
Generalised Young Tableaux r

By ANDREW H. WALLACE

{Received 27th June, .1950. Read 1st December, 1950. Revised MS.
•received lAth March, 1952.)

Introduction.

The present note contains generalisations and new proofs of certain
theorems in the theory of Young Tableaux and Invariant Matrices. ' For
an account of Young Tableaux and their applications, and an introduction
to the method of Clebsch-Aronhold symbols, reference should be made to
Rutherford [1], and Turnbull [1], respectively. An invariant matrix
T{A) of a given square matrix A is, as appears from the context in § 4
below, a matrix of polynomials in the elements of A, regarded as independent
variables, such that T(AB) = T(A) T(B). Further details, and references
to original sources, are given in Wallace [1].

The echelon tableaux, or "skew" tableaux, treated below have been
used by G. de B. Robinson (Robinson [1], [2], [3]) in his work on the repre-
sentations of the symmetric group, and Staal (Staal [1]) has discussed what
might be called the arithmetic theory of such tableaux with a view towards
applications to modular representation theory.

§ 1. Echelon Tableaux.

Let n symbols, not necessarily all distinct, be arranged in rows with Xx

symbols in the first row, A2 in the second, and so on, where

r being the number of rows. If the first element of each row is vertically
below that of the first row, then the configuration is known as a Young
Tableau corresponding to the partition (A) of n. But a more general
configuration is obtained if the rows from the second downwards are dis-
placed to the left in such a way that the first symbol .of each row is vertically
above some symbol of the row immediately below. Thus

X X X . and X X X
X X X X X

X X - X X

are admissible shapes, the crosses marking the positions which are to be
occupied by symbols, but the conditions of the definition exclude shapes
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such as

X
x
X
X

X X and X
X

X

X X

because in each case the first symbol of the second row fails to lie above any
symbol of the third row (see § 6 below). The more general shape so defined
will be called an echelon tableau, while in the special case where the first
column contains the first symbol of each row the tableau will be called
quadrantal—the latter type is simply the ordinary Young tableau.

Let a standard order be preassigned for the n symbols. An echelon
tableau will be said to be standard if no column contains any symbol twice,
and if the symbols appear in standard order reading along any row from
left to right or down any column.

If the symbols of a tableau are all distinct, then the tableau may be
associated with two substitutional operators—P, which is the sum of all
permutations which rearrange the symbols within each row, without
carrying any symbol from one row to another, and N, which is a linear
combination of all the permutations which rearrange the symbols within
each column of the tableau, the coefficient of each even permutation
being + 1 and that of each odd permutation — 1. The product E = PN
is the Young operator of the tableau.

Let Sx and S2 be two tableaux of the same shape in the same set of
symbols (not necessarily all distinct); if a tableau, S, also of the same
shape, can be found such that each row of S contains the same set of symbols
in some order as the corresponding row of Sv and such that each column of
S contains the same set of symbols in some order as the corresponding
column of S2, then 8X will be said to be convertible to S2. For example

1 2 2 1 1 2 2 1 2
if S1is 3 5 and S2 is 2 5 then S can be taken as 3 5 . The

1 4 4 3 4 1

situation may be represented diagrammatically by the gnomon

which in the example just cited becomes
-Si

8,

S

1 2 2
3 5

1 4

1 1 2
2 5

4 3

2 1 2
3 5

4 1
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GENERALISED YOUNG TABLEAUX 37

It can be seen from the diagram at a glance that the rows of S are obtained
by permuting the symbols within each row of S± separately, while the
same may be said of the relation between the columns of S and those of S2.

Now in the special case where S1 and S2
 a r e quadrantal tableaux in

n distinct symbols, the P-, N-, and -S-operators corresponding to them being
Pv Nx, Ex and P2, N2, E2, respectively, St is convertible to S2 if and only if
N2 Px is non-zero, and this happens if and only if any pair of symbols
appearing in the same row of Sx appear in different columns of S2. On the
basis of these statements the quasi-idempotency of the Young operator,
namely the relation E2 = 6E, where 9 is an integer, and the theory of
the irreducible representations of the symmetric group may be deduced.
(Rutherford [1]).

But if S± and S2 are non-quadrantal tableaux in n distinct symbols
the relations are not so simple. Certainly if Sx is convertible to *S2 then
N2 Px is non-zero, as in the quadrantal case, but the converse does not

1 3 1 2
necessarily hold, as may be seen by taking Sx as „ . and S2 as „ .
In other words 8X may not be convertible to S2 but the inconvertibility is
now not necessarily due to the occurrence of a pair of symbols in the same
row of Sx and in the same column of S2. The proof of the quasi-idem-
potency of the Young operator of a non-quadrantal tableau thus breaks
down and indeed the relation E2 = 6E, with 9 a numerical constant, does
not necessarily hold for such operators.

The conditions under which two echelon tableaux may be subject to the
relation of convertibility must therefore be studied afresh; the investigation
will be confined to standard tableaux.

§2. The Convertibility Theorem.
Let the standard echelon tableaux of some fixed shape in any set of

n symbols, say a set of n numbers, repetitions being permitted, selected from
the numbers 1, 2, 3, ..., m, be ordered and labelled Sv S2, ..., Sf\n such a
way that 8t precedes #,- {i.e. i <j) if the first symbol of S(, reading along
each row in turn from left to right, which is not equal to the symbol in the
corresponding position of $,, is less than that symbol in numerical value.

Let 8{ and #,- be any two tableaux of the ordered set 8lt S2, ..., Sf and
consider the convertibility of St to Ss; that is, consider the construction of
a tableau S which may be carried into St by row operations and into St

by column operations. Suppose that the symbol 1 occurs a,- times in the
first row of 8( and a} times in the first row of £,-. Any further occurrences
of the symbol 1 hi later rows of St or St must be to the left of the first position
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of the first row. Convertibility of $,• to $,- implies that the a{ 1 's from the
first row of St are carried into the first row of 8 and thence into the first
row of Sjt since the l's in this row of £3 are the only ones vertically above
the first row of S. Moreover, further l's from later rows of S{ may be carried
into positions of S to the right of a vertical line through the first symbol
of the first row, and these must also be carried into the first row of 8}.
Hence a( ^ a,-. If a( < a3- then $,- precedes S{. Suppose that at = a$ = a
and let the symbol 2 occur b{ times in the first row of S(, b4 times in the first
row of Sj. Any further occurrences of 2 in either tableau must be to the
left of a vertical line through the (a+l)-th position of the first row. The
b( 2's from the first row of 8{ will be carried into the first row of S, the first
a positions of which are, of course, occupied by l's, and will then be carried
into the first row of 8jt while some 2's from later rows of S{ may be carried
into positions of 8 to the right of a vertical line through the (a+l)- th
element of the first row and thence into the first row of 8}. And so b( ^ bt.
If b( < bj then 8} precedes S{; otherwise let b( = 63- = b, and continue the
argument by considering the occurrences of 3, 4, ... in the first rows of S(

and Sj. The result is that either $,• precedes 8t or the first rows of S(, S, 8,
are all identical. In the latter case the first rows of 8( and 8^ may be
removed and the argument may be continued for the truncated tableaux.
The final result is that if 8t is convertible to 8, then S( cannot precede St.

This is a direct generalisation of the result already known for quadrantal
tableaux in distinct symbols.

§3. Double Forms and Young's Standard Theorem.
Let uw, w(2), ... be a number of m-ary row vectors, and a^, a:(2), ... a

number of m-ary column vectors, all the elements in each case being
independent variables. The compound inner product of the set of vectors
it(1), w(2),..., w(r) into the set afl-\ z<2),..., z<r) is written ( # u™ ... u^ | aP> a^... xf-r))
and is equal to the determinant

(I) »/ ( ! ) , . (1
ei\ vv '91 • • • U> i

where the symbols of the type ux stand for inner products : ux = S u(x{.

Let U and X be echelon tableaux of the same shape whose symbols
are the u® and a^, respectively, the symbols in each tableau not necessarily
being all distinct. The double form {U\X} is defined as the product of
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all the determinants obtained by forming the compound inner product of
the set of vectors in each column of U into the set of vectors in the corres-
ponding column of X. And the polarized double form {UjX} is the sum
of all double forms obtained by permuting the symbols of each row of U
separately among themselves in all possible ways.

Young's Standard Theorem (Turnbull, [1], p. 357) states that, if U
and X are quadrantal tableaux, and X is non-standard, then {?7|X} is a
linear combination of forms {U\X,]S, where the Xt are standard tableaux
in the symbols of X and of the same shape as X, added to double forms whose
tableaux are "deeper" than X. The "deepening" process consists in
increasing the lengths of certain columns at the expense of others. The
presence of these " deepened " forms would be troublesome in the case of
non-quadrantal tableaux: but a useful form of Young's Standard Theorem
for general echelon tableaux may be obtained by considering {U\X}.
The same type of determinantal reduction as was used to prove Young's
theorem in the quadrantal case may now be applied, and all forms in which
a lengthening of some column of X, and of the corresponding column of U,
takes place are annulled at each step by the symmetrisation with respect
to the rows of U. The result is that

where the X( are standard echelon tableaux in the symbols of X and of
the same shape as X, while the values of the constants c{ are independent
of U.

Returning again to quadrantal tableaux, we may state the further
result that if U{ and X( run through all the standard tableaux in a given
set of u- and a;-symbols, respectively, then the forms {C/,|X3} are linearly
independent. As will be seen later this result does not hold in the case of
non-quadrantal tableaux, even if the tableaux are restricted to one fixed
shape.

§4. The T0-matrix and Invariant Matrix corresponding to an Echelon
Tableau.

Let A = [a{j] be an m-rowed square matrix whose elements are inde-
pendent variables, and let

a(j = oj a, = ft bj = Yi cd = ...

be equivalent Clebsch-Aronhold symbolisations of these elements. Let the
set of numbers in which 1 appears pt times, 2 appears p2 times, and so on,
where p1-\-p2-\-...-\-pr = n, be selected from the numbers 1, 2, ..., m, and
called the set (p). Form all the standard echelon tableaux 8^, *S(p)2, ...
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of a given shape, and having the set (p) as symbols. Also let â ),- and
be defined, respectively, as the product of Greek letters afty... and that of
Latin letters abc... with the symbols of S^)( in order, reading along
each row in turn from left to right, as subscripts. Then if E is the Young
operator of the tableau S(a) of the given shape with the letters a, b, c, ...
in alphabetical order, reading along each row in turn, as symbols, the
polynomials

for all (p)i, (a)j may be constructed, and, regarding a(i as the symbolic
inner product it, may be written as

the left-hand tableau being formed from row suffixes of A, and the right-
hand one from column suffixes. Define the matrix T0(A) as that whose
(p)i-(o)j-th element is {£(p),-l S^j}, (p)i being the row-label and (a)j the
column-label.

In particular, replace A by the unit matrix. Then {ff(p),-| SMj} is certainly
zero for (p) ^ (a), and also {ff(p),-[ S^y} is certainly zero if #(,,), is not convertible
to S(fl)j; thus {£(„),• | £Wi} is zero for i <j. And {SMi\ S(p)i} is non-zero. The
matrix T,j(I) is therefore a quasi-diagonal matrix, with a submatrix on
the diagonal for each value of (p); and these submatrices are triangular
with zeros above the diagonal and non-zero numbers on the diagonal.
The form of T0(I) implies that it is non-singular.

Let B be a second square matrix of order mxm whose elements b(i

are independent variables. Each column of AB is a linear combination
of columns of A. Differently expressed, this implies that each Latin
letter a,-, b{, ... in the Clebsch-Aronhold symbolisation of A is replaced by a
linear combination of symbols of the same letter name (i.e., a( is replaced
by a linear combination of a's, bt by a linear combination of 6's). Substi-
tuting these linear combinations for the symbols in the polynomials a^-iFa^
and expanding, we see that each column of T0(AB) is a linear combination
of column vectors in each of which the elements are symbolic polarised
double forms having a common right-hand tableau, while in each vector
the left-hand tableaux are the same #(p)i- as mark the rows of T0(A). By
Young's Standard Theorem (§3) it follows that each column of T0(AB) is
a linear combination of columns of T0(A). In matrix notation

T0(AB) = T0(A)S(B), (1)

where S(B) depends on the elements of B, but not on those of A. Put
.4 = / i n (1):

= T0(I)S(B).
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Hence
T0(I) 8(AB) = T0(AB) = T0(A) S(B) = T0(I) S(A) S(B).

Divide by the non-singular T0(I):
S(AB) = S(A)S{B).

And so S(A) and the equivalent T{A) = T0(I) 8(A) TQHI) = T0(A) ToH*)
are both invariant matrices of A (cf. the construction in Littlewood [1],
p. 184). It is also worth noting that the elements of the matrix Tj1(l)
correspond to the correction factors M, introduced by Young in order to
obtain orthogonal idempotents from the tableaux operators (cf. Rutherford
[1] for references).

The results of this paragraph were derived for the case of quadrantal
tableaux in a previous paper (Wallace [1], p. 106) in a slightly different
way. The non-singularity of T0(I) is proved here in a rather more direct
way, revealing that this matrix is triangular.

By a method similar to that used for quadrantal tableaux, a further
result may be obtained for general echelon tableaux, namely the value of
the trace of the matrix T(A) constructed above. Write the (p)i-(p)j-th
element of T0(I) as f(p)l3- and that of TQX(1) as £(p)w. The trace of T(A) is
a symmetric function of the latent roots of A (Wallace [1], p. 110) which
may therefore be taken to be a diagonal matrix with a{j = to,- SH, where 8,,-
is the Kronecker 8. The (p)i-(p)i-th element of T(A) is

S «.Mi Eawh £(p)Ai = 2 «(p)ia(p)i £(p)iA £(p)fti+certain vanishing terms
A A

Summing with respect to (p) i and using Aitken's theorem on the monomial
expansion of the bialterant associated with the given echelon tableau
(Aitken [1]), we find that the trace of T(A) is the isobaric determinant
in OJ1; a>2, ..., a>m corresponding to the echelon tableau in question. For

X X X X
X X Xexample, if the tableau is in which the numbers

X X

of symbols in the successive rows are 4, 3, 3, 2 and the displacements of the
left-hand end of the successive rows, beyond the row above in each case,
are 1, 2, 0, then the corresponding isobaric determinant is

"t " 5 ^8 "10

X /&<g Ag tba

1 h3 hs

h2 \
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where the differences between the suffixes of successive pairs of rows, first
and second, second and third, third and fourth are 1 + 1, 2+1, 0+1, and
the suffixes of the diagonal elements read in reverse are 4, 3, 3,- 2; the
function hr is the sum of all r-th degree products of the OJ,-.

§ 5. Linear Dependence Properties of Polarised Double Forms.
Since T(BA) = T(B) T(A) it follows that

T0(BA) = T[B)T0(A).
And so any row of T0(BA) is a linear combination of rows of TQ(A). Taking
B as a permutation matrix, this may be interpreted in terms of double forms
as the theorem that {U\ X}, where U is non-standard, is a linear combina-
tion of the forms {C/,| X} where the U( are standard tableaux in the symbols
of U, and of the same shape, and the values of the coefficients of the linear
combination are independent of X (of. Turnbull [1], p. 362; Wallace [1],
p. 110).

T0(A) is non-singular in the sense that | T0{A)\ is not zero identically
in the ai}: for in particular \Tu(I)\=£0. In terms of double forms this
implies that the forms {U] Xt), where the Xt run through all the standard
tableaux of given shape in the ce-symbols and where U is any fixed tableau
of the same shape in the w-symbols, are linearly independent. For if a
relation

0 (2)

could be found, it would continue to hold if U were replaced by a tableau
Uo in which all the symbols within any row are the same, different rows,
however, containing different symbols, since the forms involving U are
derived by polarisations from forms involving Uo instead; and then Uo

could be replaced by any tableau, by means of further polarisations. Thus
a relation of the type (2) would hold with the values of the c,- independent
of U, and this would imply the identical vanishing of | T0(A) |.

There is also the weaker linear independence condition that, if the C7,-
are the standard tableaux of some given shape in the w-symbols, then no
relation

S c , { ^ X } = 0
i

can exist with ct- whose values are independent of X, for such a relation
would imply the identical vanishing of | T0(A)|. In particular this implies
that, if the symbols of X are all distinct, the forms {f/,-|X} are linearly
independent. But the linear independence of the forms {U^X} need not

or *?/
hold for every X. For example, if X is the tableau and if the Ui
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are standard tableaux of the same shape in u, v, ..., then the {C^-X} cannot
be linearly independent, because, in particular

u v
u v

x y\ f u v
V V

xy\ vu
yy

xy\_

yy = o.
The fact that the invariant matrix T(A) corresponding to a non-

quadrantal tableau is reducible shows that the elements of T0(A) are not
linearly independent, and so the polarised double standard forms {U^ Xf}
are not linearly independent unless the tableaux are quadrantal.

§ 6. Composite Tableaux.
X X X

The exclusion in § 1 of tableaux of the type X X was
X X

purely a matter of convenience, and not in any way essential for the subse-
quent discussion. Such a tableau may be called composite. It is clear

Cf

that a composite tableau 8 = „ 1 is standard if and only if S± and S2

Sf *? '
are standard; and if S = Q

 x , £ ' = „ , * are similarly decomposed, then

S is convertible to S' if and only if S1 is convertible to S^ and S% to #2'.
cr

Any double form or polarised double form corresponding to 8 = o
 x is

o2

equal to the product of two such forms, one corresponding to Sv the other
to S2. In particular this may be applied to the symbolic double forms
which give th e traces of invariant matrices. Thus the trace of the invariant
matrix associated with 8 is the product of the traces of those associated
with S± and 82; or, in other words, the invariant matrix associated with S
is the direct product of those associated with Sx and $2.

REFERENCES.
Aitken [1], " The Monomial Expansion of Detercninantal Symmetric Functions ", Proc.

Royal Soc. Edinburgh, 61 (1943), 300-310. . . . . . '
Littlewood [1], The Theory of Group Characters (Oxford, 1940).
Robinson [1], " On the Representations of the Symmetric Group", American J. Math., 69

(1947), 286-298.
— [2], " On the Representations of the Symmetric Group ", American J. Math., 70

(1948), 277-294.
•— [3], "Induced Representations and Invariants", Canadian J. Math., 2 (1950)>

334-343.
Rutherford [1], Substitutional Analysis (Edinburgh, 1948).
Staal [1], " Star Diagrams and the Symmetric Group ", Canadian J. Math., 2 (1950), 79—92.
Turnbull [1], Theory of Determinants, Matrices and Invariants, 2nd Edition (London and

Glasgow, 1945).
Wallace [1], " Invariant Matrices and the Gordan-Capelli Series ", Proc. London Math.

Soc. (3), 2 (1952), 98-127.

UNIVERSITY COLLEGE,

DUNDEE.

https://doi.org/10.1017/S0013091500014012 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014012

