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Abstract. We discuss the representation of primes, almost-primes, and related
arithmetic sequences as sums of kth powers of natural numbers. In particular, we
show that on GRH, there are infinitely many primes represented as the sum of
2d4k=3e positive integral kth powers, and we prove unconditionally that infinitely
many P2-numbers are the sum of 2kþ 1 positive integral kth powers. The sieve
methods required to establish the latter conclusion demand that we investigate the
distribution of sums of kth powers in arithmetic progressions, and our conclusions
here may be of independent interest.

2000 Mathematics Subject Classification. 11N32, 11P05, 11P55 (11N36, 11P32).

1. Introduction. In previous papers in this series, we investigated the number of
elements in a given polynomial sequence that admit a representation in a certain
prescribed form. The introductions of parts I and IV [2, 3] supply a discussion of the
scope and the underlying ideas of our methods, so we content ourselves here with
the remark that the aim of our analysis is to preserve the arithmetic structure of the
sequence in which a representation property is tested. The purpose of the present
note is to show that the technique of part IV in this series is applicable even when
the sequences tested are rather denser than the thin polynomial sequences in our
earlier communications. Rather than proceeding in undue generality, we make this
notion more precise with a specific example. Let PðkÞ denote the smallest integer s
for which the set of numbers representable as the sum of s positive k-th powers
contains infinitely many primes. Then since the work of Wooley [12] implies that all
but O

�
NðlogNÞ�2

�
of the natural numbers not exceeding N are the sum of s positive

k-th powers whenever s � 1
2 k log kþOðk log log kÞ, it follows immediately that
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PðkÞ � 1
2 k log kþOðk log log kÞ:

This decidedly weak bound seems to be all that is currently known for larger k,
although there is every expectation that PðkÞ � 3 (indeed, Heath-Brown has recently
announced a proof of the infinitude of primes of the form x3 þ 2y3, and from this it
follows that Pð3Þ ¼ 3). If the Riemann Hypothesis is true for all Dirichlet L-func-
tions (a conjecture hereafter referred to as GRH), we are able to reduce the order of
magnitude of the aforementioned upper bound for PðkÞ.

Theorem 1. On the assumption of GRH, one has PðkÞ � 2d4k=3e for every nat-
ural number k. Moreover, if �k;sðNÞ denotes the number of primes not exceeding N that
can be written as the sum of s k-th powers of natural numbers, then for s � 2d4k=3e
one has �k;sðNÞ 
 N1��ðsÞ, where �ðsÞ ¼ e1�2s=k.

Unconditional results of the same strength remain a desideratum. When com-
bined with the linear sieve, our methods yield a conclusion similar to Theorem 1, but
with the primes replaced by the set of natural numbers with at most two prime
factors.

Theorem 2. Let k � 3 and s � 2kþ 1. Then there exist infinitely many natural
numbers with at most two prime factors that are the sum of s k-th powers of natural
numbers.

Other sequences may be substituted for the primes without seriously affecting
the argument. We mention in passing a result involving sums of two squares.

Theorem 3. Let k � 3 and s � 2dð14 þ
1
2 log 2Þke þ 2. Then infinitely many of the

numbers representable as the sum of two integral squares are the sum of s positive k-th
powers. If Sk;sðNÞ is the number of sums of two squares not exceeding N with this
property, and �ðsÞ is defined as in Theorem 1, then Sk;sðNÞ 
 N1��ðsÞ.

Theorem 3 may be regarded as a special case of our final result, which concerns
sums of l l-th powers in place of sums of two squares.

Theorem 4. Let l � 2 and k � 3 be natural numbers. Then there exists a number
cðlÞ such that whenever s � cðlÞk, there are infinitely many integers that are simulta-
neously the sum of l l-th powers and s k-th powers of natural numbers.

It will be clear from the proofs below that our methods are capable of providing
lower bounds, analogous to those stated for �k;sðNÞ and Sk;sðNÞ, in Theorems 2 and
4.

Throughout, " will denote a sufficiently small positive number, and P will be a
large real number. We use � and 
 to denote Vinogradov’s notation, and write eðzÞ
for e2�iz. Finally, we write d�e for the smallest integer not smaller than �, and k�k
for miny2Z j�� yj.

2. The main argument. We proceed by describing the argument at the core of
our method in abstracted form. Suppose that we are given a set U � N and we wish
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to show that it contains many sums of s k-th powers. Our technique rests on two
ingredients. First, we require a lower bound for the number of solutions of the
equation

u ¼ xk1 þ xk2 þ . . .þ xks ð2:1Þ

with xi 2 ½1;P� \ Z (perhaps restricted to possess only small prime divisors) and
u 2 U. This can be achieved by the circle method, and in favourable circumstances
one can expect to obtain a lower bound of order UPs�k for the number of solutions
of (2.1), where U ¼ card

�
U \ ½1;Pk�

�
. If U has neat arithmetic properties, then it

transpires that the latter lower bound may be obtained when s > ck, for a suitable
constant c. In a second step, one aims to show that an individual element u has not
too many representations in the form (2.1), and thereby one derives a lower bound
for the number of elements in U that have a representation in the shape (2.1). This
can be achieved classically via Cauchy’s inequality, or by means of the tools intro-
duced in part IV of this series.

We now set the scene for a result that covers the lower bound problem in suffi-
cient generality for the proofs of Theorems 1, 3 and 4. Let

AðP;RÞ ¼ fn 2 ½1;P� \ Z : p prime; pjn ) p � Rg;

and define the exponential sums gð�Þ ¼ gkð�;P;RÞ by

gð�Þ ¼
X

x2AðP;RÞ

eð�xkÞ:

For an integer t � 1, the real number Dt is called a permissible exponent if, for each
" > 0, there exists a positive number 	 ¼ 	ð"Þ with the property that whenever
R � P	, one has

Z 1

0

��gð�Þ��2td� � P2t�kþDtþ": ð2:2Þ

Here we recall that the corollary to Theorem 2.1 of Wooley [13] shows that for each
natural number t, there is a permissible exponent Dt satisfying the inequality

Dte
Dt=k � ke1�2t=k: ð2:3Þ

Next we require the singular series corresponding to a sum of s k-th powers, defined
by

Sk;sðnÞ ¼
X1
q¼1

Xq
a¼1

ða;qÞ¼1

q�sSðq; aÞseð�an=qÞ;

where

Sðq; aÞ ¼
Xq
r¼1

eðark=qÞ:
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For the moment, we are content to record the classical fact that Sk;sðnÞ is absolutely
convergent and non-negative for s � 4 (see [9, Theorem 4.3]).

In order to describe our next result, we must define a suitable Farey dissection
of the unit interval. For 1 � Q � 1

2N
1=2, let MðQÞ denote the union of the arcs

Mðq; a;QÞ ¼ f� 2 ð0; 1� : jq�� aj � Q=Ng with 0 � a � q � Q and ða; qÞ ¼ 1. We
note that the arcs Mðq; a;QÞ comprising the latter union are pairwise disjoint.
Hence, we may define a function U : R ! R of period 1 which is given for
� 2 Mðq; a; 1

2N
1=2Þ � M

�
1
2N

1=2
�
by

U ð�Þ ¼
q

’ðqÞ

�
qþNjq�� aj

��1
;

and is 0 on ð0; 1�nMð12N
1=2Þ.

On defining un to be the indicator function of the sequence U, the scope of our
methods is readily discerned from the following lemma.

Lemma 2.1. Let un ð1 � n � NÞ be non-negative real numbers, and let � be a
positive number. Suppose that the exponential sum

Uð�Þ ¼
X
n�N

uneð�nÞ

satisfies the inequality Uð�Þ � Uð0Þ
�
N�� þ Uð�Þ

�
uniformly for � 2 R. Suppose also

that t is an integer exceeding k=2 for which there exist permissible exponents Dt and
Dt�1 satisfying Dt < �k and Dt�1 � ð1� �Þk. Then provided that 	 > 0 is sufficiently
small, one has

Z 1

0

gð�Þ2tUð��Þd� 

X
n�N

unSk;2tðnÞn
2t=k�1 þOðUð0ÞN2t=k�1ðlogNÞ�1=ð100kÞ

Þ;

where we abbreviate gkð�;N
1=k;N	Þ to gð�Þ.

We postpone the proof of this lemma to §4 and presently direct our attention to
the second step in our argument. Let rk;sðuÞ denote the number of solutions of (2.1)
with xj 2 AðN1=k;N	Þ ð1 � j � sÞ, and define wk;sðuÞ to be 1 when rk;sðuÞ > 0, and to
be 0 otherwise. We put s ¼ 2t, and recall the hypotheses and notation of the state-
ment of Lemma 2.1. We suppose in addition that

X
n�N

unSk;2tðnÞn
2t=k�1 
 Uð0ÞN2t=k�1; ð2:4Þ

a lower bound that often holds in practise. The following two lemmata provide
lower bounds of a type suitable for this second stage of our treatment.

Lemma 2.2. In addition to the hypotheses of Lemma 2:1, suppose that (2.4) holds.
Then

X
n�N

u2nwk;2tðnÞ 
 N�1�D2t=k�"
�X

n�N

un

�2

:

422 J. BRÜDERN, K. KAWADA AND T. D. WOOLEY

https://doi.org/10.1017/S0017089502030070 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502030070


Proof. On substituting (2.4) into the conclusion of Lemma 2.1, orthogonality
yields

X
n�N

unrk;sðnÞ ¼

Z 1

0

gð�ÞsUð��Þd� 
 Uð0ÞNs=k�1: ð2:5Þ

By Cauchy’s inequality, on the other hand, one has

�X
n�N

unrk;sðnÞ
�2

�

�X
n�N

u2nwk;sðnÞ
��X

n�N

rk;sðnÞ
2
�
: ð2:6Þ

But by orthogonality and (2.2), one finds that

X
n�N

rk;sðnÞ
2
�

Z 1

0

jgð�Þj2sd� � Nð2s�kþDsþ"Þ=k;

and so the desired conclusion follows immediately on substituting (2.5) into (2.6). &

Lemma 2.3. In addition to the hypotheses of Lemma 2:1, suppose that (2.4) holds.
Then

X
n�N

unwk;2tðnÞ 
 N�Dt=k�"
X
n�N

un:

Proof. By orthogonality and (2.2), we find that

X
n�N

unrk;2tðnÞ ¼
X
n�N

un

Z 1

0

gð�Þ2teð�n�Þd�

� Nð2t�kþDtþ"Þ=k
X
n�N

unwk;2tðnÞ;

and so the desired conclusion is immediate from (2.5). &

3. Sieve-free conclusions. The rather abstract material of the previous section
makes it easy to deduce those results mentioned in the introduction which do not
depend on sieves. The proof of Theorem 1, which we now describe, can serve as a
model.

Let up ¼ log p when p is a prime, and otherwise let un ¼ 0. Then, in the notation
of Lemma 2.1, it readily follows from GRH that the approximation

Uð
þ a=qÞ ¼
�ðqÞ

’ðqÞ

X
n�N

eðn
Þ þO
�
ðqNÞ1=2ð1þNj
jÞðlogNÞ2

�
ð3:1Þ

holds for coprime a 2 Z and q 2 N, and for all 
 2 R (see, for example, [4, Lemma
2]). By Dirichlet’s theorem, for any � 2 R, there are coprime a 2 Z and q 2 N with
1 � q � N2=3 and jq�� aj � N�2=3. One now routinely deduces from (3.1) that
Uð�Þ � NUð�Þ þN5=6þ", whereas the prime number theorem yields Uð0Þ 
 N.
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Moreover, a simple calculation leads from (2.3) to the upper bounds Dt < k=6 and
Dt�1 < 2k=5 whenever t � 4k=3. It is now easily seen that the hypotheses of Lemma
2.1 are satisfied by choosing Dt=k < � < 1=6. The condition (2.4) required in Lemma
2.2 is harmless. Indeed, the classical theory of the singular series shows that for
t � 4k=3 one has Sk;2tðnÞ 
 1 at least for n � 1 ðmod 4k Þ, and hence (2.4) follows in
the present situation from the prime number theorem for arithmetic progressions.
From Lemma 2.2, we then infer the lower bound

X
p�N

ðlog pÞ2wk;2tðpÞ 
 N1�D2t=k�";

and Theorem 1 follows immediately for even values of s ¼ 2t � 2d4k=3e, by invok-
ing (2.3). We leave to the reader the routine modifications needed to cover odd
values of s.

The proof of Theorem 3 follows the same pattern. Let X ¼
�
1
2N

�1=2
and write un

for the number of solutions of n ¼ x2
1 þ x2

2 with 1 � x1; x2 � X. Then un ¼ 0 for
n > N, and for n � 1

2N, one finds that un is equal to the number of solutions of
the equation n ¼ x2

1 þ x2
2 with x1; x2 2 N. In the notation of Lemma 2.1, one has

Uð�Þ ¼
� X

1�x�X

eð�x2Þ

�2

;

and on combining Theorem 4.1 and Lemma 4.6 of [9], it is easily seen that
Uð�Þ � NUð�Þ þN1=2þ". Moreover, one has Uð0Þ ¼ ½X�2 
 N. Finally, we note that
for t > ð14 þ

1
2 log 2Þkþ 1, it follows from (2.3) that Dt < k=2 and Dt�1 < k=2, whence

the hypotheses of Lemma 2.1 are satisfied by choosing � in the range
Dt=k < � < 1=2. By summing over n � 1 ðmod 4k Þ, we again see easily that (2.4)
holds. Since un ¼ Oðn"Þ, we may now proceed as in the proof of Theorem 1 to
complete the proof of Theorem 3.

For the proof of Theorem 4 we have recourse to an old-fashioned diminishing
ranges trick essentially due to Hardy and Littlewood. For more details of the pro-
cedure described in this paragraph the uninitiated reader is referred to [9, section
5.4]. In view of the conclusion of Theorem 3, we may suppose that l is a natural
number with l � 3. Write

hð�;XÞ ¼
X

X<x�2X

eð�xlÞ:

Also, define

X1 ¼
1
2ðN=lÞ1=l; Xj ¼

1
2X

1�1=l
j�1 ð2 � j � lÞ;

and write

Uð�Þ ¼ hð�;X1Þhð�;X2Þ . . . hð�;XlÞ:

We note that

Uð0Þ � X1X2 . . .Xl � N1�ð1�1=lÞl ;

424 J. BRÜDERN, K. KAWADA AND T. D. WOOLEY

https://doi.org/10.1017/S0017089502030070 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502030070


where it is useful to observe that 1=4 � ð1� 1=lÞl < e�1. In the notation of Lemma
2.1, we find that un is the number of solutions of the equation n ¼ xl1 þ . . .þ xll with
Xj < xj � 2Xj ð1 � j � lÞ. Note that un � 1 for 1 � n � N, and that un ¼ 0 for n > N.

When a 2 Z, q 2 N and � 2 R satisfy q � X1=2, ða; qÞ ¼ 1 and jq�� aj � X1=2�l,
one readily confirms from [9, Theorem 4.1 and Lemma 6.3] that

hð�;XÞ � Xq�1=lð1þ Xlj�� a=qjÞ�1:

Under the weaker hypotheses q � X and jq�� aj � X1�l, the same argument none-
theless supplies the estimate hð�;XÞ � Xq�1=l. Applying the displayed inequality
when X ¼ X1, and the weaker substitute when X ¼ Xj ð2 � j � lÞ, one finds that
Uð�Þ � Uð0ÞUð�Þ for � 2 MðXlÞ. By Weyl’s inequality, on the other hand (see [9,
Lemma 2.4]), there exists a positive number � ¼ �ðlÞ < 1=2 such that
Uð�Þ � Uð0ÞN�� for � 2 ½0; 1Þ nMðXlÞ. On combining the last two estimates, we find
that the hypotheses of Lemma 2.1 concerning Uð�Þ are satisfied. We observe next
that, in view of (2.3), there is a positive number c ¼ cðlÞ > 2 with the property that
whenever t > ck, then one has Dt < �k and Dt�1 < ð1� �Þk. Also, by [9, Theorem
4.6] one finds that Sk;2tðnÞ 
 1 for 2t � 4k, and hence the lower bound (2.4) also
holds. We therefore conclude from Lemma 2.3 that

X
n�N

unwk;2tðnÞ 
 Uð0ÞN�Dt=k�";

and this suffices to establish Theorem 4 when s ¼ 2t is even. Again, we leave to the
reader the simple modifications required to accommodate odd values of s.

We conclude this section with a remark on norm forms F 2 Z½X1; . . . ; Xd�

associated with an algebraic number field of degree d. By modifying the argument
applied in the proof of Theorem 3, one may establish that there exists a number cðdÞ
such that for all d � 3 and all s � cðd Þk, there are infinitely many values in FðZd

Þ

that are the sum of s positive k-th powers. Unfortunately, a proper account of the
complications accompanying such a generalisation of Theorem 3 demands more
space than is available herein.

4. A pruning exercise. The sole purpose of this section is to prove Lemma 2.1.
We recall the notation of the statement of that lemma, and write P ¼ N1=k and
N ¼ M ðlogNÞ1=10

� �
. Standard endgame technique from the Hardy-Littlewood

method, involving [8, Lemma 5.4], shows that whenever s > k, there exists a positive
number csð	Þ such that

Z
N
gð�Þseð�n�Þd� ¼ csð	Þn

s=k�1Sk;sðnÞ þO Ns=k�1ðlogNÞ�1=ð11kÞ
� �

for each natural number n with n � N. We take s ¼ 2t, multiply by un and sum over
integers n with 1 � n � N. Thus it is evident that Lemma 2.1 follows provided we
establish that the complementary integral over the set n ¼ ½0; 1Þ nN is negligible. To
this end, we engineer a succession of pruning processes that lead to the bound

Z
n
jgð�Þ2tUð�Þjd� � Uð0ÞP2t�kðlogNÞ�1=ð100kÞ: ð4:1Þ
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Observe first that in view of the simple bound ’ðqÞ 
 q= log log q, our hypoth-
esis on Uð�Þ implies that Uð�Þ � Uð0ÞN�� logN unless � 2 MðN�Þ, in which case
Uð�Þ � Uð0ÞUð�Þ. It follows that

Z
n
jgð�Þ2tUð�Þjd� � Uð0ÞN�� logN

Z 1

0

jgð�Þj2td�þUð0Þ

Z
n\MðN�Þ

Uð�Þjgð�Þj2td�:

Here, by (2.2) and the inequality Dt < �k, the first term on the right hand side is
majorised by the right hand side of (4.1). We now define the sets

M1 ¼ MðN�Þ; M2 ¼ MðP1=10Þ; M3 ¼ MððlogNÞAÞ; M4 ¼ N;

where A � 2k is a parameter to be chosen in due course, and we write also
Nj ¼ Mj nMjþ1 ð1 � j � 3Þ. In view of the definition of n, it is now apparent that the
desired conclusion (4.1) follows immediately from the estimates

Z
Nj

Uð�Þjgð�Þj2td� � P2t�kðlogNÞ�1=ð100kÞ
ð1 � j � 3Þ; ð4:2Þ

and these we presently seek to establish.
On recalling the above lower bound for ’ðqÞ, we find from [1, Lemma 2] that

whenever Q � 1
2N

1=2, one has

Z
MðQÞ

Uð�Þjgð�Þj2t�2d� � N"�1
�
Q

Z 1

0

jgð�Þj2t�2d�þ P2t�2
�
: ð4:3Þ

Also, as a consequence of [8, Theorem 1.8], there exists a positive number � with the
property that jgð�Þj � P1�� whenever � 2 N1. On taking Q ¼ N�, therefore, and
noting the hypothesis Dt�1 � ð1� �Þk, we deduce from (4.3) that

Z
N1

Uð�Þjgð�Þj2td� �

�
sup
�2N1

jgð�Þj
�2

Z
M1

Uð�Þjgð�Þj2t�2d�

� ðP1 � �Þ2N"�1P2t�2þ" � P2t�k��:

This establishes the estimate (4.2) when j ¼ 1.
Next we observe that a routine modification of the proof of Lemma 5.4 of [11],

combined with the above lower bound for ’ðqÞ, shows that whenever t � ½k=2� þ 1
and 2 � Q � P, one has

Z
MðQÞ

Uð�Þjgð�Þj2t�2d� � ðlogQÞBP2t�2�k;

where B is a suitable positive number depending at most on k. Also, from [10,
Lemmata 7.2 and 8.5], one has gð�Þ � PðlogNÞ"�A=k for � 2 N2. On takingQ ¼ P1=10

and A sufficiently large in terms of B, therefore, and recalling the hypothesis t > k=2,
we find that (4.2) follows for j ¼ 2 in much the same way as for the case j ¼ 1.

The final pruning step requires the bound jgð�Þjk � Uð�ÞPkðlogPÞ", which is
valid for � 2 N3 by virtue of [10, Lemma 8.5]. On recalling once more that 2t > k,
straightforward estimates that need no explanation here then show that
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Z
N3

Uð�Þjgð�Þj2td� � P2tðlogPÞ2t"
Z
N3

Uð�Þ1þ2t=kd�

� P2tN�1ðlogNÞ�1=ð11kÞ:

We thus arrive at the estimate (4.2) for j ¼ 3, so that in view of our earlier discus-
sion, the proof of Lemma 2.1 is complete.

5. Sums of k-th powers in arithmetic progressions. Our proof of Theorem 2
invokes standard sieve theory, and this forces us to examine the level of distribution
of sums of k-th powers. For this purpose we employ familiar diminishing ranges
techniques. Although more modern technology involving smooth numbers would
permit conclusions with fewer kth powers, the well-trodden path greatly simplifies
our analysis. We make some comments concerning the use of smooth numbers, and
a consequent refinement to Theorem 2, at the end of this section.

The Hardy-Littlewood diminishing ranges trick, already applied in the proof of
Theorem 4, is now applied to k-th powers. Let k be a natural number with k � 3,
and write

fð�;XÞ ¼
X

X<x�2X

eð�xkÞ:

When t is a natural number, we write s ¼ 2tþ 1 and define

X1 ¼
1
2ðN=sÞ1=k; Xj ¼

1
2X

1�1=k
j�1 ðj � 2Þ:

Also, we put

Ftð�Þ ¼ fð�;X1Þfð�;X2Þ . . . fð�;XtÞ:

On considering the underlying diophantine equation, one discerns the bound

Z 1

0

��Ftð�Þ
��2d� � �; ð5:1Þ

where � ¼ X1X2 . . .Xt (see, for example, [9, Section 5.4]). Next let %ðnÞ ¼ %k;sðnÞ
denote the number of solutions of the equation

zk þ
Xt

j¼1

ðxkj þ ykj Þ ¼ n; ð5:2Þ

subject to

X1 < z � 2X1 and Xj < xj; yj � 2Xj ð1 � j � tÞ: ð5:3Þ

In order to sieve the ‘‘weighted sequence’’ %ðnÞ, we seek an asymptotic formula for
the sums

P
m %ðmd Þ, valid for as large a range for d as is feasible. In this context we
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note that %ðnÞ ¼ 0 for n > N, so that the latter sum is finite. Observe also that this
sum is equal to the number of solutions of the congruence

zk þ
Xt

j¼1

ðxkj þ ykj Þ � 0 ðmod dÞ; ð5:4Þ

with z and xj; yj ð1 � j � tÞ satisfying (5.3). Write vðd Þ ¼ vk;sðd Þ for the number of
solutions of (5.4) with

1 � z � d and 1 � xj; yj � d ð1 � j � tÞ:

Then on sorting xj; yj ð1 � j � tÞ and z into congruence classes modulo d, we find
that whenever 1 � d < Xt, one has

X
n�0 ðmod d Þ

%ðnÞ ¼ d�svðd ÞX1�
2 þO d1�svðdÞX1X

�1
t �2

� �
: ð5:5Þ

By averaging over the modulus d, the range for d can be much extended.

Lemma 5.1. Suppose that 0 < � < 1=2, and that t is an integer with t � k for
which ð1� 1=kÞt < �. Then whenever D � N1��, there exists a positive number 	 such
that

X
d�D

��� X
n�0 ðmod d Þ

%ðnÞ � d�svðd ÞX1�
2
��� � X1�

2�	:

Proof. Write

Jð�;XÞ ¼
X

1�n�X

eðn�Þ and Jdð�Þ ¼ Jðd�;N=d Þ:

Then by orthogonality,

X
n�0 ðmod d Þ

%ðnÞ ¼

Z 1

0

fð�;X1ÞFtð�Þ
2Jdð��Þd�: ð5:6Þ

We observe that Jdð�Þ � minfN=d; kd�k�1g. Consequently, on combining [9,
Lemma 2.2] with a familiar argument (see, for example, [9, Exercise 2 of Chapter 2]),
we deduce that whenever a 2 Z and q 2 N satisfy ða; qÞ ¼ 1 and j�� a=qj � q�2, one
has

X
d�D

jJdð�Þj �
� N

qþNjq�� aj
þDþ qþNjq�� aj

�
logN:

By Dirichlet’s approximation theorem, however, for each � 2 ½0; 1Þ there exist a 2 Z

and q 2 N with ða; qÞ ¼ 1, q � 1
2N

1=2 and jq�� aj � 2N�1=2, and thus the estimate
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X
d�D

jJdð�Þj � NUð�Þ þDþN1=2
� �

logN ð5:7Þ

holds uniformly for � 2 ½0; 1Þ.
In order to make further progress, we define a Hardy-Littlewood dissection.

Write Z ¼ �2kþ2	, and suppose that 	 is so small that Z � X1=6
t . Define M ¼ MðZÞ

and m ¼ ½0; 1Þ nM. We note that when � 62 MðN�Þ, one has Uð�Þ � N�� logN. Also,
in view of our hypotheses D � N1�� and ð1� 1=kÞt < � < 1=2, it follows from the
relation � � N1�ð1�1=kÞt that

N"ðDþN1=2Þ� � N1��þ"� � �2Nð1�1=kÞt��þ" � �2�	;

whenever 	 > 0 is sufficiently small. Consequently, on writing K ¼ MðN�Þ nM and
noting the availability of a trivial estimate for fð�;X1Þ, one finds from (5.7) and (5.1)
that

X
d�D

���
Z
m
fð�;X1ÞFtð�Þ

2Jdð��Þd�
���

� N1��þ"X1

Z 1

0

jFtð�Þj
2d�þN1þ"

Z
K
Uð�Þj fð�;X1ÞFtð�Þ

2
jd�

� X1�
2�	 þN1þ"

Z
K
Uð�Þj fð�;X1ÞFtð�Þ

2
jd�: ð5:8Þ

We conclude our analysis of the minor arcs by noting first that [1, Lemma 2] in
combination with (5.1) yields

Z
MðN�Þ

Uð�ÞjFtð�Þj
2d� � N"�1

�
N�

Z 1

0

jFtð�Þj
2d�þ Ftð0Þ

2
�

� N"�1 N��þ�2
� �

:

But our hypotheses on t and � ensure that

�� ð1� ð1� 1=kÞtÞ ¼ ð1� 1=kÞt � ð1� �Þ < e�1 � 1=2 < 0;

whence the relation � � N1�ð1�1=kÞt implies that N� � �. An application of Weyl’s
inequality therefore leads to the bound

Z
K
Uð�Þj fð�;X1ÞFtð�Þ

2
jd� �

�
sup
�2m

j fð�;X1Þj

� Z
MðN�Þ

Uð�ÞjFtð�Þj
2d�

� ðX1�
�4	ÞN"�1�2 � N�1X1�

2�2	;

provided only that 	 is a sufficiently small positive number. We may therefore con-
clude from (5.8) that

X
d�D

���
Z
m
fð�;X1ÞFtð�Þ

2Jdð��Þd�
��� � X1�

2�	: ð5:9Þ
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In the next step, we evaluate the contribution of the major arcs M asymptoti-
cally. Let

wð
;XÞ ¼

Z 2X

X

eð
�kÞd�;

and put

Wð
Þ ¼ wð
;X1Þ
3wð
;X2Þ

2 . . .wð
;XtÞ
2:

We recall the definition of Sðq; aÞ from Section 2, and define the function F�ð�Þ for
� 2 M by taking

F�ð�Þ ¼ q�sSðq; aÞsWð�� a=qÞ;

when � 2 Mðq; a;ZÞ � M. It follows from [9, Theorem 4.1] that whenever
� 2 Mðq; a;ZÞ � M, one has

fð�;XiÞ � q�1Sðq; aÞwð�� a=q;XiÞ � Z1=2þ": ð5:10Þ

Consequently, on making a trivial estimate for Jdð�Þ, we find that

sup
�2M

�
j fð�;X1ÞFtð�Þ

2
� F�ð�Þj

X
d�D

jJdð��Þj
�
� N�2X1X

�1
t Z1=2þ":

But the measure of M is OðZ2N�1Þ, and thus we deduce that

X
d�D

���
Z
M
ð fð�;X1ÞFtð�Þ

2
� F�ð�ÞÞJdð��Þd�

��� � �2X1X
�1=2
t : ð5:11Þ

Let us now write

MðdÞ ¼

Z
M
F�ð�ÞJdð��Þd�:

Then it follows from (5.6), (5.9) and (5.11) that

X
n�0 ðmod d Þ

%ðnÞ ¼ MðdÞ þ R1ðd Þ; ð5:12Þ

where, for 	 > 0 sufficiently small,

X
d�D

jR1ðd Þj � X1�
2�	: ð5:13Þ

Before evaluating the expression MðdÞ more precisely, we rewrite it in the form

MðdÞ ¼
X
q�Z

Xq
a¼1

ða;qÞ¼1

q�sSðq; aÞs
Z Z=ðqNÞ

�Z=ðqNÞ

Wð
ÞJdð�
� a=qÞd
; ð5:14Þ
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and demonstrate that the terms in (5.14) with q 6 j d make a negligible contribution.
Observe first that when ða; qÞ ¼ 1 and q 6 j d, one has kda=qk � q�1 � Z�1. Also,
when 	 > 0 is sufficiently small, we have DZ2 � N1�	, and thus for
� 2 Mðq; a;ZÞ � M it follows that jdð�� a=qÞj � DZ=ðqNÞ < ð2ZÞ�1. We therefore
arrive at the estimate

sup
j
j�Z=ðqNÞ

jJdð
þ a=qÞj � sup
j
j�Z=ðqNÞ

minfN=d; kdð
þ a=qÞk�1g � Z; ð5:15Þ

valid for 0 � a � q � Z, ða; qÞ ¼ 1 and q 6 j d. Next, on recalling the upper bound
wð
;XÞ � Xð1þ Xkj
jÞ�1 that is immediate on integrating by parts, we find that

Z 1

�1

jWð
Þjd
 � X1�
2

Z 1

�1

ð1þNj
jÞ�3d
 � X1�
2N�1: ð5:16Þ

On combining (5.15) and (5.16) with [9, Lemma 4.9], therefore, we deduce that for
t � k, the contribution to the right hand side of (5.14) arising from those terms with
q 6 j d is majorised by

Z

Z 1

�1

jWð
Þjd

X
q�Z

Xq
a¼1

ða;qÞ¼1

jq�1Sðq; aÞjs � Z1þ"X1�
2N�1:

But when qjd, one has Jdð
þ a=qÞ ¼ Jdð
Þ, so that on writing

M�ðd Þ ¼
X
q�Z
qjd

Xq
a¼1

ða;qÞ¼1

q�sSðq; aÞs
Z Z=ðqNÞ

�Z=ðqNÞ

Wð
ÞJdð�
Þd
; ð5:17Þ

we may conclude that

X
d�D

jMðd Þ �M�ðd Þj � DZ1þ"X1�
2N�1 � X1�

2�	: ð5:18Þ

Again applying only routine endgame technique in the Hardy-Littlewood
method, we can complete the singular series and singular integral implicit in (5.17)
to obtain

M�ðd Þ ¼
X
qjd

Xq
a¼1

ða;qÞ¼1

q�sSðq; aÞsIðd Þ þO �2X1Z
�1d�1

� �
;

where

Iðd Þ ¼

Z 1

�1

Wð
ÞJdð�
Þd
:

But [9, Lemma 2.12] supplies the identity

X
qjd

Xq
a¼1

ða;qÞ¼1

q�sSðq; aÞs ¼ d1�svk;sðdÞ; ð5:19Þ
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and hence we infer that

X
d�D

M�ðd Þ � d1�svk;sðd ÞIðd Þ
�� �� � �2Z�1X1 logN � X1�

2�	:

On combining this estimate with (5.12), (5.13) and (5.18), we may conclude thus far
that

X
d�D

��� X
n�0 ðmod d Þ

%ðnÞ � d1�svk;sðdÞIðdÞ
��� � X1�

2�	: ð5:20Þ

It remains to evaluate Iðd Þ. We note first that Euler’s summation formula yields

X
y�Y

eð�yÞ ¼

Z Y

0

eð��Þd� þOð1þ j�jY Þ;

whence

Jdð�Þ ¼ d�1J�ð�Þ þOð1þ j�jN Þ;

where we write

J�ð�Þ ¼

Z N

0

eð��Þd�:

But Wð
Þ � X1�
2ð1þNj
jÞ�3, so it follows that the estimate

IðdÞ ¼ d�1

Z 1

�1

Wð
ÞJ�ð�
Þd
þOð�2X1N
�1Þ

holds uniformly in d. Next, on noting that J�ð
Þ ¼ ð2�i
Þ�1
ðeð
NÞ � 1Þ, it follows by

evaluating a simple contour integral that

Z 1

�1

Wð
ÞJ�ð�
Þd
 ¼ Wð0Þ ¼ X1�
2;

and hence

IðdÞ ¼ d�1X1�
2 þOð�2X1N

�1Þ:

Then since [9, Theorem 4.2] coupled with (5.19) establishes that d1�svk;sðdÞ � 1
whenever t � k, we conclude from (5.20) that

X
d�D

��� X
n�0 ðmod d Þ

%ðnÞ � d�svk;sðdÞX1�
2
��� � �2X1N

�1Dþ X1�
2�	:

The conclusion of the lemma is now immediate from the estimate DN�1 � ��	. &

The argument required to establish Theorem 2 is now a simple exercise in sieve
theory. It suffices to note that by (5.19) and [9, Lemma 4.3], whenever � is prime and
t � k, one has vk;sð�Þ ¼ �s�1 þOð�s�2Þ. We apply Lemma 5.1 with D ¼ N3=5,
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� ¼ 2=5 and t � k. Then a standard version of the weighted linear sieve (see, for
example, [7]) immediately implies that

X
n2N

%ðnÞ 
 X1�
2�";

where N denotes the set of integers with at most two prime factors. But on recalling
(5.1), we find that for each n in N , one has

%ðnÞ ¼

Z 1

0

fð�;X1ÞFtð�Þ
2eð�n�Þd� �

Z 1

0

jfð�;X1ÞFtð�Þ
2
jd� � X1�;

and hence

X
n2N
%ðnÞ>0

1 
 �1�":

The conclusion of Theorem 2 is immediate.
We finish with some comments on the use of the set of smooth numbers

AðP;P	Þ and its brethren. The ranges for the variables x and y underlying the sums
(5.2) are in diminishing ranges, and this permits strong control of the implicit
exponential sums on major arcs of height up to a power of N via the relations (5.10).
Unfortunately, if one were to place the variables x and y in the set AðN1=k;N	Þ,
surrogates for (5.10) are available for major arcs of height up to only a power of
logN, and this is inadequate for the purpose at hand. Such difficulties may be cir-
cumvented by use of the smooth sets CðN1=k;N	Þ, where we define

CðP;RÞ ¼ flm : 1 � l �
ffiffiffiffi
R

p
; 1 � m � P=

ffiffiffiffi
R

p
; pjm )

ffiffiffiffi
R

p
< p � Rg:

Here, as in the definition of AðP;RÞ, the letter p denotes a prime number. We direct
the reader to [5] (see especially §5) and [6] (see especially §8) for illustrative applica-
tions of such ideas. When x and y lie in such a set, an analogue of (5.10) holds for
major arcs of height up to N	=2 (see, for example, [6, equations (8.11) and (8.12)]).
Moreover, available mean value estimates for the exponential sums

~ggð�Þ ¼
X

x2CðP;RÞ

eð�xkÞ

retain the same strength as the estimates provided by (2.2) and (2.3). In this way, one
may demonstrate that the conclusion of Theorem 2 remains valid with the condition
s � 2kþ 1 replaced by

s � 2d 7
11ke þ 1

(here we make use of Greaves’ weights [7] for detecting almost-primes).
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