
ÿ

i“1

´CjiαCikα

¸

VjWk “

m
ÿ

α“1

n
ÿ

j,k“1

δjkVjWk “ mxV ,W y.

4. The J2-condition

The J2-condition for generalised Heisenberg type groups was introduced by M. Cowling,

A. H. Dooley, Á. Korányi, and F. Ricci [12]. Their definition can be adapted to Damek–

Ricci spaces.
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Definition 4.1. In a Damek–Ricci space, we say that a vector v P v satisfies the
J2-condition if for any z1,z2 P z, z1 K z2, there exists an element z3 P z such that

Jz1Jz2v “ Jz3v.

Definition 4.2. A Damek–Ricci space satisfies the J2-condition if every vector in v

satisfies the J2-condition.

Lemma 4.3. A vector v P v satisfies the J2-condition if and only if the Clpz,qq-submodule
Clpz,qqv of v generated by the element v coincides with Rv‘Jzv.

Proof. It is clear that v P Rv‘Jzv ď Clpz,qqv for any v, so we need to show that Rv‘Jzv

is a Clpz,qq-module if and only if v satisfies the J2-condition.

Assume first that v satisfies the J2-condition and show that Rv ‘ Jzv is a Clpz,qq-
module. Since Clpz,qq is generated by the elements of z Ă Clpz,qq, it suffices to prove that

Jz1pRv‘Jzvq Ď Rv‘Jzv for all z1 P z. Choose an arbitrary element λv`Jzv of Rv‘Jzv

and decompose z as z “ μz1 ` z2, where z1 K z2. Then there is an element z3 P z such

that Jz1Jz2v “ Jz3v, thus Jz1pλv`Jzvq “ ´μ}z1}2v`Jλz1`z3v P Rv‘Jzv, as we wanted
to show.

Conversely, if Rv ‘ Jzv is a Clpz,qq-module, and z1 K z2 are two elements of z, then

Jz2v P Rv ‘ Jzv implies Jz1Jz2v P Rv ‘ Jzv, so there exist λ P R and z3 such that
Jz1Jz2v “ λv`Jz3v. Since

xv,Jz3vy “ xz3,rv,vsy “ 0 and xv,Jz1Jz2vy “ ´xJz1v,Jz2vy “ ´xz1,z2y}v}
2

“ 0,

λ must vanish, therefore Jz1Jz2v “ Jz3v.

Corollary 4.4. A vector v P v satisfies the J2-condition if and only if kervpadvq XvK is

a Clpz,qq-submodule of v. This is also equivalent to the condition Jzpkervpadvq X vKq Ď

kervpadvq.

Proof. The first part follows from the fact that the orthogonal complement of a Clpz,qq-
submodule of v is also a Clpz,qq-submodule of v as the operators Jz are skew adjoint.

To show the second part, it is enough to check that if w P kervpadvq, then Jzw K v for

any z P z. However, this follows from xJzw,vy “ xrw,vs,zy “ 0.

Proposition 4.5. If there is a non-zero vector v P v which satisfies the J2-condition,
then m “ dimz P t0,1,3,7u and Rv‘Jzv is a non-trivial irreducible Clpz,qq-module.

Proof. Recall the classification of Clifford modules over Clpz,qq (see [3, Sec. 3.1.2] or

[29, Ch. I, §. 5]).

(a) If m ı 3 (mod 4), then there exists a unique (up to isomorphism) irreducible
Clpz,qq-module d. Every Clpz,qq-module v is isomorphic to a k -fold direct sum of d,

that is, v –
Àk

d.

(b) If m ” 3 (mod 4), then there exists exactly two non-isomorphic irreducible

Clpz,qq-modules d1 and d2. Every Clpz,qq-module v is isomorphic to the direct sum

v –

´

Àk1 d1

¯

‘

´

Àk2 d2

¯

for some k1 and k2. The modules d1 and d2 have the

same dimension.

https://doi.org/10.1017/S147474802510131X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802510131X


Sphere-like isoparametric hypersurfaces in Damek–Ricci spaces 11

The formula for the dimension n0 of the modules d, d1, and d2 depends on the modulo 8
residue class of m and is given in the following table.

m 8p 8p`1 8p`2 8p`3 8p`4 8p`5 8p`6 8p`7

n0 24p 24p`1 24p`2 24p`2 24p`3 24p`3 24p`3 24p`3

If there exists a non-zero vector v P v which satisfies the J2-condition, then

Clpz,qqv “ Rv ‘ Jzv. The dimension of Clpz,qqv is a multiple of n0, the dimension of
Rv ‘ Jzv is m ` 1, so we must have n0 ď m ` 1. As 8p ` 7 ă 24p if p ą 0, inequality

n0 ď m`1 can hold only if p “ 0. Among the eight values of m corresponding to p “ 0,

exactly the values 0,1,3,7 satisfy the inequality n0 ď m`1. Since in these four cases we
have n0 “ m`1 in fact, Rv‘Jzv is a non-trivial irreducible Clpz,qq-module.

The following proposition describes the set of vectors satisfying the J2-condition in

those cases when this set contains a non-zero vector.

Theorem 4.6. For a given z, dimz “ m, let d or d1 and d2 be the irreducible Clpz,qq-

modules appearing in the previous proof.

(i) If m P t0,1u and v “
Àk

d, then all elements of v satisfy the J2-condition.

(ii) If m“ 3 and v“

´

Àk1 d1

¯

‘

´

Àk2 d2

¯

then a vector v P v satisfies the J2-condition

if and only if v is isotypic, i.e., v is either in
Àk1 d1 or in

Àk2 d2.

(iii) If m“ 7 and v“

´

Àk1 d1

¯

‘

´

Àk2 d2

¯

then a vector v P v satisfies the J2-condition

if and only if v is isotypic, and if i P t1,2u is the index for which v P
Àki di, then v

has the form v “ pλ1w,. . . ,λki
wq, where w is an element of di and the coefficients

λ1, . . . ,λki
are real numbers.

Proof. We consider all cases simultaneously, writing v “ D1 ‘¨¨ ¨‘DK , where K “ k and
Di “ d for all i in case (i), while in cases (ii) and (iii), we set K “ k1 `k2, Di “ d1 for

1 ď i ď k1 and Di “ d2 for k1 ă i ď k1 `k2.

Assume that v satisfies the J2-condition. Let πi : v Ñ Di be the projection onto the
ith component and vi “ πipvq. The restriction πv

i of πi onto the submodule Clpz,qqv

is a module homomorphism between two irreducible modules, hence it is either the

0-homomorphism or an isomorphism of modules. This implies that if vi ‰ 0, then

Di – Clpz,qqv. Hence v must be isotypic.
Furthermore, if i ă j are two indices for which vi ‰ 0 and vj ‰ 0, then

πj ˝ pπv
i q´1 : Di Ñ Dj is a module isomorphism mapping vi to vj . Actually, the condition

that for any pair of indices i ă j for which vi ‰ 0 and vj ‰ 0, there exists a module
isomorphism Di Ñ Dj mapping vi to vj is also sufficient for an isotypic vector to satisfy

the J2-condition.

To understand what this characterisation of the J2-condition means in different cases,
we need a description of the module automorphisms of the irreducible Clifford modules.

Let K denote R, C, H, O corresponding to the cases m “ 0,1,3,7, respectively. In each

case, we can construct a realisation of the modules d or d1 and d2 on the linear space
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K thinking of z as the linear space of purely imaginary elements K. Then the operator
Jz : K Ñ K for z P z is the multiplication by z in the commutative cases K P tR,Cu. When

K is not commutative, Jz can act on K both by left and by right multiplications by z,

providing the two non-isomorphic Clifford module structures d1 and d2 of K. In each case
when Jz equals the left multiplication by z, a module automorphism φ : K Ñ K is a right

multiplication by a non-zero element of the nucleus of K. Recall that the nucleus of an

alternative algebra consists of elements x satisfying the associativity identity pabqx“ apbxq

for every a, b. Similarly, when Jz is the right multiplication by z, a module automorphism
φ : K Ñ K is a left multiplication by a non-zero element of the nucleus. It is clear that the

nucleus of an associative algebra equals the whole algebra, and it is known that the nucleus

of the algebra of octonions is R. This means that in the associative cases K P tR,C,Hu,
the automorphism groups of the irreducible Clifford modules act transitively on non-zero

vectors, while in the case of O, two non-zero vectors belong to the same orbit of the

automorphism group if and only if they are real multiples of one another. This completes
the proof.

Remark 4.7. The above characterisation of vectors having the J2-condition implies
a theorem of M. Cowling et al. [12] saying that a Damek–Ricci space satisfies the

J2-condition if and only if it is a symmetric space.

Proposition 4.8. The following statements are equivalent for a Damek–Ricci space:

(i) The space is symmetric.

(ii) The space satisfies the J2-condition.

(iii) If for the non-zero vectors v1,v2 P v the intersection pJzv1 ‘Rv1qXpJzv2 ‘Rv2q has
a non-zero element, then Jzv1 ‘Rv1 “ Jzv2 ‘Rv2.

Proof. By the above remark, the equivalence (i)ðñ (ii) is proved in [12] for Damek–Ricci
spaces and it also follows from Theorem 4.6.

Implication (ii)ùñ(iii) follows from the fact that if v1,v2 P vzt0u satisfy the J2-condition,

then Jzv1 ‘Rv1 and Jzv2 ‘Rv2 are irreducible Clifford modules, so their intersection,
which is a submodule of both, is either 0 or equal to both.

Now we prove (iii)ùñ(ii). By Lemma 4.3, we need to show that for any non-zero

vector v P v, Jzv ‘ Rv is a Clpz,qq-submodule. Choose an arbitrary non-zero element
w P Jzv ‘Rv. Then w is in the intersection pJzv ‘Rvq X pJzw‘Rwq, hence Jzv ‘Rv “

Jzw‘Rw, therefore Jzw Ď Jzv‘Rv.

5. The half-space model of Damek–Ricci spaces

A convenient model of Damek–Ricci spaces can be built on the linear space n‘R by

pulling back the Riemannian metric of S by the diffeomorphism Φ: n‘R Ñ S defined by

ΦpQ,τq “ exppQqexppτAq,

where exp is the exponential map of the Lie group S. Fixing orthonormal bases

E1, . . . ,En P v and F1, . . . ,Fm P z, the map Φ provides a global coordinate system

pv1, . . . ,vn;z1, . . . ,zm;τq : S Ñ R
n`m`1 by
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Φ´1
ppq “

˜

n
ÿ

i“1

vippqEi `

m
ÿ

α“1

zαppqFα,τppq

¸

for p P S.

The basis vector fields induced by this chart on S will be denoted by Bv1
, . . . ,Bvn

;Bz1, . . . ,

Bzm ;Bτ .

Every Damek–Ricci space is an Hadamard manifold; therefore its ideal boundary can
be defined in the usual manner. To deal with the ideal boundary B8S of S, we shall prefer

to model the Damek–Ricci space on the open upper half-space nˆR` Ă n‘R obtained

by the modification

Ψ: nˆR` Ñ S, ΨpQ,tq “ ΦpQ, ln tq

of the diffeomorphism Φ. (We use the sign ˆ in the expression nˆR` instead of the sign

‘ since R` is not a linear space.)
Using this half-space model, the ideal boundary B8S of S can be identified with the

one-point compactification of the hyperplane nˆ t0u.

Furthermore, it is easy to rewrite known formulae computed in the model S – n‘R to

the half-space model by the simple coordinate transformation t “ eτ .
For example, rewriting the multiplication rule of the group S computed in [3, Sec. 4.1.3]

to the half-space model S
Ψ
– v‘ zˆR`, we obtain

pV1,Z1,t1q ¨ pV2,Z2,t2q “ pV1 `
?
t1V2,Z1 ` t1Z2 `

1
2

?
t1rV1,V2s,t1t2q.

It is clear from this equation that the left translation

LpV̄ ,Z̄,t̄q

`

pV ,Z,tq
˘

“

´?
t̄V ,t̄Z `

1
2

?
t̄ad V̄ pV q,t̄t

¯

`
`

V̄ ,Z̄,0
˘

. (7)

by an arbitrary element pV̄ ,Z̄,t̄q P S extends to the whole space n ‘ R as an affine

transformation.

Any geodesic of the Damek–Ricci space can be obtained as a left translation of a
geodesic starting from the identity element e “ p0,0,1q of S. If ξ “ pv,z,sq P s – TeS is a

unit tangent vector, then by [3, Sec. 4.1.11, Thm. 1], the geodesic γ̂ with initial velocity

ξ is given by γ̂ptq “ γptanhpt{2qq, where

γpθq “

ˆ

2θp1´sθq

χpθq
v`

2θ2

χpθq
Jzv,

2θ

χpθq
z,
1´θ2

χpθq

˙

, χpθq “ p1´sθq
2

` }z}
2θ2. (8)

Formula (8) can be evaluated for any real number θ, for which χpθq ‰ 0, but for |θ| ě 1,
γpθq is lying in the closed lower half-space nˆp´8,0s. Let Pps‘Rq be the projective space

obtained by adding points at infinity to the affine space s, which is naturally isomorphic

to the projective space associated to the linear space s‘R. The point at infinity of the
straight line a will play a special role in this paper and will be denoted by f. The curve γ

extends continuously to a map RP1 Ñ Pps‘Rq, which we denote by the same symbol γ.

It is clear that
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γp8q “

$

&

%

ˆ

´
2s

s2 ` }z}2
v`

2

s2 ` }z}2
Jzv,0, ´

1

s2 ` }z}2

˙

if }v} ‰ 1,

f if }v} “ 1.

(9)

We shall call the map γ : RP1 Ñ Pps‘Rq the prolongation of the geodesic curve γ̂.

Theorem 5.1. The map γ : RP1 Ñ Pps‘Rq is a birational equivalence onto

(i) an ellipse in s if z ‰ 0;

(ii) the closure in Pps‘Rq of a parabola in s with axis parallel to a if z “ 0, but v ‰ 0;

(iii) the closure in Pps‘Rq of a straight line parallel to a if ξ P a.

Proof. Observe that the geodesic is contained in the linear subspace generated by

the pairwise orthogonal vectors v,Jzv,z,A. Choose an orthonormal system of vectors
Ev,EJ,Ez P n such that

v “ }v}Ev, Jzv “ }Jzv}EJ, z “ }z}Ez,

and denote by Xpθq,Y pθq,Zpθq,W pθq the coefficients of γpθq in the decomposition

γpθq “ XpθqEv `Y pθqEJ `ZpθqEz `W pθqA.

As χ is a quadratic polynomial of θ, the functions X,Y ,Z,W are rational functions of θ:

Xpθq “
2θp1´sθq

χpθq
}v}, Y pθq “

2θ2

χpθq
}z}}v}, Zpθq “

2θ

χpθq
}z}, W pθq “

1´θ2

χpθq
.

Using the relation }ξ}2 “ }v}2 ` }z}2 `s2 “ 1, a simple algebraic computation shows that

the functions X,Y ,Z,W satisfy the equations

}z}X `sY ´ }v}Z “ 0, (10)

ˆ

1´
}v}2

2

˙

Y ´s}v}Z ` }v}}z}W “ }v}}z}, (11)

}z}pX2
`Y 2

q ´2}v}Y “ 0. (12)

Case (i): If z ‰ 0, we distinguish two cases depending on v.

If v ‰ 0, then we can express Z and W as affine functions of the vector XEv `Y EJ

from the equations (10) and (11); therefore, the image of γ is contained in an affine image

of the linear subspace spanned by Ev and EJ . Since (12) defines a circle in this linear

subspace, the image of γ is an ellipse. In this case, we can express θ as the rational

function Y
Z}v}

of the coordinates of γpθq, thus γ is a birational equivalence.
If v “ 0, then X “ Y “ 0 and γ is in the linear subspace spanned by Ez and A. It

can be verified that in this case, the coordinate functions Z and W satisfy the quadratic

equation

Z2
`W 2

´
2s

}z}
Z “ 1,
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which defines a circle. The parameter θ can be expressed as the rational function
Z

sZ`}z}W`}z}
of the coordinates of γpθq, hence γ is a birational equivalence.

Case (ii): If z “ 0, but v ‰ 0, then Y “ Z “ 0, thus, the image of γ is in the linear

subspace spanned by Ev and A, and the coordinates of γpθq satisfy equation

4}v}
2W `X2

´ p2}v} `sXq
2

“ 0,

which defines a parabola with axis parallel to a. As θ “
Xpθq

2}v}`sXpθq
, γ is a birational

equivalence.

Case (iii): If z “ 0 and v “ 0, then s “ 1 and γpθq “
`

0,0, 1`θ
1´θ

˘

, so γ parameterises the

projective line containing a.

As the group S acts on itself simply transitively and isometrically by left translations,

any unit speed geodesic in S can be written uniquely as a map η̂ : t ÞÑ ηptanhpt{2qq, where

η “ LpV̄ ,Z̄,t̄q ˝γ is the composition of the left translation LpV̄ ,Z̄,t̄q by pV̄ ,Z̄,t̄q P S and the
curve γ defined by (8) from a fixed unit tangent vector pv,z,sq P TeS. Left translations (7)

act on the half-space model as an affine transformation fixing the point at infinity f in

the direction of A. Therefore, any regular geodesic curve is represented in the half-space
model either by an arc of an ellipse, or by an arc of a parabola with axis parallel to A,

or by a half-line parallel to A, and the affine type of the representing curve is invariant

under left translations.

6. Distance-like isoparametric functions in Damek–Ricci spaces

Denote by d the distance function on S induced by the Riemannian metric. As it is
shown in [39, Sec. 4.4, Eq. (21)], the distance of the points xi “ pVi,Zi,tiq P v‘zˆR` – S,

pi “ 0,1q satisfies the equation

4sinh2
ˆ

dpx1,x0q

2

˙

“

ˆ

t1
t0

`
t0
t1

´2

˙

`
t1 ` t0
2t1t0

}V1 ´V0}
2

`
1

t1t0

˜

›

›

›

›

Z1 ´Z0 `
1

2
rV1,V0s

›

›

›

›

2

`
}V1 ´V0}4

16

¸

.

This equation can be compressed to the form

4cosh2
ˆ

dpx1,x0q

2

˙

“
1

t1t0

¨

˝

˜

t1 ` t0 `

›

›

›

›

V1 ´V0

2

›

›

›

›

2
¸2

`

›

›

›

›

Z1 ´Z0 `
1

2
rV1,V0s

›

›

›

›

2
˛

‚.

For any given center x0 “ pV0,Z0,t0q P v‘ zˆR`, the distance function dx0
p.q “ dp .,x0q

has the same level sets as the smooth ‘distorted distance’ function

Dx0
ppV ,Z,tqq “

1

t

¨

˝

˜

t` t0 `

›

›

›

›

V ´V0

2

›

›

›

›

2
¸2

`

›

›

›

›

Z ´Z0 `
1

2
rV ,V0s

›

›

›

›

2
˛

‚, (13)
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which is related to the function dx0
by the formula

4cosh2
ˆ

dx0

2

˙

“
1

t0
Dx0

.

Observe that tDx0
ppV ,Z,tqq is a quartic polynomial function on the linear space v‘z‘R.

As the Damek–Ricci spaces are harmonic and the regular level sets of the function Dx0

are the geodesic spheres about x0, they are parallel hypersurfaces of one another and each

of them has constant mean curvature. This implies that the function Dx0
is isoparametric.

The key observation is that in contrast to the function dx0
, which diverges when x0

tends to a point at infinity, the distorted distance function makes sense also for the points

not belonging to the upper half-space, i.e., for points with non-positive t0.

Theorem 6.1. For any x0 “ pV0,Z0,t0q P v‘ z‘R, the function Dx0
is an isoparametric

function on S.

Proof. It suffices to show that there exist smooth functions a, b such that ΔDx0
“ a˝Dx0

and }∇Dx0
}2 “ b˝Dx0

. We refer to [3, Sec. 4.4, Lemma] for the computation of the Laplace
operator Δ of S. We note that there is an unnecessary coefficient 1

2 in the formula in [3].

The correct formula and its transcription to the half-space model are

Δ “ eτ
n
ÿ

i“1

B
2
vi

`eτ

˜

eτ `
1

4

n
ÿ

i“1

v2i

¸

m
ÿ

α“1

B
2
zα ` B

2
τ ´

´

m`
n

2

¯

Bτ `eτ
n
ÿ

i,j“1

m
ÿ

α“1

CijαviBvj
Bzα

“ t
n
ÿ

i“1

B
2
vi

` t

˜

t`
1

4

n
ÿ

i“1

v2i

¸

m
ÿ

α“1

B
2
zα ` t2B

2
t ´

´

m`
n

2
´1

¯

tBt ` t
n
ÿ

i,j“1

m
ÿ

α“1

CijαviBvj
Bzα,

where the second line is obtained from the preceding line using Bτ “ tBt and B2
τ “ t2B2

t `tBt.

Evaluating ΔDx0
at x “ pV ,Z,tq P v‘ zˆR`, where V “

řn
i“1V

iEi, we get

ΔDx0
pxq “

n
ÿ

i“1

ˆ

t` t0 `
}V ´V0}2

4
`

1

2
xEi,V ´V0y

2
`

1

2
}rEi,V0s}

2

˙

`

ˆ

t`
1

4
}V }

2

˙

˜

m
ÿ

α“1

2

¸

`
2

t

˜

ˆ

t0 `
}V ´V0}2

4

˙2

`

›

›

›

›

Z ´Z0 `
1

2
rV ,V0s

›

›

›

›

2
¸

´

´

m`
n

2
´1

¯

˜

t´
1

t

˜

ˆ

t0 `
}V ´V0}2

4

˙2

`

›

›

›

›

Z ´Z0 `
1

2
rV ,V0s

›

›

›

›

2
¸¸

`

n
ÿ

i,j“1

m
ÿ

α“1

CijαV
i
xFα,rEj,V0sy.

(14)
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It is clear that
n
ÿ

i“1

xEi,V ´V0y
2

“ }V ´V0}
2.

Furthermore, Lemma 3.6 yields

n
ÿ

i“1

}rEi,V0s}
2

“ m}V0}
2,

and from Lemma 3.2, we obtain

n
ÿ

i,j“1

m
ÿ

α“1

CijαV
i
xFα,rEj,V0sy “

n
ÿ

i,j,k“1

m
ÿ

α“1

CijαV
iCjkαxV0,Eky

“

n
ÿ

i,k“1

m
ÿ

α“1

´δikV
i
xV0,Eky “ ´mxV ,V0y.

Plugging these equations into (14), a simple algebraic rearrangement gives

ΔDx0
pxq “

´

m`
n

2
`1

¯

Dx0
pxq ´2pm`1qt0.

Consider now the squared norm of the gradient of Dx0
. Denote by E1, . . . ,En;F1, . . . ,

Fm;A the left-invariant vector fields corresponding to the orthonormal basis
E1, . . . ,En;F1, . . . ,Fm;A P s. These vector fields are computed in [3, Sec. 4.1.5]. The

derivative of Dx0
with respect to these vector fields are

EiDx0
pxq “

?
tBvi

Dx0
pxq ´

1

2

?
t

m
ÿ

α“1

n
ÿ

j“1

CijαvjBzαDx0
pxq

“
1

?
t

˜

t` t0 `

›

›

›

›

V ´V0

2

›

›

›

›

2
¸

xV ´V0,Eiy `
1

?
t

B

Z ´Z0 `
1

2
rV ,V0s,rEi,V0s

F

´

m
ÿ

α“1

n
ÿ

j“1

Cijαvj
1

?
t

B

Z ´Z0 `
1

2
rV ,V0s,Fα

F

“
1

?
t

˜

t` t0 `

›

›

›

›

V ´V0

2

›

›

›

›

2
¸

xV ´V0,Eiy `
1

?
t

B

Z ´Z0 `
1

2
rV ,V0s,rEi,V0s

F

´
1

?
t

B

Z ´Z0 `
1

2
rV ,V0s,rEi,V s

F

“
1

?
t

˜

t` t0 `

›

›

›

›

V ´V0

2

›

›

›

›

2
¸

xV ´V0,Eiy `
1

?
t

A

JZ´Z0` 1
2 rV ,V0spV ´V0q,Ei

E

,

FαDx0
pxq “ tBzαDx0

pxq “ 2

B

Z ´Z0 `
1

2
rV ,V0s,Fα

F

,

ADx0
pxq “ BτDx0

pxq “ tBtDx0
pxq “ ´Dx0

pxq `2

˜

t` t0 `

›

›

›

›

V ´V0

2

›

›

›

›

2
¸

.
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The squared norm of the gradient is

›

›∇Dx0
pxq

›

›

2
“

n
ÿ

i“1

`

EiDx0
pxq

˘2
`

m
ÿ

α“1

`

FαDx0
pxq

˘2
`
`

ADx0
pxq

˘2

“
1

t

˜

t` t0 `

›

›

›

›

V ´V0

2

›

›

›

›

2
¸2

}V ´V0}
2

`
1

t

›

›

›

›

Z ´Z0 `
1

2
rV ,V0s

›

›

›

›

2

}V ´V0}
2

`4

›

›

›

›

Z ´Z0 `
1

2
rV ,V0s

›

›

›

›

2

`D2
x0

pxq ´4Dx0
pxq

˜

t` t0 `

›

›

›

›

V ´V0

2

›

›

›

›

2
¸

`4

˜

t` t0 `

›

›

›

›

V ´V0

2

›

›

›

›

2
¸2

“ D2
x0

pxq ´4t0Dx0
pxq.

7. The focal varieties of the functions Dx0

Let x0 “ pV0,Z0,t0q P v‘ z‘R be an arbitrary point. Since Dx0
ppV ,Z,tqq ě t` 2t0, the

function Dx0
has no maximal value. To describe the focal variety Fx0

of the function Dx0

corresponding to its minimal value (if it exists), we distinguish three cases depending on
the sign of t0.

When t0 is positive, the minimal value of Dx0
is 4t0, and the minimum is attained at

the point x0, so Fx0
consists of a single point. This result is consistent with the fact that

the regular level sets of Dx0
are the geodesic spheres centered at x0.

If t0 “ 0, the infimum of the range of Dx0
is 0, but the 0 value is not attained, so Dx0

has no focal varieties. The level sets are parallel horospheres of the space.

The case t0 ă 0 is more interesting. Then the minimum of the function Dx0
is 0, and

the focal variety Fx0
is defined by the system of equations

}V ´V0}
2

“ ´4pt` t0q, Z “ Z0 ´
1
2 rV ,V0s. (15)

The first equation defines a downward opening paraboloid of revolution in the space

v ‘ R. The focal surface can be obtained as the intersection of the upper half-space
n ˆ R` with the image of this paraboloid under the affine map v ‘ R Ñ v ‘ z ‘ R,

pV ,tq ÞÑ pV ,Z0 ´
1
2 rV ,V0s,tq. By Theorem 2.4, we conclude that Fx0

is an n-dimensional

minimal submanifold of the Damek–Ricci space, which is diffeomorphic to R
n, and the

isoparametric hypersurfaces obtained as the regular level sets of the function Dx0
are

the tubes about Fx0
, in particular, the regular level sets are diffeomorphic to R

n ˆSm,

see Figure 1.
A straightforward computation using (7) shows the following lemma.

Proposition 7.1. Let Lp be the affine transformation (7) extending the left translation by

the element p “ pV̄ ,Z̄,t̄q P S to n‘R. Then Dx0
˝Lp “ t̄DLp´1 px0q holds for any x0 P n‘R.
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Figure 1. The level sets of the function Dx0 for t0 ă 0 are tubes about the focal variety Fx0 . In fact, the

figure depicts only a 3-dimensional slice of the level sets.

The lemma allows us to describe the left action of the group S on the focal varieties

Fx0
“ D´1

x0
p0q.

Corollary 7.2. We have LppFx0
q “FLppx0q, in particular, the family of the focal varieties

Fx0
is invariant under left translations.

8. Prolongation of the family of spheres tangent to one another at one point

Consider the unit speed geodesic curve η̂ : t ÞÑ ηptanhpt{2qq starting from the point p “

pV̄ ,Z̄,t̄q “ ηp0q, where η “ LpV̄ ,Z̄,t̄q ˝ γ, and γ is the prolongation (8) of the unit speed
geodesic γ̂ starting with initial velocity γ̂1p0q “ pv,z,sq P TeS. For r P R, the geodesic

sphere Ση̂
r of radius |r| centered at ηpθq, where θ “ tanhpr{2q, is defined by the equation

Dηpθqpxq “ Dηpθqppq. As r is running over R, θ is varying in the interval p´1,1q, however,
the equation Dηpθqpxq “ Dηpθqppq makes sense and defines an isoparametric hypersurface

Σ̃η̂
θ also in the case, when θ is an arbitrary element of RP1 for which ηpθq is not a point

at infinity. Thus, following the strategy described in the introduction, we may call the

family Σ̃η̂
θ the natural analytic prolongation of the family of spheres passing through p

and centered at a point of the geodesic η̂, see Figure 2.

By Theorem 5.1, the map η : RP1 Ñ Pps ‘ Rq parameterises either an ellipse or

the projective closure of a parabola or a straight line. In the case of an ellipse, the

hypersurfaces Σ̃η̂
θ are defined for all θ P RP1. However, in the other two cases, there is a

value of θ, for which ηpθq “ f, and for this value, we do not have a definition of Σ̃η̂
θ at

the moment. The curve η or the curve γ goes through the point at infinity f if and only

if the initial velocity pv,z,sq of γ̂ has vanishing z component, and in that case, the point
at infinity corresponds to the parameter θ “ 1{s P RP1. To eliminate the exceptional role

of the parameter θ “ 1{s, we compute the limit of the hypersurfaces Σ̃η̂
θ as θ tends to

1{s. The hypersurfaces Σ̃η̂
θ are algebraic hypersurfaces of degree 4. Non-trivial polynomial

equations of degree at most 4 up to a non-zero constant multiplier form a projective space

with a natural topology. We shall say that the hypersurfaces Σ̃η̂
θ tend to the hypersurface

Σ̃ as θ tends to 1{s if the equations of them tend to the equation of Σ̃ in the projective

space of at most quartic equations.
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Figure 2. Left: Limit horospheres of inflating spheres intersecting a geodesic γ orthogonally at p “ γp0q.

Right: A horosphere and two isoparametric hypersurfaces belonging to the analytic prolongation of the

family of inflating spheres.

Proposition 8.1. Using the above notations, if z “ 0, then the quartic hypersufaces Σ̃η̂
θ

tend to the hypersurface defined by the quadratic equation

1

t

ˆ

´

2s
?
t̄´ xV ´ V̄ ,vy

¯2

`
›

›rV ´ V̄ ,vs
›

›

2
˙

“ 4s2 (16)

as θ tends to 1{s.

We shall denote the limit hypersurface by Σ̃η̂
1{s and by

Dη
fpV ,Z,tq “

1

t

ˆ

´

2s
?
t̄´ xV ´ V̄ ,vy

¯2

`
›

›rV ´ V̄ ,vs
›

›

2
˙

the function on the left hand side of equation (16).

Proof. The coefficients of the polynomial function tDηpθqppV ,Z,tqq diverge as θ tends to

1{s, (we set 1{s “ 8 if s “ 0), but if we multiply Dηpθq with the constant p1{θ´sq2 to slow
down the increase of the coefficients, the normalised polynomials will converge to a non-
zero polynomial. Using the relation s2 `}v}2 “ 1, one can bring p1{θ´sq2tDηpθqppV ,Z,tqq

into the form
˜

ˆ

1

θ
´ s

˙

˜

t` t̄`

›

›

›

›

›

V̄ ´V

2

›

›

›

›

›

2¸

`2st̄´

a

t̄xV ´ V̄ ,vy

¸2

`

›

›

›

›

ˆ

1

θ
´ s

˙̂

Z ´ Z̄ `
1

2
rV ,V̄ s

˙

`

a

t̄rV ´ V̄ ,vs

›

›

›

›

2

.

Thus, we have

lim
θÑ1{s

p1{θ´sq
2DηpθqppV ,Z,tqq “

t̄

t

ˆ

´

2s
?
t̄´ xV ´ V̄ ,vy

¯2

`
›

›rV ´ V̄ ,vs
›

›

2
˙

,

which coincides with Dη
fpV ,Z,tq up to the constant multiplier t̄. Then (16) is the equation

of the level set of Dη
f passing through the point p.

The proof of the following statement is straightforward from the above formulas.
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Proposition 8.2. The function Dη
f is isoparametric for any prolonged geodesic η “

LpV̄ ,Z̄,t̄q ˝ γ, where γ is the prolongation (8) of the unit speed geodesic γ̂ starting with

initial velocity γ̂1p0q “ pv,z,sq P TeS.

(i) The function Dη
f has no maximal value.

(ii) If v ‰ 0, that is, the image of η is a parabola, then the minimal value of Dη
f is

equal to 0. In particular, its focal variety is

Fη
f “ tpV ,Z,tq P v‘ z‘R | rV ´ V̄ ,vs “ 0 and xV ´ V̄ ,vy “ 2s

?
t̄u.

In the half-space model, the minimal submanifold Fη
f is represented by the

intersection of the half-space model and the translation of the linear subspace

pkervpadvq X vKq ‘ z‘R “ pJzv ‘RvqK with the vector V̄ ` p2s
?
t̄{}v}2qv, which

is an affine subspace of dimension n “ dimpkeradvq ´1.

(iii) If v “ 0 and s “ ˘1, meaning that imη is a straight line perpendicular to the

boundary n of the model, then the function Dη
fpV ,Z,tq “ 4t̄{t does not possess any

minimal values. As a result, the function has an empty focal variety. The level sets
of the function Dη

f are parallel horospheres, represented by parallel hyperplanes

perpendicular to a in the half-space model.

The functions Dη
f and their focal varieties inherit the following invariance properties

from the functions Dx0
(cf. Proposition 8.3 and Corollary 7.2).

Proposition 8.3. Let Lp̂ be the left translation by the element p̂ “ pV̂ ,Ẑ,t̂q P S, and η be

an arbitrary parabola-shaped pregeodesic as in Proposition 8.1. Then Dη
f ˝Lp̂ “ t̂D

Lp̂´1˝η

f

holds.

In particular, we have Lp̂pFη
fq “ FLp̂˝η

f , thus, the family of the focal varieties Fη
f is

invariant under left translations.

The following proposition expresses the function Dη
f in terms of the Euclidean distance

function.

Proposition 8.4. Let η be the parabola-shaped pregeodesic curve considered in Proposi-

tion 8.2 (ii). Then we have

tDη
fpV ,Z,tq “ p2s

?
t̄´ xV ´ V̄ ,vyq

2
`
›

›rV ´ V̄ ,vs
›

›

2
“ }v}

2δ
`

pV ,Z,tq,Fη
f

˘2
,

where δpp,Fη
fq denotes the Euclidean distance of a point p from the focal variety F η

f.

Proof. Choose an orthonormal basis F1, . . . ,Fm of z and set Jα “ JFα
. Then v̄,J1v̄, . . . ,Jmv̄

is an orthonormal basis of Jzv‘Rv, where v̄ “ v{}v}. Thus,

}v}
2δpV ,Fη

fq
2

“

C

V ´ V̄ ´
2s

?
t̄

}v}2
v,v

G2

`

m
ÿ

α“1

C

V ´ V̄ ´
2s

?
t̄

}v}2
v,Jαv

G2

“

´

xV ´ V̄ ,vy ´2s
?
t̄
¯2

`

m
ÿ

α“1

@

V ´ V̄ ,Jαv
D2

.
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The proof is completed by the identity

m
ÿ

α“1

xV ´ V̄ ,Jαvy
2

“

m
ÿ

α“1

xrV ´ V̄ ,vs,Fαy
2

“ }rV ´ V̄ ,vs}
2.

Remark 8.5. Extending the orthonormal system E1 “ J1v̄, . . . ,Em “ Jmv̄,Em`1 “ v̄ to

an orthonormal basis E1, . . . ,En of v, we obtain that Dγ
fpV ,Z,tq “

1
t

řm`1
i“1 xV ,Eiy

2 is an

isoparametric function. More generally, if E1, . . . ,En is an arbitrary orthonormal basis of
v and I Ď t1, . . . ,nu is an arbitrary subset, then the function F pV ,Z,tq “

1
t

ř

iPIxV ,Eiy
2

is also isoparametric, since one can prove the identities

ΔF “

´

m`
n

2
`1

¯

F `2|I| and }∇F }
2

“ F 2
`4F (17)

by a computation analogous to the proof of Theorem 6.1. The focal variety of F has the

form exppw‘ z‘aq, where w is the linear subspace spanned by tEi | i R Iu. Isoparametric
functions of this type and the corresponding isoparametric hypersurfaces were studied by

J. C. Dı́az-Ramos and M. Domı́nguez-Vázquez [17].

Remark 8.6. The anonymous reviewer called our attention to an interesting topological

property of the foliation of the linear space v‘z‘R defined by the regular level sets of the

function Dx0
, where x0 “ pv0,z0,t0q with t0 ą 0. The range of this function on the open

upper half-space is r4t0, `8q, its range on the open lower half-space is p´8,0s and |Dx0
|

converges to 8 as t tends to 0. To eliminate the singularity of Dx0
along the hyperplane

t “ 0, we may compose Dx0
with the fractional linear transformation ϕpxq “

2t0
2t0´x . The

composition D̃x0
“ ϕ˝Dx0

is real analytic, has the same level sets as Dx0
, and its range

is the closed interval r´1,1s.

The function D̃x0
has two critical values, ˘1. The minimum ´1 is attained at the

isolated point x0 and the Hessian of D̃x0
at x0 is positive definite. The maximal value 1

is attained along the n-dimensional paraboloid parameterised by the elements v of v by

Px0
“

#

pv,z,tq

ˇ

ˇ

ˇ

ˇ

ˇ

v P v, z “ z0 ´
1
2 rv,v0s, t “ ´t0 ´

›

›

›

›

v´v0
2

›

›

›

›

2
+

.

The parallel affine subspaces Fv “ tvu ˆ zˆR, (v P v) foliate the space and intersect Px0

transversally. Each subspace Fv intersects Px0
at exactly one point. The special form of

the restriction of the function Dx0
onto Fv allows us to check easily that Hessian of D̃x0

is negative definite on the tangent space of Fv at the intersection point Fv XPx0
and

that Fv intersects the level surface D̃´1
x0

pcq in an m-dimensional Euclidean sphere for any

0 ă c ă 1. This means that D̃´1
x0

pcq is diffeomorphic to R
n ˆSm for such values of c, while

it is diffeomorphic to the sphere Sm`n for ´1 ă c ă 0. Hence the topology of the regular
level sets D̃´1

x0
pcq changes as c goes through 0. At the moment of the transition, D̃´1

x0
p0q

is diffeomorphic to R
m`n, see Figure 3.

By a fundamental construction of C. Qian and Z. Tang [37, Theorem 1.1], if M is a
closed connected smooth manifold, and f is a Morse–Bott function on M with critical set

M` \M´, where M` and M´ are both closed connected submanifolds of codimensions

more than 1, then there exists a Riemannian metric g on M so that f is an isoparametric
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Figure 3. Topology of the level sets of the function D̃x0 on v‘ z‘R for t0 ą 0.

function. In our example, the function f “ D̃x0
satisfies all the conditions of this theorem

except for the compactness of the space M “ v ‘ z ‘ R and the critical submanifold

M` “ Px0
. However, there is no Riemannian metric on v‘ z‘R which makes D̃x0

an

isoparametric function, since the regular sets of f “ D̃x0
are not diffeomorphic. This shows

that compactness assumptions are crucial in the theorem of Qian and Tang. On the other

hand, there is a flat Riemannian metric on the complement of the hyperplane t “ 0 which

makes the restriction of D̃x0
onto the complement isoparametric.

Similar bifurcation of the topology can be observed in the family Σγ
θ at the parameters

θ “ ˘1, corresponding to the horospheres of the family. However, members of this family

can intersect one another not only at the point γp0q and it is not clear if they cover the

whole Damek–Ricci space, so they do not give rise to a foliation of the space.

9. Geodesic curves orthogonal to a focal variety

Theorem 9.1. Let Fx0
be the focal variety of the function Dx0

for a point x0 “ pV0,Z0,t0q

with t0 ă 0. Then the prolongation of any geodesic curve that intersects Fx0
orthogonally

goes through the point x0. Similarly, the prolongation of any geodesic curve intersecting

Fη
f orthogonally goes through the point f.

Proof. Consider a focal variety Fx0
and a geodesic curve intersecting it orthogonally at

the point p. Applying the left translation Lp´1 to the configuration of the focal variety
and the geodesic, we see by Corollary 7.2, that it suffices to prove the theorem for the

case p “ e P Fx0
. Condition e P Fx0

is equivalent to the restrictions

t0 “ ´
1
4 }V0}

2
´1, Z0 “ 0 (18)

on the point x0 “ pV0,Z0,t0q. The system of equations of such a focal submanifold Fx0
is

t “ 1´
1
4 }V }

2
`

1
2xV ,V0y, Z “ ´

1
2 rV ,V0s, (19)

from which its tangent space at the identity is

TeFx0
“
�

pv1,z1,s1
q P v‘ z‘R | s1

“
1
2xv1,V0y, z1

“ ´
1
2 rv1,V0s

(

. (20)
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The prolongation of a geodesic starting from e is parameterised by a map γ of the form (8).
The initial velocity of γ is γ1p0q “ 2pv,z,sq. The pregeodesic γ intersects Fx0

orthogonally
if and only if

0 “

A

2pv,z,sq,
´

v1, ´
1
2 rv1,V0s, 12 xv1,V0y

¯E

“ xv1,2v`sV0y ´ xz,rv1,V0sy “ xv1,2v`sV0 `JzV0y

for all v1 P v. This is equivalent to the equation

v “ ´
1
2 psV0 `JzV0q, (21)

consequently s2 `}z}2 ‰ 0, otherwise we would have pv,z,sq “ 0, contradicting }pv,z,sq} “

1. Using the assumption }v}2 ` }z}2 `s2 “ 1, equation (21) gives

1

s2 ` }z}2
“ 1`

1
4}V0}

2
“ ´t0. (22)

Combination of equation (9) for the case }v} ‰ 1, and equations (21), (22),(18) provides

γp8q “

ˆ

ps2V0 `sJzV0q ´ psJzV0 ´ }z}2V0q

s2 ` }z}2
,0, ´

1

s2 ` }z}2

˙

“ pV0,Z0,t0q “ x0.

Consider now a focal variety Fη
f and a geodesic curve meeting it orthogonally. Referring

to Proposition 8.3, we may assume that they meet at the identity element e. Let us write

η as the left translate LpV̄ ,Z̄,t̄q ˝γ of a pregeodesic γ of the type (8) with initial velocity

γ1p0q “ 2pv,0,sq. Then e PFη
f holds if and only if rV̄ ,vs “ 0 and xV̄ ,vy “ ´2s

?
t̄. In this case,

the tangent space TeFη
f is the space pJzv ‘RvqK. Then any geodesic curve intersecting

Fη
f orthogonally at e starts with initial velocity in Jzv‘Rv Ď v. The prolongation of any

such geodesic goes through f by Theorem 5.1.

Theorem 9.2. If the prolongation η of a unit speed geodesic curve η̂ goes through the

point x0 with negative last coordinate, then the geodesic η̂ intersects the focal variety Fx0

at a point p orthogonally. This point p is the unique intersection points of η̂ with Fx0
.

Furthermore, the points x0, p, and the two intersection points of imη with the boundary

of the half-space model form a harmonic range on the quadric imη (which may degenerate

to a straight line), i.e., the cross-ratio of these four points with respect to the quadric imη
is ´1.

Proof. The points of imη in the boundary hyperplane of our model are ηp˘1q. As η is a
birational equivalence, η preserves cross-ratio. The four-tuple

`

θ,1{θ,1,´1
˘

is a harmonic

range in RP1, therefore, if we write x0 in the form ηpθq, then the unique point p P imη

for which the cross ratio of the points
`

x0,p,ηp1q,ηp´1q
˘

with respect to imη is equal to
´1 is p “ ηp1{θq. Since

`

x0,p,ηp1q,ηp´1q
˘

is a harmonic range, the points ηp1q and ηp´1q

separate the points x0 and p in imη, which implies that p P nˆR`.

We show that the focal variety Fx0
passes through p, and that η is orthogonal to Fx0

at
p. The statement does not depend on the choice of the parameterisation of the geodesic

and its prolongation. Thus, we may assume without loss of generality, that ηp0q “ p

and ηp8q “ x0. The statement is also invariant under left translations by Corollary 7.2;
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therefore we may also assume that p “ e, and η “ γ, where γ is the pregeodesic given by
equation (8). Since x0 ‰ f, equation (9) yields }v} ‰ 1 and

x0 “ pV0,Z0,t0q “ γp8q “

ˆ

´
2s

s2 ` }z}2
v`

2

s2 ` }z}2
Jzv,0, ´

1

s2 ` }z}2

˙

.

A simple computation shows that the components of x0 satisfy the equations in (18);
therefore Fx0

is passing through e. The orthogonality condition (21) is also fulfilled,

hence γ intersects Fx0
orthogonally.

If t0 is chosen so that tanhpt0{2q “ 1{θ, then η̂pt0q “ p and the distance of η̂ptq from

Fx0
is equal to |t´ t0|, which implies that p is the only intersection point of η̂ and the

focal variety Fx0
.

Corollary 9.3. If η̂ is a geodesic curve, then for each point p of η̂, there is a unique focal

variety of the form Fx0
or Fη

f that meets η̂ orthogonally at p, where η is the prolongation

of η̂.

However, in the general case, there can be focal varieties of the form F ζ
f ‰ F η

f

corresponding to another geodesic curve ζ̂ such that F ζ
f and F η

f meet η̂ at the same
point orthogonally. Namely, we will prove that this will happen if and only if the Damek–

Ricci space is not symmetric.

Theorem 9.4. A Damek–Ricci space is symmetric if and only if it has the property that

whenever two focal varieties F η1
f and F η2

f intersect a geodesic orthogonally at the same

point, they coincide.

Proof. By Proposition 8.3, we may assume that the two focal varieties intersect the
geodesic at e. Then Proposition 8.2 (ii) gives that F η1

f “ F η2
f if and only if their tangent

spaces at e are equal, that is pJzv1 ‘Rv1qK “ pJzv2 ‘Rv2qK, where v1 and v2 are non-

zero elements of v, related to η1 and η2 as in Proposition 8.2 (ii). The existence of

a geodesic meeting both F η1
f and F η2

f orthogonally at e is equivalent to the existence
of a non-zero vector w P pJzv1 ‘Rv1q X pJzv2 ‘Rv2q serving for the initial velocity of

such a geodesic curve. Thus, the condition that the focal varieties F η1
f and F η2

f coincide

if there is a geodesic which meets both of them orthogonally at a common point is
equivalent to condition (iii) of Proposition 4.8, therefore, it is equivalent to the space

being symmetric.

10. Totally geodesic focal varieties and the J2-condition

Focal varieties of type Fx0
are not totally geodesic unless the Damek–Ricci space is

symmetric, but they have at least one point p P Fx0
such that Fx0

is the exponential
image of a TpFx0

. It turns out that the set of such points of Fx0
is homeomorphic to

the set of vectors in v satisfying the J2-condition; therefore, the existence of more than

one such point is equivalent to dimz P t0,1,3,7u. Moreover, existence of a totally geodesic
focal variety Fx0

implies that the space is symmetric and that all the focal varieties are

totally geodesic. The key to proving these statements is the following proposition.

Proposition 10.1. Let x0 “ pV0,Z0,t0q “ pV0,0, ´ 1 ´
1
4}V0}2q be a point satisfying

equations (18), guaranteeing that Fx0
goes through the identity e. Then Fx0

contains
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all geodesic curves starting from e with initial velocity belonging to TeFx0
if and only if

V0 satisfies the J2-condition.

Proof. For the special choice of x0, the focal variety Fx0
and its tangent space at the

identity are defined by equations (19) and (20), respectively. In particular, pv,z,sq P TeFx0

is non-zero if and only if v ‰ 0. Consider the reparameterisation γ : p´1,1q Ñ S of the unit

speed geodesic curve γ̂ with initial velocity γ̂1p0q “ pv,z,sq PTeFpv0q given by equation (8).

The point γpθq belongs to Fx0
for a given θ P p´1,1q if and only if

1´θ2

χpθq
“ 1´

1

4

›

›

›

›

2θp1´sθq

χpθq
v`

2θ2

χpθq
Jzv

›

›

›

›

2

`
1

2

B

2θp1´sθq

χpθq
v`

2θ2

χpθq
Jzv,V0

F

(23)

and

2θ

χpθq
z “ ´

1

2

„

2θp1´sθq

χpθq
v`

2θ2

χpθq
Jzv,V0

j

. (24)

Equation (23) is equivalent to the equation

1´θ2 “ χpθq ´
θ2p1´sθq2

χpθq
}v}

2
´

θ4

χpθq
}z}

2
}v}

2
`θp1´sθqxv,V0y `θ2xrv,V0s,zy.

As the right hand side of this equation can be simplified as

χpθq ´θ2
p1´sθq

2
` }z}

2θ2

χpθq
}v}

2
`2sθp1´sθq `θ2x´2z,zy

“ p1´sθq
2

` }z}
2θ2 ´θ2}v}

2
`2sθp1´sθq ´2θ2}z}

2
“ 1´θ2p}v}

2
`s2 ` }z}

2
q “ 1´θ2,

equation (23) is always fulfilled. Equation (24) holds if θ “ 0. If θ ‰ 0, then substituting

s “
1
2xv,V0y and z “ ´

1
2 rv,V0s, it can be brought to the equivalent form

´xv,V0yrv,V0s “ rJrv,V0sv,V0s.

With the help of Lemma 3.3, this condition can be transformed into the equivalent

condition

xv,V0yrv,V0s “ rv,Jrv,V0sV0s,

which gives by Corollary 3.5 the condition

´xv,V0yrv,V0s “ }V0}
2
rv,PV0

pvqs, (25)

where PV0
is the orthogonal projection onto JzV0. This computation shows that the focal

variety Fx0
contains all geodesic curves starting from e with initial velocity belonging to

TeFx0
if and only if equation (25) holds for any v P v. If V0 “ 0, then V0 satisfies both

equation (25) and the J2-condition, thus, it is enough to consider the case V0 ‰ 0.

Decompose v as v “ v1 `v2 `v3, where v1 “ PV0
pvq “ JzV0 P JzV0, v2 “ λV0 P RV0, and

v3 P pJzV0‘RV0qK Xv“ kervpadV0qXV K
0 . Plugging this decomposition into equation (25),

we obtain

´λ}V0}
2
rJzV0,V0s “ }V0}

2
rλV0 `v3,JzV0s.
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Since v3 K V0, we have rv3,JzV0s “ rJzv3,V0s by Lemma 3.3, thus, the above equation

reduces to

0 “ }V0}
2
rJzv3,V0s.

Observe that if v is running over v, then z can be an arbitrary element of z, and v3 can

be an arbitrary element of kervpadV0q XV K
0 independently, so condition (25) holds for

every v if and only if JzpkervpadV0q XV K
0 q Ď kervpadV0q, however, by Corollary 4.4, this

latter condition is fulfilled if and only if V0 satisfies the J2-condition.

Consider now the general case.

Theorem 10.2. Let x0 “ pV0,Z0,t0q P v‘ z‘R be an arbitrary point with t0 ă 0. Denote

by B Ă v the open ball of radius 2
?

´t0 centered at V0. Using the system of equations (15)
defining Fx0

, the focal variety Fx0
can be parameterised by the map Υ: B Ñ Fx0

,

ΥpV̄ q “
`

V̄ ,Z0 ´
1
2 rV̄ ,V0s, ´ t0 ´

1
4}V ´V0}

2
˘

.

Then for V̄ P B, the geodesic curves starting from ΥpV̄ q in a direction tangent to Fx0
at

ΥpV̄ q stay on Fx0
if and only if V̄ ´V0 satisfies the J2-condition.

Proof. Apply to Fx0
the left translation by ΥpV̄ q´1. This moves the point ΥpV̄ q to e

and the focal variety Fx0
to FΥpV̄ q´1x0

by Corollary 7.2. Setting pV̄ ,Z̄,t̄q “ ΥpV̄ q, we have

ΥpV̄ q
´1x0 “

ˆ

´
V̄
?
t̄
, ´

Z̄

t̄
,
1

t̄

˙

pV0,Z0,t0q “

ˆ

V0 ´ V̄
?
t̄

,
Z0 ´ Z̄ ´

1
2

rV̄ ,V0s

t̄
,
t0
t̄

˙

“

ˆ

V0 ´ V̄
?
t̄

,0,
t0
t̄

˙

.

Since left translations are isometries of the Damek–Ricci space, Fx0
is the exponential

image of TΥpV̄ qFx0
if and only if FΥpV̄ q´1x0

is the exponential image of TeFΥpV̄ q´1x0
, and

by Proposition 10.1, this is equivalent to the condition that the vector V0´V̄?
t̄

or simply

the vector V̄ ´V0 satisfies the J2-condition.

In contrast to the focal varieties of the type Fx0
, a focal variety of the form Fη

f is either

totally geodesic or it has no points p P Fη
f for which Fη

f is the exponential image of TpFη
f.

Existence of a totally geodesic focal variety of type Fη
f is equivalent to dimz P t0,1,3,7u.

Theorem 10.3. The focal variety

Fη
f “ tpV ,Z,tq P v‘ z‘R | rV ´ V̄ ,vs “ 0 and xV ´ V̄ ,vy “ 2s

?
t̄u (26)

obtained in Proposition 8.2 (ii) for a non-zero vector v and the further parameters V̄ P v,

t̄ P R`, and s “ ˘
a

1´ }v}2 is totally geodesic if and only if v satisfies the J2-condition.

Proof. Left translations of the Damek–Ricci space are given by affine transformations

(7) in the half-space model, the linear part of which leaves invariant every linear subspace

containing the subspace z‘a, in particular all subspaces of the form pJzv‘RvqK. As the

direction space of the affine half-space representing the focal variety Fη
f in the half-space

model is pJzv‘RvqK, any left translation which maps an arbitrary point of Fη
f to e maps

the focal variety Fη
f onto the focal variety

Fpvq “ tpV ,Z,tq | rV ,vs “ 0 and xV ,vy “ 0u. (27)
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This implies that the focal variety Fη
f is totally geodesic if and only if any unit speed

geodesic curve γ̂ : R Ñ S starting from γ̂p0q “ e with initial velocity γ̂1p0q P TeFpvq stays

in Fpvq. The tangent space of Fpvq at e is

TeFpvq “ tpv1,z1,s1
q P v‘ z‘R | rv1,vs “ 0 and xv1,vy “ 0u “ pJzv‘Rvq

K.

The unit speed geodesic curve γ̂ starting with initial velocity γ̂1p0q “ pv1,z1,s1q P

TeFpvq can be reparameterised by the pregeodesic γ : p´1,1q Ñ S given by equation (8)
substituting pv1,z1,s1q for pv,z,sq. The point γpθq belongs to Fpvq if and only if

„

2θp1´s1θq

χpθq
v1

`
2θ2

χpθq
Jz1v1,v

j

“ 0 and

B

2θp1´s1θq

χpθq
v1

`
2θ2

χpθq
Jz1v1,v

F

“ 0,

thus, γ̂ stays in Fpvq if and only if
“

Jz1v1,v
‰

“ 0 and
@

Jz1v1,v
D

“ 0,

which is equivalent to Jz1v1 P kervpadvq XvK. We conclude that Fη
f is totally geodesic if

and only if Jz1v1 P kervpadvqXvK for all z1 P z and for all v1 P kervpadvqXvK, meaning that

kervpadvqXvK is a Clpz,qq-submodule of v. This completes the proof by Corollary 4.4.

11. Homogeneity of the sphere-like isoparametric hypersurfaces

Theorem 11.1. In a symmetric Damek–Ricci space, all the focal varieties Fx0
and all

the tubes about them are homogeneous. If a Damek–Ricci space is not symmetric, then

none of the focal varieties Fx0
px0 P nˆR´q is homogeneous; consequently, none of the

tubes about them is.

Proof. If the space is symmetric, then it is a hyperbolic space KHk over an algebra

K P tR,C,H,Ou, (k “ 2 if K “ Oq, and its tangent spaces are K-modules. In that case, each
focal variety Fx0

is totally geodesic, and its tangent spaces are K-submodules of corank

1. Thus, the focal varieties are congruent to a totally geodesic KHk´1. Totally geodesic

submanifolds of KHk that are the singular orbits of a cohomogeneity one isometric action
were classified by J. Berndt and M. Brück [1], and the submanifolds KHk´1 are contained

in their list; therefore the tubes about these focal surfaces are homogeneous.

Theorem 10.2 shows that if the ambient space is not symmetric, then each focal variety
Fx0

has at least one point p with the property that Fx0
is the exponential image of the

tangent space TpFx0
, and it also has points which do not have this property. This means

that the focal variety cannot be homogeneous.

Theorem 11.2. For v P vzt0u, the tubes about the focal variety Fη
f defined in Proposition

8.2 (ii) have constant principal curvatures if and only if v satisfies the J2-condition.

Proof. The focal varieties are special cases of the construction of [17] with the choice

w “ kervpadvq X vK of the subspace w ď v. As it is proved in [17], the tubes about Fη
f

have constant principal curvatures if and only if the Kähler angles of the non-zero vectors

u P wK “ Jzv‘Rv are constant. Recall that the Kähler angles of u P wK are defined to be

the principal angles between the subspaces Jzu and wK. In our case, v P wK “ Jzv‘Rv
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and Jzv Ď wK, thus, all the Kähler angles of the vector v are equal to 0. For this reason,
the Kähler angles of the non-zero vectors of wK are constant if and only if they are

all equal to 0 for any u P wK. But this happens if and only if Jzu Ď Jzv ‘Rv for any

u P Jzv‘Rv and the latter condition is equivalent to the J2-condition for v.

Theorem 11.3. The tubes about the focal variety Fη
f defined in Proposition 8.2 (ii) are

homogeneous if and only if v P vzt0u satisfies the J2-condition.

Proof. If the tubes about Fη
f are homogeneous, then they have constant principal

curvatures and v satisfies the J2-condition by Theorem 11.2.
Conversely, assume that v ‰ 0 satisfies the J2-condition. The existence of such a vector

implies m “ dimz P t0,1,3,7u by Proposition 4.5.

If m P t0,1u, then the ambient space is isometric with KHk for some k and K P tR,Cu,
hence it is symmetric. By Theorem 10.3, the focal varieties Fη

f are totally geodesic in a

symmetric space. The tangent spaces of the ambient space are linear spaces over K, and

the tangent space of Fη
f at any point is a K-linear subspace of codimension 1. Thus, the

tubes about Fη
f are homogeneous by the same reason as in the proof of the first part of

Theorem 11.1.

Assume that m P t3,7u. Consider two arbitrary points p1, p2 on the tube T of radius

r about Fη
f, and denote by p̃1 and p̃2 the points of the focal variety Fη

f lying nearest
to them. The left translations by p̃´1

1 and p̃´1
2 map the tube T onto the tube of radius

r about the focal variety Fpvq defined by equation (27) and map the points p̃1 and p̃2
to e. We can write the points p̃´1

1 p1 and p̃´1
2 p2 as expepξ1q and expepξ2q respectively with

some uniquely defined vectors ξ1,ξ2 P pTeFpvqqK of length r.

Thus, to prove that T is homogeneous, it is enough to show that there is an isometry I of

the space such that IpFpvqq “Fpvq, Ipeq “ e, and TeIpξ1q “ ξ2. In the case }ξ1} “ }ξ2} “ 0,
we can choose the identity map for I, so assume }ξ1} “ }ξ2} ‰ 0.

Let Spinpmq Ă Clpz,qq be the spin group and ρ : Spinpmq Ñ SOpz,qq its canonical

representation. Recall that z is embedded into Clpz,qq as a subspace, and for σ P Spinpmq,

we have pρpσqqpzq “ σzσ´1. As the vector v satisfies the J2-condition, it generates an
irreducible Clifford module Jzv ‘Rv “ pTeFpvqqK, which contains both ξ1 and ξ2. It is

known that for m P t3,7u, the group Spinpmq acts transitively on the unit sphere of any

irreducible Clpz,qq-module. For m “ 3, this follows from the fact that the group Spinp3q

is isomorphic to the group of unit quaternions, see [29, Ch. I., Thm. 8.1], and this group

acts on itself transitively both by left and right translations. The case m “ 7 is a theorem

of A. Borel, see [29, Ch. I., Thm. 8.2]. As a consequence, there is an element σ P Spinpmq,
such that pJpσqqpξ1q “ ξ2. The orthogonal transformation ι : v‘ z‘a Ñ v‘ z‘a,

ιppv,z,aqq “ ppJpσqqpvq,pρpσqqpzq,aq

is an automorphism of the Lie algebra s “ v‘ z‘ a. This is an easy consequence of the
identity

Jιpzqιpvq “
`

Jpσq ˝Jpzq ˝Jpσq
´1

˝Jpσq
˘

pvq “
`

Jpσq ˝Jpzq
˘

pvq “ ιpJzvq @v P v, z P z.
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Thus, ι is the derivative of an isometric automorphism I of the group S at e. It is clear
from the construction of I that Ipeq “ e and TeIpξ1q “ ιpξ1q “ ξ2. This implies that

ιpJzξ1 ‘Rξ1q “ Jιpzqιpξ1q ‘Rιpξ1q “ Jzξ2 ‘Rξ2. (28)

Since ξ1 and ξ2 are in the pm` 1q-dimensional Clifford module Jzv ‘Rv, the pm` 1q-

dimensional linear spaces Jzξ1 ‘Rξ1 and Jzξ2 ‘Rξ2 are also contained in Jzv‘Rv, which

implies

Jzξ1 ‘Rξ1 “ Jzv‘Rv “ Jzξ2 ‘Rξ2. (29)

Equations (28) and (29) give ιpJzv‘Rvq “ Jzv‘Rv, and since ι is orthogonal,

ιpTeFpvqq “ ι
`

pJzv‘Rvq
K
˘

“ pJzv‘Rvq
K

“ TeFpvq.

By Theorem 10.3, the focal variety Fpvq is a totally geodesic submanifold, hence it is the

Riemannian exponential image of TeFpvq. Since the derivative ι of the isometry I at e
maps TeFpvq into itself, IpFpvqq “ Fpvq.

12. Mean curvature of the tubes about the focal varieties

Theorem 12.1. Let h be the trace of the shape operator of a regular hypersurface Σ of

one of the isoparametric functions Dx0
or Dη

f on the Damek–Ricci space. Then

h “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´
m`n

2 cothpr{2q ´
m
2 tanhpr{2q if Σ is a sphere of radius r,

´pm`
n
2 q if Σ is a horosphere,

´
m`n

2 tanhpr{2q ´
m
2 cothpr{2q if Σ is a tube of radius r about Fx0

with x0 P nˆR´ or Fη
f.

Proof. The case of spheres and horospheres is well known. For a complete harmonic

manifold pM,gq, there is a smooth function ω : R Ñ R, called the volume density function,

defined by the identity ωp}ξ}q “
a

detpGpξqq, where ξ PTpM is an arbitrary tangent vector
of M, and Gpξq is the matrix of the pull-back form pTξexppq˚pgexpppξqq with respect to

a gp-orthonormal basis of TξpTpMq – TpM . It is known [15] that the volume density

function ω of the Damek–Ricci space is

ωprq “ coshmpr{2q

ˆ

sinhpr{2q

r{2

˙m`n

.

The function h for a sphere of radius r can be expressed with the help of the volume
density function

h “ ´Brplnrm`nωq

(see [41]), from which we obtain the formula for the mean curvature of spheres, and taking

the limit r Ñ 8 gives the formula for the horospheres.
Consider now a regular level set Σ “ D´1

x0
pcq of a function Dx0

with x0 “ pV0,Z0,t0q,

t0 ă 0. Then, according to the proof of Theorem 6.1, the functions a and b certifying

that Dx0
is isoparametric are apxq “ pm`

n
2 ` 1qx´ 2pm` 1qt0 and bpxq “ x2 ´ 4t0x.
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The minimal value of Dx0
is 0 and by Proposition 2.5, the hypersurface Σ is a tube of

radius

r “

ż c

0

dx
?
x2 ´4t0x

“ 2lnp
?
c´4t0 `

?
cq ´2lnp

?
´4t0q

about Fx0
. Expressing c as a function of r from this equation, we get

c “ ´4t0 sinh
2
pr{2q.

By Proposition 2.2, the trace of the shape operator of Σ is

h “
´2apcq ` b1pcq

2
a

bpcq
“ ´

pm`n{2qc´2mt0
?
c2 ´4t0c

“ ´
m`n

2

c

c

c´4t0
´

m

2

c

c´4t0
c

“ ´
m`n

2
tanhpr{2q ´

m

2
cothpr{2q,

as claimed.

By equation (17), the functions a and b corresponding to the isoparametric functions

Dη
f are apxq “ pm`

n
2 ` 1qx` 2pm` 1q and bpxq “ x2 ` 4x. Hence, substituting t0 “ ´1

into the above formulae obtained for the level sets of Dx0
, we get the corresponding

formulae for Dη
f, which completes the proof.
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[12] Cowling M, Dooley AH, Korányi A and Ricci F (1991) H-type groups and Iwasawa
decompositions. Adv. Math. 87(1), 1–41.
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