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Abstract
Autonomous fabric manipulation is a challenging task due to complex dynamics and potential self-occlusion during
fabric handling. An intuitive method of fabric-folding manipulation first involves obtaining a smooth and unfolded
fabric configuration before the folding process begins. However, the combination of quasi-static actions like pick
& place and dynamic action like fling proves inadequate in effectively unfolding long-sleeved T-shirts with sleeves
mostly tucked inside the garment. To address this limitation, this paper introduces an enhanced quasi-static action
called pick & drag, specifically designed to handle this type of fabric configuration. Additionally, an efficient
dual-arm manipulation system is designed in this paper, which combines quasi-static (including pick & place and
pick & drag) and dynamic fling actions to flexibly manipulate fabrics into unfolded and smooth configurations.
Subsequently, once it is confirmed that the fabric is sufficiently unfolded and all fabric keypoints are detected, the
keypoint-based heuristic folding algorithm is employed for the fabric-folding process. To address the scarcity of
publicly available keypoint detection datasets for real fabric, we gathered images of various fabric configurations
and types in real scenes to create a comprehensive keypoint dataset for fabric folding. This dataset aims to enhance
the success rate of keypoint detection. Moreover, we evaluate the effectiveness of our proposed system in real-world
settings, where it consistently and reliably unfolds and folds various types of fabrics, including challenging situa-
tions such as long-sleeved T-shirts with most parts of sleeves tucked inside the garment. Specifically, our method
achieves a coverage rate of 0.822 and a success rate of 0.88 for long-sleeved T-shirts folding. Supplemental materials
and dataset are available on our project webpage at https://sites.google.com/view/fabricfolding.

1. Introduction
In recent years, significant progress has been made in the field of robotic manipulation, especially in
the handling of rigid objects, and breakthroughs have been made in multiple aspects, such as the re-
grasping of complex objects [1, 2] and manipulation in cluttered environments [3, 4]. However, the
autonomous manipulation of fabrics still faces significant challenges compared with rigid objects. This
is mainly attributed to two key factors: the complex dynamic model of the fabric and the persistent self-
occlusion problem during fabric manipulation. Therefore, further research is necessary to overcome
these challenges and unlock the full potential of fabric manipulation for robotic applications.

Early fabric manipulation research aims to develop heuristic methods for quasi-static manipulations
with a single robotic arm to accomplish tasks such as fabric unfolding [5], smoothing [6], and folding [7].
However, these methods have some inherent limitations, including strong assumptions about the initial
state and fabric type. Recently, there has been a surge in the development of deep learning techniques for
fabric manipulation, where researchers introduce self-supervised learning to replace the need for expert
demonstrations [8]. By learning goal-conditioned [9] strategies, it is now possible to effectively fold a
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single square fabric. However, this quasi-static method requires numerous iterations to obtain relatively
smooth fabric. Ha et al. [10] propose a dynamic fling method to achieve fabric unfolding, but it cannot
be generalized to other tasks. Some researchers have attempted to combine supervised learning from
expert demonstrations to realize fabric folding and unfolding [11], but these methods require extensive
human annotations, which are time-consuming and error-prone. Canberk et al. [12] proposed a method
that utilizes canonicalized alignment to unfold fabric, complemented by heuristic keypoint detection for
folding the unfolded fabric. This approach solely relies on pick & place and fling actions for unfolding
the fabric.

However, the proposed method encounters challenges in achieving effective unfolding when dealing
with complex fabrics like long-sleeved T-shirts, particularly when certain sections of the sleeves are
concealed or tucked beneath other fabric layers. Consequently, this limitation adversely impacts the
fabric-folding task. Moreover, due to the absence of publicly available keypoint datasets specifically
designed for fabric folding, Canberk et al. only collected 200 simulated cloth data samples for each fabric
type to train the keypoint model. Given the sim2real gap, employing simulation data for training purposes
can result in inadequate detection accuracy and a lack of robustness in the detection model when applied
to real-world scenarios. This limitation can significantly impact the success rate of the fabric-folding
processes. To address this issue, we curate a dataset of fabric keypoints through the collection of real
fabric images.

This paper presents the introduction of a novel quasi-static motion primitive called pick & drag.
This primitive action is designed to address situations where sections of long-sleeved T-shirt sleeves
are concealed or tucked beneath other fabrics. Additionally, we propose FabricFolding, a system that
leverages the fabric’s current coverage and corresponding keypoint information to intelligently select
suitable primitive actions for unfolding the fabric from arbitrary initial configurations and subsequently
folding the unfolded fabric. The system achieves the complete operational process of unfolding and fold-
ing for fabric with any initial configuration. Importantly, it no longer segregates fabric unfolding and
folding into two distinct and independent research tasks. The system comprises two components: fabric
unfolding and folding. The first component utilizes a self-supervised network to acquire knowledge of
specific grasping points by analyzing RGBD input images. This knowledge is then applied to smoothen
and unfold the fabric, which initially exists in a wrinkled state. The second component combines fabric
keypoint detection with heuristic folding methods to enable efficient and precise folding of the fabric
subsequent to its smoothing and unfolding. Moreover, the design of our fabric keypoints network elim-
inates the need for expert demonstrations and provides critical assistance during the fabric’s unfolding
stage. Figure 1 shows the FabricFolding work example. In instances of low fabric coverage, the system
employs the fling action for efficient fabric unfolding. When the system detects some sleeves concealed
beneath other fabric layers, the pick & drag action is chosen to address this issue. Subsequently, once the
fabric is sufficiently unfolded and keypoints are detected, our method employs the pick & place action
to achieve heuristic folding.

The contributions of this paper are summarized as:

• We enhance a quasi-static primitive action, namely pick & drag, to facilitate fabric unfolding,
particularly when dealing with intricate fabric configurations like when sections of long-sleeved
T-shirts are concealed or tucked beneath other layers of fabric.

• We propose a self-supervised learning unfolding strategy with a multi-primitive policy that can
choose between dynamic fling and quasi-static (including pick & place and pick & drag) actions
to efficiently unfold the fabric.

• To bridge the sim2real gap and enhance the accuracy of fabric keypoint detection, we con-
duct an extensive data collection process involving real images of various fabric types.
Subsequently, we curate a dedicated dataset specifically designed for fabric-folding keypoint
detection.
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Figure 1. FabricFold divides the task of fabric folding into two stages for any given initial configuration.
The first stage aims to achieve a relatively smooth fabric by dynamically selecting and executing actions
(dynamic or quasi-static) based on the current state of the fabric. The second stage commences once the
fabric is sufficiently unfolded and involves performing the folding task by detecting the keypoints of the
fabric.

• Our method has been thoroughly evaluated using real robotic arms on a diverse range of fabrics.
Specifically, it achieves a coverage rate of 0.822 and a fold success rate of 0.88 for long-sleeved
T-shirts. Additionally, our method demonstrates a coverage rate of 0.958 and a fold success rate
of 0.92 for towels.

This paper is organized as follows. Section 2 reviews some related works. Section 3 presents the
FabricFolding method. The corresponding experiments are reported and analyzed in Section 4. Finally,
Section 5 concludes this work and discusses some future work.

2. Related work
2.1. Fabric unfolding
Fabric unfolding mainly changes the fabric from an arbitrary crumpled configuration to a fully unfolded
configuration. Prior work on fabric unfolding is based on heuristics and the extraction of some geometric
features of the fabric, such as the edges [5], wrinkles [6, 13], and corners [14, 15] of the fabric. Then,
these features are utilized to determine the subsequent manipulation to make the fabric as smooth as pos-
sible. Recently, reinforcement learning combines hard-coded heuristics [16] or expert demonstrations
[17] to unfold fabric. Wu et al. [8] introduce self-supervised learning into fabric unfolding to replace
the role of expert demonstrations or heuristics.

The algorithms previously discussed employ quasi-static primitive actions for fabric manipulation,
including pick & place [18], and drag [17]. However, fabric unfolding based on quasi-static manipula-
tion may require numerous iterations and interactions before achieving a relatively smooth fabric. This
method’s effectiveness can be hampered by the limited reach of a robotic arm and a single gripper’s
operational constraints, rendering the task impractical, particularly for intricate fabrics like T-shirts.

Compared with quasi-static manipulation, dynamic manipulation of robotic arms involves high-speed
motion, which imparts velocity to the grasped deformable object. When the robotic arms come to a stop,
the ungrasped portion of the deformable object continues moving due to inertia. Dynamic manipula-
tion effectively expands the reachable fabric area and reduces the number of operations necessary to
accomplish the desired task. Dynamic manipulation is initially applied to linearly deformable objects,
such as cables [19]. Wang et al. [20] employ tactile sensors to capture information about objects and
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integrate this data with recurrent neural networks to accomplish precise swinging movements. Jangir
et al. [21] utilize reinforcement learning for dynamic operations on towels. However, this research was
limited to simulations and did not include physical experiments. Ha et al. [10] propose a system based
on self-supervised learning that dramatically increases the effectiveness of fabric unfolding by using
high-speed fling action to smooth wrinkled fabric. Based on the research conducted by Ha et al., Xu
et al. [22] employ a commodity centrifugal air pump to smooth the fabric more efficiently. Dynamic
flings alone, however, cannot fully unfold complicated textiles, such as long-sleeved T-shirts.

Employing multiple primitive actions is more effective than a singular primitive action for fabric-
unfolding tasks. Avigal et al. [11] introduce the BiMaMa-Net architecture, which enables the selection
of multiple primitive actions for fabric unfolding. Canberk et al. [12] present a clothing alignment algo-
rithm designed for cloth unfolding. This algorithm utilizes self-supervised learning to determine suitable
primitive actions for cloth unfolding by encoding both the current fabric state and the aligned fabric
state. However, these algorithms generally do not account for intricate fabric configurations, such as
when a portion of the long-sleeved T-shirt’s sleeves is concealed beneath other layers of clothing. In
contrast, Our algorithm demonstrates the capability to manage complex fabric configurations and is
readily applicable in real-world scenarios.

2.2. Fabric folding
Fabric folding initially relied on heuristic algorithms that impose strict predefined constraints on the fab-
ric’s initial configuration [7, 23, 24]. Contemporary approaches to fabric manipulation involve training
goal-conditioned policies using reinforcement learning [25–27], self-supervised learning [9, 28, 29],
and imitation learning [16] in either simulated [30–32] or real robotic arms [9]. However, the strategy
of employing simulation data for training essentially cannot achieve the desired effect of the simulation
environment due to the sim2real gap on the robotic manipulator [26]. Moreover, a gap remains in the
ability to generalize the approach to various types of fabrics [32]. To generalize fabric folding across
different types of fabrics, some researchers [12, 33] proposed an approach that combines the detection
of fabric keypoints with a heuristic for the folding process. However, owing to the absence of a dataset
containing fabric keypoints derived from real fabric images, their study relies solely on simulated image
data to generate diverse fabric keypoints datasets. This limitation affects the accuracy of fabric keypoints
detection when applied in real-world scenarios. Instead, our fabric-folding keypoint dataset, created
through the collection of real fabric images, is utilized for training. This approach effectively mitigates
the issue of inadequate prediction precision attributable to the sim2real gap and enhances the success
rate of fabric folding.

3. Method
FabricFolding is a novel approach for folding fabric, which involves breaking down the process into two
distinct steps. Firstly, a multi-primitive policy unfolding algorithm is applied to ensure that the fabric is
unfolded and smoothed out as much as possible. Subsequently, an adaptive folding manipulation tech-
nique is employed, which leverages keypoint detection to facilitate the folding of various types of fabric.
FabricFolding can achieve effective and efficient fabric folding by utilizing this two-step approach, and
the pipeline of the system is shown in Fig. 2.

3.1. Multi-primitive policy fabric unfolding
While dynamic actions can efficiently unfold fabrics but cannot entirely unfold complex garments like
long-sleeved T-shirt, quasi-static actions are preferable for delicately handling fabrics but are inefficient.
To efficiently manipulate the fabric into a desired configuration, we utilize a combination of quasi-static
and dynamic primitives that are capable of delicate handling and efficient unfolding, respectively.
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Figure 2. FabricFolding pipeline: The RGB image and depth image obtained from an overhead camera
serve as inputs to the unfolding network, which generates a set of keypoints and action parameters. If
the fabric is sufficiently unfolded and corresponding keypoints are detected, the system will proceed to
fold the fabric using heuristics based on the keypoints. Otherwise, the dual-arm manipulation system
will execute relevant primitive actions to unfold the fabric.

Figure 3. Fabric unfolding: The system adopts a dynamic fling action to unfold the fabric when it is
in a low-coverage stacking configuration. However, when the fabric coverage exceeds S1, quasi-static
actions such as pick & place and pick & drag are mainly used to fine adjustments. If the coverage of
the fabric is greater than S2 and the number of detected keypoints meets the requirements, the fabric is
considered to be fully unfolded.

FabricFolding utilizes the RGBD image output from an overhead RealSense 435i camera to calculate
the current fabric coverage. The fabric coverage C is calculated as shown in Eq. (1).

C =
∑C

i=1 Pi∑T
j=1 Pj

(1)

where Pi represents the pixel occupied by the current fabric configuration in the image, while Pj

represents the pixel occupied in the image when the fabric is fully unfolded.
To determine whether the fabric is ready for the downstream folding task, we have two indica-

tors: the fabric coverage C and the number of detected keypoints K. The fabric is considered smooth
enough when the current coverage exceeds threshold S2 and the number of detected keypoints meets
the requirements. Figure 3 illustrates the fabric-unfolding pipeline with a multi-primitive policy. In our
experiments, S1 = 0.65 and S2 = 0.8 perform best.
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3.1.1. Primitive policy
To determine suitable primitive actions for efficient fabric unfolding, we have devised a primitive action
weighting strategy based on heuristics, and the precise formula is detailed in Eq. (2). When the coverage
is below a certain threshold (S1), the robotic arm will use the dynamic fling action with a high probability
to effectively unfold the fabric. As the coverage of fabric increases and exceeds S1, the system prefers
to use quasi-static actions such as pick & place and pick & drag to operate the fabric. Finally, when the
coverage is above S2, the robotic arms mainly rely on quasi-static actions to fine-tune the fabric. The
action policy selection is shown below:

A(C) =

⎧⎪⎨
⎪⎩

0.99ad + 0.01aqs , C� S1

(S2 − C) ad + [1 − (S2 − C)] aqs , S1 < C < S2

0.01ad + 0.99aqs , S2 �C

(2)

where A represents the chosen action, aqs means the quasi-static including two actions of pick & place
and pick & drag, and ad means the dynamic primitive, fling.

Furthermore, when choosing between the two quasi-static primitive actions, the system relies on the
detection of keypoints on the fabric sleeves. Specifically, when the distance between the keypoint on
the sleeve and the keypoint on the shoulder on the same side significantly deviates from the standard
value, the pick & drag primitive is chosen. Otherwise, the pick & place primitive is selected. The precise
formula is presented in Eq. (3). For example, for long-sleeved T-shirts where part of the sleeve is con-
cealed or tucked under other fabric, the robotic arms perform the pick & drag action to extract sleeves
concealed beneath other fabrics, thereby increasing fabric coverage. Moreover, the pick & place action
is also a quasi-static manipulation used to sufficiently smooth the fabric.

aqs =
{

apd , Kss& (dss < d0)

app , others
(3)

where apd means the pick & drag action, app represents the pick & place action, Kss indicates whether the
keypoints of the same side of the fabric are detected, such as the keypoints of the same side shoulder and
sleeve of a long-sleeved T-shirt. Similarly, dss represents the distance between two detected keypoints on
the same side, and d0 represents the distance between the corresponding two keypoints when the fabric
is fully unfolded.

All primitive actions are shown in Fig. 4, and the following are several primitive actions that we have
defined:

• Pick & Place: The pick & place action is a quasi-static primitive. With a given pick pose and
place pose, a single robotic arm grasps the fabric at the pick point, lifts it, moves it over the
place point, and releases it. This primitive policy effectively handles situations where the hem
or sleeves of the cloth are stacked on top of each other.

• Pick & Drag: It is a quasi-static primitive policy. Two pick poses are given, and the two robotic
arms grasp the two pick points of the fabric, respectively. Then, one robotic arm remains station-
ary (close to the center of the fabric mask), while the other robotic arm drags the fabric away
from the center point of the fabric mask for a certain distance. This primitive policy is effective
in dealing with situations where most of the sleeves are concealed or tucked beneath other layers
of cloth.

• Fling: This is a dynamic primitive policy designed for fabric manipulation. Given two pick poses.
After the robotic arms grasp the two pick points of the fabric, the fabric is lifted to a certain height
and stretched, while the camera in front of the robotic arms is used to estimate whether the fabric
has been fully stretched. Then the two robotic arms simultaneously fling the fabric forward for a
certain distance, then retreat for a certain distance while gradually reducing the height, and then
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Figure 4. Primitive actions: Based on the input received from the overhead RGBD camera, the grasping
network can predict a series of pick poses for the upcoming primitive actions.

release the fabric. This policy efficiently spreads the fabric and increases coverage, but it may
not be effective in dealing with smaller wrinkles in the cloth.

• Fold: Both robotic arms execute the pick & place primitive action simultaneously. The two pick
poses and their corresponding place poses are obtained through keypoint detection of the fabric.

3.1.2. Grasping action parameterization
To enhance the effectiveness of fabric unfolding and ensure that the fabric becomes smoother, we
have made enhancements to the grasping framework of DextAIRity [22]. These improvements include
modifying the grasping action parameters and incorporating a primitive action selection block. These
modifications allow for more accurate and efficient predictions of the grasp poses required for subsequent
primitive actions.

DextAIRity [22] made some adjustments to Flingbot’s [10] action parameterization, extending the
two grasping positions L and R to the edge of the fabric mask, thereby reducing the likelihood of the
gripper grasping multiple layers of fabric. Based on the action parameterization form of DextAIRity (C,
θ , ω), we have made some minor adjustments, and our action parameters are shown in Eq. (4).

Pepo = (C, θ , ω, φ) (4)

where the meaning of (C, θ , ω) corresponds to its definition in DextAIRity, φ represents the angle of
rotation of the manipulator’s end effector relative to the y-axis of the base frame. There are left and
right grab points L(xl, yl) and R(xr, yr) for fabric manipulation. If the four parameters are obtained by
direct training, it is relatively difficult. To simplify the training difficulty, C is used to represent the
midpoint of L-R, θ is used to represent the rotation angle of line L-R in the image plane, and ω is used
to represent the length of line L-R in the pixel coordinate system. For a visual representation of the robot
arm end effector’s coordinate system, please refer to Fig. 5. This parameter primarily serves the purpose
of adjusting the clamping claw’s angle to facilitate the robot arm in grasping the fabric more effectively.

3.1.3. Unfolding network
The feature extraction block employs the Unet [34] architecture. In the encoder section, a feature map is
derived from the H x W x 3 input. The feature map is then processed by the decoder, where it is resized
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Figure 5. The left arm coordinate system in the dual-arm manipulation system.

to match the dimensions of the original image. During this process, high-level and low-level features are
integrated using skip connections. The decoder at each layer is processed using in Eq. (5).

Xk
De =

{
Xk

En , k = N

F ([
Cov

(
Xk

En

)
, Cov

(U (
Xk+1

De

))])
, k = N − 1

(5)

where k represents the down-sampling layer of the encoder, N denotes the total number of layers within
the encoder, and [·] means skip connection. F(·) indicates the process of feature fusion employing con-
volution, batch normalization, and ReLU activation function. U (·) performs the up-sampling operation,
and Cov(·) implies convolution operation.

This grasping point prediction block comprises two integral parts: the primitive action selection block
and the value map block. Specifically, to enhance the efficiency of fabric unfolding, the primitive action
selection block assesses and selects appropriate primitive actions based on the current fabric coverage
and the detected keypoints. Once the primitive action is determined, a set of action parameterizations
denoted as Pepo is acquired through the action value map module, where the parameters with the highest
values serve as the grasping parameters. To achieve equivariance between the grasping action and the
physical transformation of the fabric, we employ a spatial action map [10, 35]. The unfolding network
structure is shown in Fig. 6.

The spatial action value map, employing a convolutional neural network and ResNet-inspired skip
connections, predicts a set of grab values in the pixel space, characterized by constant scale and rotation.
Specifically, the input is a top-down observation of H x W x 3. This input undergoes preprocessing to
produce a series of rotated and scaled views, denoted as K x H x W x 3. The preprocessing state includes
18 rotations, covering a full 360◦ range, and 5 scaling levels with values of {1, 1.5, 1.75, 2, 2.5} (K = 90).
Subsequently, a collection of value maps is predicted, wherein each pixel encompasses values set for
action parameters (C, θ , ω). The predictions of our value network are supervised by the delta coverage
before and after action execution, utilizing mean squared error as the loss function.

3.1.4. Training setting
Before training the grasping network, the keypoint detection network is trained first through supervised
learning. The sequence is necessary as the training of the fabric keypoint detection network is a prereq-
uisite for providing the current keypoint information needed by the grasping points prediction network.
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Figure 6. Fabric-folding structure: The RGB image captured by the overhead RealSense 435i camera
serves as the input for our system.

We employed a simulation environment based on SoftGym [36] for the pre-training of the fabric-
unfolding grasping network through self-supervised learning. This primarily involved training three
parameters (C, θ , ω). Due to the simulation environment’s inability to import the URDF models of
the robotic arms, we utilized two grasp points to represent the end effectors of the two robotic arms.
Certain constraints were imposed on these points to ensure their applicability to the physical robotic
arms. Subsequently, the network parameters acquired during simulation training were further trained in
real-world conditions. Parameter φ was introduced during this stage to facilitate the fabric gripping by
the robot arm. To prevent potential damage to the cameras of the dual-arm manipulation system during
manipulation, we imposed a constraint requiring the left and right robotic arms to rotate 90◦ and −90◦,
respectively, relative to the base frame’s Z-axis. This ensured that the two cameras faced in opposite
directions.

3.2. Heuristic fabric folding
3.2.1. Dataset for keypoint detection
Due to the sim2real gap, the keypoint detection performance of the fabric is not optimal when using
the fabric keypoint dataset generated in the simulation, which includes various configurations of fabric.
For example, certain configurations of fabric cannot detect all the expected keypoints. Additionally,
there is no existing public dataset that is suitable for keypoint detection in fabric-folding tasks. In order
to address this issue, we created a fabric keypoint dataset consisting of 1809 images that include four
types of long-sleeved T-shirts and ten types of towels. Among them, all fabrics are configured to have
a coverage of more than 65% since the information on the keypoints of the fabric mainly is used in the
case of high fabric coverage. The long-sleeved T-shirt is sampled by rotating it 360◦ at intervals of 10◦,
involving eight distinct fabric coverages per angle. Similarly, in the case of the towel, a 180◦ rotation
at 18◦ intervals was performed, with six different fabric coverages at each angle. The dataset images
are acquired using a Realsense 435i camera positioned 1.2 m above the fabric with an image resolution
of 640x480 pixels. Additionally, we considered the impact of real-world lighting conditions, capturing
images of the fabric under various lighting scenarios.

For towels, we define four keypoints, starting with the upper left corner of the image as corner 1,
and continuing in clockwise order as corner 2, corner 3, and corner 4. Long-sleeved T-shirts have five
key points, including right_shoulder, left_shoulder, right_sleeve, right_waist, left_waist, and left_sleeve,
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Figure 7. Sample keypoint detection dataset for fabric folding.

which is marked according to the outward direction of the vertical image. An example of the fabric
keypoint dataset can be seen in Fig. 7.

3.2.2. Keypoint detection network
To identify keypoints in fc, the heatmap [37] regression method is utilized for pinpointing their locations.
For a d-dimensional heatmap gi(x) : Rd →R encompassing M keypoints, the coordinate

∗
xi∈R

d of a
specific target keypoint Li, i = {1, . . . , M} is represented using a Gaussian function.

gi(x; σi) = γ

(2π )d/2σ d
i

exp

⎛
⎜⎝−

∥∥∥x− ∗
xi

∥∥∥2

2

2σ 2
i

⎞
⎟⎠ (6)

Eq. (6) indicates that in the heatmap image, pixel values near the target coordinate
∗
xi are higher,

diminishing rapidly with increasing distance from
∗
xi. To circumvent numerical instability during train-

ing, arising from the Gaussian function’s generation of tiny values, a scaling factor γ is introduced. For
each dimension, the standard deviation σi determines the Gaussian function’s peak width in the heatmap
of keypoint Li. Consequently, σi represents a variable parameter of the Gaussian function gi(x), learned
concurrently with the network’s weights and biases. It ensures the learning of an optimal peak width for
the heatmap of each keypoint.

The network is trained to generate M heatmaps by minimizing the discrepancy between the predicted
heatmaps hi(x; w, b) for all keypoints Li and their corresponding ground truth heatmaps gi(x; σi). This
process is described in Eq. (7). When the network confidently predicts keypoints, it generates heatmaps
with narrower peak widths; conversely, for keypoints with lower confidence, it produces heatmaps with
wider peaks. The parameter ε serves as the penalty factor that determines the peak width of the heatmaps,
while η modulates the impact of the network’s weight L2 norm to mitigate the risk of overfitting.

min
w,b,σ

M∑
i=1

∑
x

‖hi(x; w, b) − gi(x; σi)‖2
2 + ε‖σ‖2

2 + η‖w‖2
2 (7)
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Figure 8. Fabric folding: Based on the input received from the overhead RGBD camera, the grasp
network can predict a series of pick poses for the upcoming primitive actions.

Finally, the predicted coordinates x̂i ∈R
d of each keypoint Li are determined by identifying the

locations of the maximum values on the heatmaps, as shown in Eq. (8).

x̂i = arg max
x

hi(x; w, b) (8)

We divide the data into training and validation sets in an 8:2 ratio. After training for 4 hours on an
NVIDIA RTX3080Ti, the average pixel error of the detected keypoints on a 640x480 validation set
image can be guaranteed to be within 3 pixels.

3.2.3. Heuristic folding
Taking inspiration from the Cloth Funnels [12] heuristic folding method, as depicted in Fig. 8, we use a
similar approach for folding a long-sleeved T-shirt. Initially, we utilize the pick & place primitive action
to fold the two sleeves of the garment onto the main part of the garment. Following this, we pick the
keypoints of the shoulders and place them at the keypoints of the waist.

4. Experiments
We conducted an experiment to identify the optimal threshold S1. Additionally, we carried out ablation
studies on primitive actions and multi-primitive policy. In the real world, we evaluated our method’s
effectiveness in unfolding fabric and its success rate in folding, using a range of long-sleeved t-shirts and
towels. This was further complemented by a comparative analysis with data from several contemporary
advanced algorithms.

4.1. Experimental setup
Our experimental setup comprises two Kinova Gen3 robotic arms, each outfitted with a Robotiq 2F-85
gripper. For visual data acquisition, we utilize a top-down Intel RealSense D435i camera for capturing
RGBD information during fabric manipulation and another Intel RealSense D435i, positioned to monitor
the robotic arm, to assess the degree of fabric stretch. Additionally, a Dell G15 5520 laptop and a sponge
sheet are included for experimental deployment, as detailed in Fig. 9.

4.2. Metrics
We evaluate FabricFolding on both the fabric-unfolding and fabric-folding tasks. Performance in
the fabric-unfolding task is evaluated based on the coverage achieved at the end of each episode.
Furthermore, we evaluate the algorithm’s success rate for the folding task, as well as its generaliza-
tion ability to handle unseen fabrics on real robotic arms. To reduce experimental randomness, each
experiment is repeated 25 times, and the weighted average of all results is calculated. If the folding
result is deemed a failure by the majority of the 5 judges or if the folding cannot be completed after 20
action sequences, the experiment is considered a failure.
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Figure 9. The experiment setup for the dual-arm manipulation system.

Figure 10. The normalized coverage of a long-sleeved T-shirt (Initial coverage is 0.5) is evaluated after
five primitive actions under various threshold parameters S1.

4.3. Parameter optimization
To optimize the grasping network, we use S1 as a threshold to determine the weight between dynamic and
quasi-static primitive action. To determine the optimal value for S1, we compare the coverage achieved
after 5 primitive actions for different values of S1.

When S1 is below 0.5, and since the initial fabric coverage is 0.5, our primitive action selection strat-
egy favors quasi-static primitive actions over dynamic ones. As shown in Fig. 10, the fabric’s coverage
after five operations does not exhibit a significant increase, suggesting that quasi-static primitive actions
are less efficient in unfolding the fabric. For 0.5 < S1 ≤ 0.65, our multi-primitive action selection strat-
egy prompts the algorithm to assign greater weight to the dynamic primitive action fling. Figure 10
demonstrates that this action results in more efficient fabric unfolding. Besides, for 0.65 < S1 ≤ 0.75,
despite the algorithm continuing to heavily weigh the dynamic primitive action fling, the fabric’s cov-
erage after five operations is fluctuating. It indicates that while fling is efficient in unfolding the fabric,
it is less capable of executing finer operations. Therefore, the best folding efficiency is achieved when
S1 = 0.65.
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Table I. Validity of primitive actions: the fabric is a long-sleeved T-shirt.

Fabric Status Primitive Actions Cov. ↑
Ini_cov ≥ 0.7 Quasi-static primitive action Pick & Place (P&P) 0.872

Pick & Drag (P&D) 0.876
P&P + P&D 0.891

Dynamic primitive action Fling 0.818
Muti-primitive actions P&P + P&D + Fling 0.902

Ini_cov ≤ 0.3 Quasi-static primitive action Pick & Place (P&P) 0.624
Pick & Drag (P&D) 0.636
P&P + P&D 0.694

Dynamic primitive action Fling 0.742
Multi-primitive actions P&P + P&D + Fling 0.822

Table II. Validity of Pick & Drag: the fabric is long-sleeved T-shirts with sleeves
partially concealed beneath other layers of cloth.

Fabric Status Primitive Actions Cov. ↑
Ini_cov ≥ 0.75 Quasi-static primitive action Pick & Place (P&P) 0.816

Pick & Drag (P&D) 0.879
P&P + P&D 0.895

Dynamic primitive action Fling 0.811
Muti-primitive actions P&P+P&D+Fling 0.899

4.4. Primitive actions ablation
Dynamic action can efficiently unfold the fabric, and quasi-static actions can make some fine adjustments
to the fabric. To verify the effectiveness of our multi-primitive policy mechanism, we conduct experi-
ments on long-sleeved T-shirts with different coverage. Table I shows that when the fabric has high initial
coverage and mild self-occlusion, the quasi-static actions have better coverage compared to the dynamic
action. This substantiates the capability of quasi-static actions to execute finer tasks in comparison to
dynamic action. On the other hand, when the fabric has low initial coverage and severe self-occlusion,
the dynamic action effectively improves coverage, which is in line with the findings of Flingbot [10].
It also demonstrates that our multi-primitive policy outperforms a single-primitive action in achieving
higher coverage, regardless of the initial coverage of the fabric. This highlights the effectiveness of the
multi-primitive policy in enhancing fabric coverage.

To assess the validity of the enhanced Pick & Drag primitive action in unfolding severely self-
occluding fabrics, we conducted tests using a long-sleeved T-shirt, with certain sleeves concealed or
tucked beneath other layers of cloth. Table II demonstrates that the enhanced pick & drag primitive
action significantly outperforms other primitive actions in managing fabrics with severe self-coupling
of sleeves. Furthermore, it highlights the superiority of our multi-primitive policy over a single-primitive
approach.

4.5. Effectiveness on fabric category
Table III presents the coverage attained by various algorithms on diverse real-world fabrics with initial
coverage less than 30%. Unfortunately, despite the availability of open-source code for SpeedFold [11]
and Canberk [12], substantial challenges exist when it comes to deploying these two tasks in a dual-
arm manipulation system using Kinova Gen3 due to inconsistencies in the robotic arms’ utilization.
Therefore, the data presented in this table are the original results reported in their respective papers.
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Table III. Real-world coverage: ∗ indicates the original data in paper.

Approach Fabric Cov. ↑
Flingbot [10] Towels 0.905

Long-sleeved T-shirts 0.742

SpeedFold [11] Towels 0.92∗

T-shirts 0.8∗

Long-sleeved T-shirts \
Canberk [12] Towels \

Long-sleeved T-shirts 0.806∗

Our Towels 0.958
Long-sleeved T-shirts 0.822

Table IV. Folding’s success: ∗ indicates the original data in paper.

Approach Fabric Success ↑
Doumanoglou [7] Towels 0.78∗

T-shirts 0.66∗

SpeedFold [11] T-shirt 0.93∗

Long-sleeved T-shirts \
Canberk [12] Towels \

Long-sleeved T-shirts 0.878∗

Our Towels 0.92
Long-sleeved T-shirts 0.88

To ensure a fair comparison, the fabrics tested in our algorithm are chosen to be as similar as possible
to those used in the previous works.

In our experimental setup, we independently deployed and evaluated FlingBot [10] and our algo-
rithm. As indicated in Table III, while FlingBot demonstrates proficiency with simpler fabrics like
towels, it encounters challenges with more complex items such as long-sleeved T-shirts. In contrast, our
algorithm not only effectively unfolds towels but also outperforms comparative algorithms in unfold-
ing long-sleeved T-shirts, showcasing superior performance. In addition, it exhibits the efficacy of our
advanced pick & drag primitive action and multi-primitive policy in fabric unfolding.

The success rate of fabric folding is a crucial performance indicator. As shown in Table IV, the
complexity of the fabric has a direct effect on the success rate of folding, which decreases continuously
as the fabric complexity increases. In particular, when dealing with fabrics that are not whole pieces, such
as long-sleeved T-shirts with two sleeves, it is common for the fabric to self-occlude during the folding
process to reduce the success rate. Among the four algorithms compared, our algorithm outperformed
the others in terms of the success rate achieved in folding towels and long-sleeved T-shirts. The result
of Table IV not only illustrates the significance of our enhanced pick & drag primitive action and multi-
primitive policy in simplifying tasks like fabric folding but also confirms the pivotal role of our realistic
image dataset in keypoint-based heuristic fabric folding.

5. Conclusions
In this paper, we enhance a quasi-static primitive action, pick & drag, enabling it to address severely
self-occluding fabric scenarios, including instances such as long-sleeved T-shirts with sleeves concealed
or tucked beneath other layers of cloth. Simultaneously, we have developed the FabricFolding system,
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which dynamically selects multiple primitive actions to efficiently unfold fabric in any initial configu-
ration. Additionally, we have developed a keypoint detection dataset for fabric folding to enhance the
precision of fabric keypoint detection, consisting of approximately 2,000 images. Our algorithm achieves
a coverage rate of 0.822 and a folding success rate of 0.88 for long-sleeved T-shirts. During our experi-
ments, we found that when the two pick points of fling are at diagonally opposite corners of the fabric,
it can be challenging to fully unfold the fabric even after multiple interactions. In the future, we plan to
investigate this issue and develop solutions to address it.
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