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Abstract

A variety is said to be a Rees–Sushkevich variety if it is contained in a periodic variety generated by
0-simple semigroups. Recently, all combinatorial Rees–Sushkevich varieties have been shown to be
finitely based. The present paper continues the investigation of these varieties by describing those that are
Cross, finitely generated, or small. It is shown that within the lattice of combinatorial Rees–Sushkevich
varieties, the set F of finitely generated varieties constitutes an incomplete sublattice and the set S of
small varieties constitutes a strict incomplete sublattice of F . Consequently, a combinatorial Rees–
Sushkevich variety is small if and only if it is Cross. An algorithm is also presented that decides if
an arbitrarily given finite set 6 of identities defines, within the largest combinatorial Rees–Sushkevich
variety, a subvariety that is finitely generated or small. This algorithm has complexity O(nk) where n is
the number of identities in 6 and k is the length of the longest word in 6.
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1. Introduction

Recall that a semigroup is 0-simple if it does not contain any nontrivial proper ideals.
The class of 0-simple semigroups was one of the first classes of semigroups to be
studied, in the pioneering work of Rees [20] and Sushkevich [23], and remains one of
the most important and interesting classes of semigroups. Following Kublanovsky
[6, 7], any subvariety of a periodic variety generated by 0-simple semigroups is
referred to as a Rees–Sushkevich variety. One of the most important results concerning
Rees–Sushkevich varieties, due to Mashevitzky [18] and Hall et al. [5], is that for
each integer n ≥ 1, the variety generated by all 0-simple semigroups over groups of
exponent dividing n is finitely based. This positive result, however, does not apply to
every Rees–Sushkevich variety as nonfinitely based examples exist in abundance (see,
for example, [2, 13, 15, 17, 19]).

A variety of semigroups is combinatorial if all groups in it are trivial. It follows
from results of Hall et al. [5] and Trahtman [25] that the largest combinatorial
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Rees–Sushkevich variety coincides with the variety A2 generated by the 0-simple
semigroup

A2 = 〈a, b | a2
= aba = a, b2

= 0, bab = b〉

of order 5, and that the variety A2 is defined by the identities

x3
≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx . (1)

The study of combinatorial Rees–Sushkevich varieties is thus precisely the study of
subvarieties of A2. These varieties have recently been investigated by Reilly, Volkov,
and the author (see, for example, [10, 11, 14, 21, 28]). Unlike the general case in
which many Rees–Sushkevich varieties containing nontrivial groups are nonfinitely
based, all subvarieties of A2 are finitely based [11]. The lattice L(A2) of subvarieties
of A2, on the other hand, has a rather complicated structure, for it follows from a result
of Vernikov and Volkov [26] that every finite lattice is embeddable in it.

Recall that a variety is small if it contains finitely many subvarieties. The present
paper is a continuation of [11, 14] in the study of subvarieties of A2 with the objective
of investigating those that are finitely generated or small.

THEOREM A.

(i) Every small subvariety of A2 is finitely generated but not vice versa.
(ii) The finitely generated subvarieties of A2 constitute an incomplete sublattice

of L(A2).
(iii) The small subvarieties of A2 constitute an incomplete sublattice of L(A2).

Since all subvarieties of A2 are finitely based [11], any subvariety of A2 is defined
within A2 by some finite set of identities. Therefore, it is reasonable to ask whether
or not it is decidable if an arbitrarily given finite set of identities defines a subvariety
of A2 that is finitely generated or small. It turns out that this question has an affirmative
answer.

THEOREM B. Suppose that6 is any finite set of n identities formed by words of length
at most k. Then there exists an algorithm with complexity O(nk) that decides if the
subvariety of A2 defined by 6 is finitely generated or small.

In the next section, a partition of the proper subvarieties of A2 into five pairwise
disjoint intervals is given. Each of these intervals is then individually investigated
with the aim of establishing Theorems A and B. Further details on the organization of
this paper are given after Lemma 2.3.

REMARK 1. It follows from [12] that Theorem A(ii) also holds for Rees–Sushkevich
varieties of central simple semigroups, that is, the set of finitely generated varieties
of central simple semigroups constitutes an incomplete lattice. However, Theorem A
does not hold for varieties of semigroups in general since there exists a small variety
that is nonfinitely generated (see [22]), the meet of two finitely generated varieties
need not be finitely generated (Corollary 3.4(ii)), and the join of two small varieties
need not be small [22].
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REMARK 2. Recall that a variety is Cross if it is finitely based, finitely generated, and
small. Since all subvarieties of A2 are finitely based [11], it follows from Theorem A(i)
that a subvariety of A2 is small if and only if it is Cross. Consequently, any result on
small subvarieties of A2 is also a result on Cross subvarieties of A2.

2. Preliminaries

In this paper, let X be a countably infinite alphabet. Elements of X are referred to
as letters and elements of the free monoid over X are referred to as words. The content
of a word w, denoted by C(w), is the set of letters occurring in w.

An identity is typically written as u≈ v where u and v are words. Let 6 be any
set of identities. The variety defined by 6 is the class of all semigroups that satisfy
all identities in 6. If V is a variety, then the subvariety of V defined by 6 is denoted
by V6, and the lattice of subvarieties of V is denoted by L(V). Refer to [3, 27] for
other undefined notation and terminology in this paper.

The semigroup A2 and the combinatorial Brandt semigroup

B2 = 〈c, d | c2
= d2

= 0, cdc = c, dcd = d〉

of order 5 are, up to isomorphism, the only minimal 0-simple semigroups with zero
divisors. It is routine to verify that the sets

A0 = {0, b, ab, ba} and B0 = {0, d, cd, dc}

are subsemigroups of A2 and B2, respectively. Denote by A0, B0, and B2 the varieties
generated by the semigroups A0, B0, and B2, respectively. The variety A0 is clearly
contained in A2. The varieties B0 and B2 are also contained in A2 since A2 is the
largest combinatorial Rees–Sushkevich variety.

LEMMA 2.1. [11, Proposition 2.5 and Lemma 2.6]

(i) For any variety V in {A2, B2, A0, B0}, the subvariety V of A2 that is largest with
respect to not containing V exists and is finitely based. More specifically,

A2 = A2{x
2 y2x2

≈ x2 yx2
},

B2 = A2{xy2x ≈ xyx},

A0 = A2{x
2 y2x2 y2

≈ x2 y2
},

B0 = A2{x
2 y2z2

≈ x2 yz2
}.

(ii) The inclusions B0 ⊂ A0 ⊂ A2 and B0 ⊂ B2 ⊂ A2 hold.

Note that the variety A2 is the unique maximal subvariety of A2 since it contains
every proper subvariety of A2.

LEMMA 2.2.

(i) The varieties B0 and B2 satisfy the identities

x2 yk x ≈ xyk x ≈ xyk x2, xhm y2tnx ≈ xhm ytnx, (2)

where k, m, n ∈ {0, 1}.
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(ii) Every proper subvariety of A2 satisfies the identities

xhm y2z2tnx ≈ xhm z2 y2tnx, (3)

where m, n ∈ {0, 1}.

PROOF. (i) By [11, Lemma 3.3], the variety B2 satisfies the identities (2). By
Lemma 2.1(ii), the variety B0 is contained in B2 and so also satisfies the identities (2).

(ii) This follows from [11, Lemma 3.11]. 2

LEMMA 2.3. [11, Propositions 2.7] The lattice L(A2) is the disjoint union of the
intervals

I1 = [A0 ∨ B2, A2],

I2 = [A0, B2],

I3 = [B2, A0],

I4 = [B0, A0 ∩ B2],

I5 = L(B0).

Section 3 presents an equivalent condition on a set 6 of identities for which the
variety B06 in the interval I5 is finitely generated or small. Section 4 introduces some
identities and varieties that are necessary in Section 5 for the complete descriptions of
the intervals I1, I2, I3, I4, and

[B0, A2] = {A2} ∪ I1 ∪ I2 ∪ I3 ∪ I4.

Section 6 addresses the word problems of three subvarieties of A2 that are crucial to
the algorithm in Theorem B and the determination of its complexity. Based on results
from Sections 3–6, the main results stated in the Introduction are proved in Section 7.

3. The interval I5

A letter x is simple in a word w if x occurs exactly once in w. A nonempty
word is simple if each of its letters is simple in it. A permutation identity is an
identity u≈ v where u and v are distinct simple words with C(u)= C(v). A nontrivial
nonpermutation identity u≈ v where either u or v is simple is said to be diverse.

LEMMA 3.1.

(i) Suppose that some diverse identity is a consequence of some set 6 of nontrivial
identities. Then 6 itself contains some diverse identity.

(ii) An identity is nondiverse if and only if it is a consequence of the identities

xyx ≈ z2, xy ≈ yx . (4)

PROOF. (i) Suppose that every identity in 6 is nondiverse. Then 6 can only contain
permutation identities and identities formed by nonsimple words. It is then easy to
show that no diverse identity can be a consequence of 6.

(ii) Since the identities (4) are nondiverse, it follows from part (i) that any
consequence of (4) is a nondiverse identity. Conversely, let u≈ v be any nondiverse
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identity. It is clear that any permutation identity is a consequence of the identities (4).
Therefore, it suffices to assume that both u and v are nonsimple words, whence
u= w1xw2xw3 and v= w4 yw5 yw6 for some letters x, y ∈ X and some possibly
empty words w1, . . . , w6. Since

u
(4)
≈ xw1w2w3x
(4)
≈ yw4w5w6 y
(4)
≈ v,

the identity u≈ v is a consequence of the identities (4). 2

LEMMA 3.2. Suppose that V is any locally finite variety such that the lattice L(V)
satisfies the ascending chain condition. Then V is a finitely generated variety.

PROOF. For each n ≥ 1, let Vn be the variety generated by the V-free semigroup
over n letters. The varieties in the chain V1 ⊆ V2 ⊆ · · · are finitely generated
because V is locally finite. Since L(V) satisfies the ascending chain condition, there
exists some m ≥ 1 such that Vn = Vm for all n > m. Consequently, V=

⋃
n≥1 Vn =

Vm is finitely generated. 2

PROPOSITION 3.3. The following statements on a set 6 of identities are equivalent:

(a) the variety B06 is small;
(b) the variety B06 is finitely generated;
(c) the set 6 contains some diverse identity.

PROOF. Recall from Lemma 2.1(i) that the variety B0 is defined by the identities (1)
and

x2 y2z2
≈ x2 yz2. (5)

(a) implies (b). Since A2 is a finitely generated variety, all its subvarieties are locally
finite. Therefore, if the variety B06 is small, then it is also finitely generated by
Lemma 3.2.

(b) implies (c). Suppose that the variety B06 is generated by a finite semigroup S
of order n. Let x1, . . . , xn, y, z1, . . . , zn ∈ S. By [1, Proposition 3.7.1], there exist
s1, s2, s3, t1, t2, t3 ∈ S such that x1 · · · xn = s1s2

2s3 and z1 · · · zn = t1t2
2 t3. Since

x1 · · · xn yz1 · · · zn = s1(s
2
2s3 yt1t2

2 )t3
(5)
= s1s2

2(s3 yt1)
2t2

2 t3
(2)
= s1s2

2(s3 y2t1)
2t2

2 t3
(5)
= s1s2

2s3 y2t1t2
2 t3

= x1 · · · xn y2z1 · · · zn,
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the diverse identity x1 · · · xn yz1 · · · zn ≈ x1 · · · xn y2z1 · · · zn is satisfied by the
semigroup S and so is a consequence of the identities {(1), (5)} ∪6 that define
the variety B06. It follows from Lemma 3.1(i) that some identity in {(1), (5)} ∪6 is
diverse. Since every identity in {(1), (5)} is nondiverse, 6 must contain some diverse
identity.

(c) implies (a). Suppose that 6 contains some diverse identity

δ : u≈ v.

By [16], any variety that satisfies some diverse identity and some permutation identity
is small. Therefore, in order to show that the variety B06 is small, it suffices to
show that it satisfies some permutation identity. By symmetry, there are two cases to
consider.

CASE 1. u is simple and v is nonsimple. Then v= v0
∏n

i=1(yvi ) for some possibly
empty words v0, . . . , vn with n ≥ 2 and some letter y from X\C(v0 · · · vn).

(1.1) y ∈ C(u). Choose any letters x1, x2, x3, x4 ∈ X\C(uv). Denote by ϕ and χ the
substitutions y 7→ x1x2x3x4 and y 7→ x1x3x2x4, respectively. Then uϕ ≈ uχ is
clearly a permutation identity. Since

uϕ
δ
≈ vϕ = v0

n∏
i=1

((x1x2x3x4)vi )

(2)
≈ v0

n∏
i=1

((x1x2
2 x2

3 x4)vi )

(3)
≈ v0

n∏
i=1

((x1x2
3 x2

2 x4)vi )

(2)
≈ v0

n∏
i=1

((x1x3x2x4)vi )

= vχ
δ
≈ uχ,

the variety B06 satisfies the identity uϕ ≈ uχ .
(1.2) y /∈ C(u). Then uy ≈ vy is a diverse identity where uy is simple and vy is

nonsimple. Repeat the argument in Case 1.1 on uy ≈ vy to obtain a permutation
identity that is satisfied by the variety B06.

CASE 2. u and v are simple. Without loss of generality, assume that x ∈ C(v)\C(u).
Then ux ≈ vx is a diverse identity where ux is simple and vx is nonsimple. Repeat
the argument in Case 1 on ux ≈ vx to obtain a permutation identity that is satisfied by
the variety B06. 2

Let M be the variety generated by the monoid 〈a : a3
= a2
〉 ∪ {1} and N be the

variety defined by the identities (4).
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COROLLARY 3.4.

(i) The set of nonfinitely generated subvarieties of B0 constitutes the interval
[N, B0]. In particular, the variety B0 is nonfinitely generated.

(ii) The variety A2 ∩M is nonfinitely generated.

PROOF. (i) It is easy to see that N is a subvariety of B0. Let V be a subvariety of B0
so that V= B06 for some set 6 of identities. Consider the following conditions:

(a) N⊆ V, that is, every identity in 6 is a consequence of (4);
(b) every identity in 6 is nondiverse;
(c) V is nonfinitely generated.

Conditions (a) and (b) are equivalent by Lemma 3.1(ii), and conditions (b) and (c) are
equivalent by Proposition 3.3.

(ii) It is well known and easy to show that the variety M is defined by the
identities x3

≈ x2 and xy ≈ yx (see, for example, [1, Corollary 6.1.5]). It is then
routine to verify that A2 ∩M= B0{xy ≈ yx}; this variety is nonfinitely generated by
Proposition 3.3. 2

4. The identities 〈n| and |n〉

Let ω be the least infinite ordinal and ω̂ = ω + 1 be its successor. For any n from

{0, 1, 2, . . . , ω, ω̂},

define the identities

〈n| : h(n)x2 y2x2
≈ h(n)y2x2 y2x2 and |n〉 : x2 y2x2t(n) ≈ x2 y2x2 y2t(n)

where

h(n) =


h1 · · · hn if 0≤ n < ω,

h2
1h2 if n = ω,

h2 if n = ω̂,

and t(n) =


t1 · · · tn if 0≤ n < ω,

t1t2
2 if n = ω,

t2 if n = ω̂.

Note that the words h(0) and t(0) are empty.

LEMMA 4.1. Suppose that m ≤ n ≤ ω̂. Then

(i) the identity 〈n| is a consequence of the identities {(1), 〈m|};
(ii) the identity |n〉 is a consequence of the identities {(1), |m〉}.

PROOF. This is straightforward. 2

LEMMA 4.2. Let S be any finite semigroup of order n. Then

(i) S � 〈ω| implies that S � 〈n|;
(ii) S � |ω〉 implies that S � |n〉.
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PROOF. Suppose that S � 〈ω|. Let h1, . . . , hn, x, y ∈ S. By [1, Proposition 3.7.1],
there exist s1, s2, s3 ∈ S such that h1 · · · hn = s1s2

2s3. Then S � 〈n| because

h1 · · · hnx2 y2x2
= s1s2

2s3x2 y2x2

〈ω|
= s1s2

2s3 y2x2 y2x2

= h1 · · · hn y2x2 y2x2.

Therefore, part (i) holds. Part (ii) follows by symmetry. 2

Let L0 be the variety of trivial semigroups and for each n ∈ {1, 2, . . .}, let Ln be
the subvariety of A2 defined by the identity

λn : x1 · · · xn y ≈ x1 · · · xn.

It is easy to show that the variety Ln does not contain the semigroup B0 and so belongs
to the interval I5. The identity λn is diverse so that by Proposition 3.3, the variety Ln
is both finitely generated and small. For each n < ω, let Rn be the variety that is the
symmetrical dual of Ln . Similarly, Rn is a finitely generated and small variety in
the interval I5.

LEMMA 4.3. Suppose that m < n < ω. Then

(i) Ln � {〈n|, |0〉} and Ln 2 〈m|;
(ii) Rn � {〈0|, |n〉} and Rn 2 |m〉.

Consequently, the inclusions Lm ⊂ Ln and Rm ⊂ Rn hold and are strict.

PROOF. This is straightforward. 2

Let P = {0, a, b, c, d, e} and Q = {0, a, b, c, d} be the semigroups defined by the
following multiplication tables:

P 0 a b c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 b
b 0 0 0 0 b b
c 0 a b c 0 0
d 0 0 0 0 d d
e 0 0 0 0 e e

Q 0 a b c d
0 0 0 0 0 0
a 0 0 0 a a
b 0 a b a 0
c 0 0 0 c c
d 0 0 0 d d

The semigroup P was brought to the author’s attention by Volkov and the semigroup Q
appeared in [14] as LC0. Let P and Q be the varieties generated by the semigroups P
and Q, respectively.

LEMMA 4.4.

(i) A0 � {〈ω̂|, |ω̂〉}.
(ii) P ∈ A0 ∩ B2, P � {〈ω̂|, |0〉}, and P 2 〈ω|.
(iii) Q ∈ B2, Q � |0〉, and Q 2 〈ω̂|.
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PROOF. (i) It easily follows from Lemma 2.1(i) that the variety A0 satisfies the identity
α : (x2 y2z2)2 ≈ x2 y2z2. Then A0 � 〈ω̂| because

(h2 y2x2)y2x2 α
≈ (h2 y2x2h2)y2x2 y2x2

(3)
≈ h2x2(y2h2 y2x2 y2)x2

(3)
≈ (h2x2 y2h2x2 y2)y2x2

α
≈ h2x2(y2 y2)x2

(1)
≈ h2x2 y2x2.

The variety A0 is self-dual by Lemma 2.1(i) so that A0 � |ω̂〉.
(ii) It is routine to show by Lemma 2.1(i) that P ∈ A0 ∩ B2 and P � {〈ω̂|, |0〉}.

Since c2ad2e2d2
= 0 6= b = c2ae2d2e2d2, it follows that P 2 〈ω|.

(iii) It is routine to show by Lemma 2.1(i) that Q ∈ B2 and Q � |0〉. Since
b2c2d2c2

= a 6= 0= b2d2c2d2c2, it follows that Q 2 〈ω̂|. 2

LEMMA 4.5. Let i ∈ {1, 2, 3, 4}. Suppose that V ∈ Ii . Then V= Ei6 where Ei is
the largest variety in Ii and 6 ⊆ {〈`|, |r〉} for some `, r ≤ ω̂.

PROOF. There are four cases depending on the value of i .

CASE 1. i = 1 so that Ei = A2. It follows from [11, proof of Proposition 3.14] that if
V ∈ I1, then V= A26 for some set 6 that contains some of the following identities:

h(`)x2 y2x2t(r) ≈ h(`)y2x2 y2x2t(r), h(`)x2 y2x2t(r) ≈ h(`)x2 y2x2 y2t(r). (6)

It is easy to show that within the equational theory of A2, the first identity in (6)
is equivalent to 〈`| independent of the value of r , and the second identity in (6) is
equivalent to |r〉 independent of the value of `. It follows from Lemma 4.1 that the
set 6 can be chosen to be a subset of {〈`|, |r〉} for some `, r ≤ ω̂.

CASE 2. i = 2. The arguments in [11, proof of Proposition 3.14] can be repeated for
varieties in I2. Therefore, the present case can be similarly established.

CASE 3. i = 3 so that Ei = A0. It follows from [11, proof of Proposition 4.3] that
if V ∈ I3, then V= A0 ∩ V′ for some variety V′ ∈ I1. It follows from Case 1 that
V′ = A26 for some 6 ⊆ {〈`|, |r〉} with `, r ≤ ω̂. Therefore, V= A0 ∩ A26 = A06

as required.

CASE 4. i = 4 so that Ei = A0 ∩ B2. Following [11, proof of Proposition 4.3], if
V ∈ I4, then V= A0 ∩ B2 ∩ V′ for some variety V′ ∈ I2. It follows from Case 2 that
V′ = B26 for some 6 ⊆ {〈`|, |r〉} with `, r ≤ ω̂. Therefore, V= A0 ∩ B2 ∩ B26 =

(A0 ∩ B2)6 as required. 2
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For the rest of this paper, it will be convenient to let

〈`|i = Ei {〈`|},

|r〉i = Ei {|r〉},

〈`, r〉i = Ei {〈`|, |r〉} = 〈`|i ∩ |r〉i ,

where `, r ≤ ω̂ and Ei is the largest variety in the interval Ii with i ∈ {1, 2, 3, 4}.

LEMMA 4.6.

(i) 〈0, 0〉1 = A0 ∨ B2.
(ii) 〈0, 0〉2 = A0.
(iii) 〈0, 0〉3 = B2.
(iv) 〈0, 0〉4 = B0.

PROOF. (i) Since A0 ∨ B2 = A2{x2 y2x2
≈ y2x2 y2

} by [14, Theorem 4.3(i)], it is
routine to show that the varieties A0 ∨ B2 and 〈0, 0〉1 coincide.

(ii) It follows from [14, Remark 4.1] that A0 = A2{xyxy ≈ yxyx}. It is routine to
show that the semigroup A0 satisfies the identities xy2x ≈ xyx , 〈0|, and |0〉 so that the
inclusion A0 ⊆ 〈0, 0〉2 holds; the reverse inclusion holds since

xyxy
(2)
≈ x2 y2x2 y2

〈0|
≈ y2x2 y2

|0〉
≈ y2x2 y2x2

(2)
≈ yxyx .

(iii) It follows from [14, proof of Proposition 3.5] that B2 = A2{x2 y2
≈ y2x2

}. It is
then routine to show that this variety coincides with 〈0, 0〉3.

(iv) This follows from parts (ii) and (iii) since B0 = A0 ∩ B2 by [8, Lemma 4.2 and
Corollary 4.3]. 2

5. The intervals I1, I2, I3, and I4

In every figure in this section, each • represents a finitely generated variety and
each ⊗ represents a nonfinitely generated variety.

PROPOSITION 5.1. The varieties in the interval I4 are shown in Figure 1.

PROOF. By Lemmas 4.4(i), 4.5, and 4.6(iv), the varieties in the interval I4 are possibly
of the form (A0 ∩ B2)6 where 6 ⊆ {〈`|, |r〉} for some `, r ≤ ω. It follows from
Lemma 4.1 that the locations of these varieties within the interval I4 are shown in
Figure 1. It remains to verify that the varieties in Figure 1 are distinct and identify
those that are finitely generated.

Consider the chain

B0 = 〈0, 0〉4 ⊆ 〈1, 0〉4 ⊆ 〈2, 0〉4 ⊆ · · · ⊆ 〈ω, 0〉4 ⊆ |0〉4 (7)
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0

FIGURE 1. The interval I4 = [B0, A0 ∩ B2].

in Figure 1. First suppose that 1≤ ` < ω. It follows from Lemma 4.3(i) that the
variety L` satisfies the identities 〈`| and |0〉 but not the identity 〈`− 1|, whence
B0 ∨ L` ⊆ 〈`, 0〉4 and B0 ∨ L` * 〈`− 1, 0〉4. Therefore, the varieties B0 ∨ L` and
〈`, 0〉4 must coincide. It follows that the varieties 〈0, 0〉4, 〈1, 0〉4, . . . are distinct and
finitely generated. Further, L`+1 is a subvariety of 〈ω, 0〉4 that is not contained in
〈`, 0〉4. Hence, 〈ω, 0〉4 * 〈`, 0〉4 for all ` < ω. If the variety 〈ω, 0〉4 is generated
by some finite semigroup S of order n, then S � 〈n| by Lemma 4.2(i) so that the
inclusion 〈ω, 0〉4 ⊆ 〈n, 0〉4 contradictorily holds. Therefore, the variety 〈ω, 0〉4 must
be nonfinitely generated. Since the subsemigroup {0, b, c, d} of P is isomorphic to B0,
it follows from Lemma 4.4(ii) that B0 ⊆ P⊆ |0〉4 and P * 〈ω, 0〉4. Hence, |0〉4 = P is
finitely generated.

Consequently, the varieties in (7) are distinct and, with the exception of 〈ω, 0〉4, are
finitely generated. By symmetry, the varieties in the chain

B0 = 〈0, 0〉4 ⊆ 〈0, 1〉4 ⊆ 〈0, 2〉4 ⊆ · · · ⊆ 〈0, ω〉4 ⊆ 〈0|4 (8)

are distinct and, with the exception of 〈0, ω〉4, are finitely generated. It is routine to
show that varieties of the form U ∨ V, where U is from (7) and V is from (8), constitute
the varieties in Figure 1. Distinctness and the finite generation property of the varieties
in Figure 1 can then be verified easily. For instance, consider the variety 〈`, r〉4. The
inclusion

〈0, r〉4 ∨ 〈`, 0〉4 ⊆ 〈`, r〉4 (9)
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FIGURE 2. The interval I3 = [B2, A0].

holds by Lemma 4.1. If `, r < ω, then by Lemma 4.3, the subvarieties L` and Rr
of 〈0, r〉4 ∨ 〈`, 0〉4 do not both belong to 〈`′, r ′〉4 whenever `′ < ` or r ′ < r , whence
equality must hold in (9). If either `= ω or r = ω, then Lemma 4.2 can be used to
show that 〈`, r〉4 is nonfinitely generated and hence distinct from all its subvarieties in
Figure 1. Similar arguments can be applied to the remaining varieties 〈`|4, |r〉4, and
A0 ∩ B2. 2

PROPOSITION 5.2. The varieties in the interval I3 are shown in Figure 2.

PROOF. This is almost identical to the proof of Proposition 5.1; the biggest difference
lies in showing that the variety |0〉3 in the chain

B2 = 〈0, 0〉3 ⊆ 〈1, 0〉3 ⊆ 〈2, 0〉3 ⊆ · · · ⊆ 〈ω, 0〉3 ⊆ |0〉3

is finitely generated. Recall that in the proof of Proposition 5.1, it was shown
that |0〉4 = P. In the present case, the variety B2 ∨ P should be used instead. It
follows from Lemma 4.4(ii) that B2 ∨ P⊆ |0〉3 and B2 ∨ P * 〈ω, 0〉3. Therefore,
|0〉3 = B2 ∨ P is finitely generated. 2

PROPOSITION 5.3. The varieties in the interval I2 are shown in Figure 3.

PROOF. By Lemmas 4.5 and 4.6(ii), the varieties in the interval I2 are possibly of the
form B26 where 6 ⊆ {〈`|, |r〉} for some `, r ≤ ω̂. It follows from Lemma 4.1 that
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FIGURE 3. The interval I2 = [A0, B2].

the locations of these varieties within the lattice I2 are shown in Figure 3. It remains
to verify that the varieties in Figure 3 are distinct and identify those that are finitely
generated.

Consider the chain

A0 = 〈0, 0〉2 ⊆ 〈1, 0〉2 ⊆ 〈2, 0〉2 ⊆ · · · ⊆ 〈ω, 0〉2 ⊆ 〈ω̂, 0〉2 ⊆ |0〉2 (10)

in Figure 3. Following the arguments in the proof of Proposition 5.1, the varieties
〈0, 0〉2, 〈1, 0〉2, . . . are distinct and finitely generated, and the variety 〈ω, 0〉2 is
nonfinitely generated. It follows from Lemma 4.4(ii) that A0 ⊆ A0 ∨ P⊆ 〈ω̂, 0〉2
and A0 ∨ P * 〈ω, 0〉2. Hence, 〈ω̂, 0〉2 = A0 ∨ P is finitely generated. Since the
subsemigroup {0, a, b, c} of Q is isomorphic to A0, it follows from Lemma 4.4(iii)
that A0 ⊆Q⊆ |0〉2 and Q * 〈ω̂, 0〉2. Therefore, |0〉2 =Q is finitely generated.
Consequently, the varieties in (10) are distinct and, with the exception of 〈ω, 0〉2, are
finitely generated. By symmetry, the varieties in the chain

A0 = 〈0, 0〉2 ⊆ 〈0, 1〉2 ⊆ 〈0, 2〉2 ⊆ · · · ⊆ 〈0, ω〉2 ⊆ 〈0, ω̂〉2 ⊆ 〈0|2

are distinct and, with the exception of 〈0, ω〉2, are finitely generated. The rest of the
present proof follows in the same manner as the proof of Proposition 5.1. 2

PROPOSITION 5.4. The varieties in the interval I1 are shown in Figure 4.
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FIGURE 4. The interval I1 = [A0 ∨ B2, A2].

PROOF. This is similar to Proposition 5.3 in the manner Proposition 5.2 is similar to
Proposition 5.1. 2

REMARK 3. The varieties 〈0|1, |0〉1, 〈0|2, |0〉2, A2, and B2 have previously been
shown to be finitely generated in [14, Theorems 4.2 and 4.3].

LEMMA 5.5.

(i) The variety A2 is the only subvariety of A2 that covers the variety B2.
(ii) The variety 〈ω̂, ω̂〉1 is the only subvariety of A2 that covers the variety A0.
(iii) The varieties 〈ω̂, ω̂〉2 and A0 are the only subvarieties of A2 that cover the

variety A0 ∩ B2.

PROOF. (i) The variety B2 contains the semigroup A0 and so is not a subvariety of A0.
It follows from Lemmas 2.1(ii) and 2.3 that within the lattice L(A2), the variety B2 can
only be covered by some variety from the interval I1. The inclusion B2 ⊆ A2 follows
from Lemma 2.1(ii). Since the variety B2 is self-dual by Lemma 2.1(i), it does not
satisfy the identities 〈ω̂| and |ω̂〉 by Lemma 4.4(iii). It follows from Proposition 5.4
that B2 is not contained in any proper subvariety of A2 in I1, whence A2 is the only
subvariety of A2 that covers B2.

(ii) The variety A0 contains the semigroup B2 and so is not a subvariety of B2.
It follows from Lemmas 2.1(ii) and 2.3 that within the lattice L(A2), the variety A0 can
only be covered by some variety from I1. The inclusion A0 ⊆ 〈ω̂, ω̂〉1 follows from
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Lemmas 2.1(ii) and 4.4(i). Since the variety A0 is self-dual by Lemma 2.1(i), it does
not satisfy the identities 〈ω| and |ω〉 by Lemma 4.4(ii). It follows from Proposition 5.4
that A0 is not contained in any proper subvariety of 〈ω̂, ω̂〉1 in I1, whence 〈ω̂, ω̂〉1 is
the only subvariety of A2 that covers A0.

(iii) The variety A0 ∩ B2 contains the semigroup B0 and so is not a subvariety
of B0. It follows from Lemmas 2.1(ii) and 2.3 that within the lattice L(A2), the
variety A0 ∩ B2 can only be covered by some variety from I1 ∪ I2 ∪ I3. If A0 ∩ B2
is a subvariety of some variety V in I1, then A0 ∩ B2 is a subvariety of V ∩ B2
in I2. Therefore, A0 ∩ B2 can only be covered by some variety from I2 ∪ I3.
The inclusion A0 ∩ B2 ⊆ 〈ω̂, ω̂〉2 follows from Lemmas 2.1(ii) and 4.4(i), and the
inclusion A0 ∩ B2 ⊆ A0 holds vacuously. Since the variety A0 ∩ B2 is self-dual by
Lemma 2.1(i), it does not satisfy the identities 〈ω| and |ω〉 by Lemma 4.4(ii). It
follows from Propositions 5.2 and 5.3 that the variety A0 ∩ B2 is neither contained
in any proper subvariety of 〈ω̂, ω̂〉2 in I2 nor contained in any proper subvariety of A0
in I3, whence 〈ω̂, ω̂〉2 and A0 are the only subvarieties of A2 that cover A0 ∩ B2. 2

By Lemma 5.5 and methods similar to its proof, it is routine to show how the four
intervals I1, . . . , I4, together with the variety A2, combine to form the single interval
[B0, A2] in Figure 5. To avoid overcrowding the figure, most of the varieties are
unlabelled and most of the following coverings are not shown:

(a) B2 ≺ A2 and A0 ∩ B2 ≺ A0;
(b) 〈`|2 ≺ 〈`|1, |r〉2 ≺ |r〉1, and 〈`, r〉2 ≺ 〈`, r〉1 for all `, r ≤ ω̂;
(c) 〈`|4 ≺ 〈`|3, |r〉4 ≺ |r〉3, and 〈`, r〉4 ≺ 〈`, r〉3 for all `, r ≤ ω.

Any unlabelled variety in Figure 5 can easily be identified by referring to Figures 1–4.
It is easy to see that the interval [B0, A2] is a distributive lattice.

COROLLARY 5.6.

(i) B0 ⊂ 〈ω, 0〉4 ⊂ |0〉4.
(ii) 〈ω, 0〉4 = B0 ∨

∨
{Ln | n < ω}.

(iii) |0〉4 = P.

PROOF. The inclusions in part (i) have been established in Figure 1. It has been shown
in the proof of Proposition 5.1 that |0〉4 = P and 〈n, 0〉4 = B0 ∨ Ln for any n < ω.
Hence, 〈ω, 0〉4 =

∨
{〈n, 0〉4 | n < ω} = B0 ∨

∨
{Ln | n < ω}. 2

6. The word problems of B0, 〈ω, 0〉4, and |0〉4

Any words w1, . . . , wn are said to be disjoint if the sets C(w1), . . . , C(wn) are
pairwise disjoint. A word of length at least 2 is connected if it cannot be written as
a product of two disjoint nonempty words. Any word u can be uniquely written in
natural form, that is,

u=
m∏

i=1

(si ui )
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FIGURE 5. The interval [B0, A2].
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where each si is a simple word with s1 possibly being empty, each ui is a product of
connected words with um possibly being empty, and the words s1, u1, . . . , sm, um are
disjoint.

LEMMA 6.1. Let

u=
m∏

i=1

(si ui ) and v=
n∏

i=1

(ti vi )

be words written in natural form. Then B0 � u≈ v if and only if m = n, si = ti , and
C(ui )= C(vi ) for all i .

PROOF. This follows from the proof of part 3 of the first proposition in [4]. 2

The head and tail of a word w, denoted by h(w) and t(w), are the first and last
letters occurring in w, respectively.

LEMMA 6.2. Let u≈ v be any identity of the variety B0, say

u=
m∏

i=1

(si ui ) and v=
m∏

i=1

(si vi ),

with C(ui )= C(vi ) for all i when u and v are written in natural form. Then

(i) |0〉4 � u≈ v if and only if h(ui )= h(vi ) for all i ;
(ii) 〈ω, 0〉4 � u≈ v if and only if h(u1)= h(v1).

PROOF. (i) Suppose that h(u j ) 6= h(v j ) for some j . Let ϕ be the following
substitution into the semigroup P of |0〉4:

x 7→


c if x occurs before t(s j ) in u,
a if x = t(s j ),

d if x = h(u j ),

e if x occurs after h(u j ) in u.

Then

uϕ =

{
d if j = 1 and s1 = ∅,

0 if s1 6= ∅,
and vϕ =

{
e if j = 1 and s1 = ∅,

b if s1 6= ∅.

Therefore, P 2 u≈ v, whence |0〉4 2 u≈ v by Corollary 5.6(iii).
Conversely, suppose that h(ui )= h(vi ) for all i . The variety |0〉4 is a subvariety of

B2 and so satisfies the identities (2). It is routine to show that the semigroup P satisfies
the identities

x3
≈ x2, x2 y2z2

≈ x2z2 y2, (11)

so that by Corollary 5.6(iii), the variety |0〉4 also satisfies these identities. Therefore, in
order to show that |0〉4 � u≈ v, it suffices to show that every ui ≈ vi is a consequence
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of the identities {(2), (11)}. Let C(ui )= C(vi )= {x1, . . . , xk} with h(ui )= h(vi )=

x1. Let χ be the substitution x 7→ x2 for all x ∈ X . Since ui is product of connected
words, any simple letter in ui must occur in some factor of ui that begins and ends
with a common letter. It follows that the identity ui ≈ uiχ is a consequence of the
identities (2). Since uiχ is a word over {x2

1 , . . . , x2
k } that begins with x2

1 , it is easy to
show that the identity uiχ ≈ x2

1 · · · x
2
k is a consequence of the identities (11). Hence,

the identity ui ≈ x2
1 · · · x

2
k is a consequence of the identities {(2), (11)}. By the same

argument, the identity vi ≈ x2
1 · · · x

2
k is also a consequence of the identities {(2), (11)}.

Therefore, the identity ui ≈ vi is a consequence of the identities {(2), (11)} as required.
(ii) Suppose that h(u1) 6= h(v1). Let `= |s1| + 1. It is easy to show that the

identity u≈ v is not a consequence of the identities {(1), λ`} that define the variety L`.
It follows from Corollary 5.6(ii) that 〈ω, 0〉4 2 u≈ v.

Conversely, suppose that h(u1)= h(v1)= h. Let n ∈ {1, 2, . . .}. Since u1 is a
product of connected words, the letter h is nonsimple in u1 so that the identity
u1 ≈ hnu1 is a consequence of the identities (2). Similarly, the identity v1 ≈ hnv1
is also a consequence of the identities (2). Since

u = s1u1

m∏
i=2

(si ui )

(2)
≈ s1

(
hnu1

m∏
i=2

(si ui )

)
λn
≈ s1(h

nv1)

m∏
i=2

(si vi )

(2)
≈ s1v1

m∏
i=2

(si vi )

= v,

the identity u≈ v is a consequence of the identities {(2), λn}. The variety Ln , being a
subvariety of B0, must satisfy the identities (2) and so also the identity u≈ v. Since
n ∈ {1, 2, . . .} is arbitrary, every variety Ln satisfies the identity u≈ v. It follows from
Corollary 5.6(ii) that 〈ω, 0〉4 � u≈ v. 2

LEMMA 6.3. Writing a word w in natural form is a problem with complexity O(|w|).

PROOF. Any word w can always be uniquely decomposed in the form w= w1 · · · wm
where w1, . . . , wm are disjoint words, each of which is either connected or of length 1.
This decomposition of w is referred to as the canonical decomposition of w. It has
been shown in [14, Section 2] that any word w corresponds to some directed graph
G(w) where the canonical decomposition w= w1 · · · wm corresponds to the ordered
list (G(w1), . . . , G(wm)) of strongly connected components of G(w).

Tarjan [24] demonstrated that decomposing a directed graph G = (V, E) into
its strongly connected components is a problem with complexity O(|V | + |E |).

https://doi.org/10.1017/S0004972709000616 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000616


82 E. W. H. Lee [19]

For the directed graph G(w), the numbers of vertices and edges are bounded
by |w|. Therefore, finding the canonical decomposition of a word w is a problem
with complexity O(|w|). Once a canonical decomposition w= w1 · · · wm is
obtained, writing w in natural form amounts to gathering consecutive factors from
w1, . . . , wm of length 1 into simple words and gathering consecutive factors that
are connected. Consequently, writing a word w in natural form is a problem with
complexity O(|w|). 2

PROPOSITION 6.4. Let V ∈ {B0, 〈ω, 0〉4, |0〉4} and let u≈ v be any identity where u
and v are words of length at most k. Then deciding if the condition V � u≈ v holds is
a problem with complexity O(k).

PROOF. By Lemma 6.3, writing the words u and v in natural form is a problem with
complexity O(k). Then it is clear by Lemma 6.1 that deciding if the condition B0 �
u≈ v holds has complexity O(k). If B0 2 u≈ v, then both 〈ω, 0〉4 2 u≈ v and |0〉4 2
u≈ v by Corollary 5.6(i). If B0 � u≈ v, then by Lemma 6.2, deciding if the conditions
〈ω, 0〉4 � u≈ v and |0〉4 � u≈ v hold are problems with complexity O(k). 2

7. Proofs of the main results

Let F and S be the sets of subvarieties of A2 that are finitely generated and small,
respectively.

LEMMA 7.1. S = F ∩ I5.

PROOF. All varieties in the interval [B0, A2] are nonsmall since the variety B0 is
nonsmall [9]. Therefore, the inclusion S ⊆ I5 holds and the present lemma follows
from Proposition 3.3. 2

PROOF OF THEOREM A. (i) The inclusion S ⊆ F follows from Lemma 7.1. This
inclusion is strict since every finitely generated subvariety in the interval [B0, A2] is
nonsmall.

(ii) Suppose that U, V ∈ F . If U, V ∈ [B0, A2], then by referring to Figure 5, it
is easy to see that U ∩ V ∈ F . If either U or V belongs to I5, say U ∈ I5, then
U ∈ F ∩ I5 = S by Lemma 7.1 so that U ∩ V ∈ S = F ∩ I5. Hence, U ∩ V ∈ F in
any case. It is clear that U ∨ V ∈ F so that F is a lattice. By Corollary 5.6(ii), the
nonfinitely generated variety 〈ω, 0〉4 is the complete join of infinitely many finitely
generated varieties. Hence, the lattice F is incomplete.

(iii) Since S = F ∩ I5 by Lemma 7.1 and F is a lattice by part (ii), the set S is a
lattice. The complete join

∨
S contains the varieties L0, L1, . . . and so is nonsmall

by Lemma 4.3. Hence, the lattice S is incomplete. 2

PROOF OF THEOREM B. The algorithm presented in this proof potentially involves
verification of the following conditions:
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(C1) B0 �6;
(C2) 6 contains some diverse identity;
(C3) 〈ω, 0〉4 �6 and |0〉4 26;
(C4) 〈0, ω〉4 �6 and 〈0|4 26.

It follows from Proposition 6.4 and its dual result that deciding if these conditions hold
are problems with complexity O(nk).

First suppose that (C1) does not hold. Then A26 = B06 is a variety in the
interval I5. By Proposition 3.3, the variety A26 is both finitely generated and small if
(C2) holds, and neither finitely generated nor small otherwise.

Now suppose that (C1) holds. Then the variety A26 belongs to the interval [B0, A2]

and is nonsmall since B0 is nonsmall [9]. By referring to Figure 5, it is easy to
see that the nonfinitely generated subvarieties in [B0, A2] constitute the intervals
[〈ω, 0〉4, 〈ω|1] and [〈0, ω〉4, |ω〉1], and that the variety A26 is nonfinitely generated
if and only if either (C3) or (C4) holds.

The algorithm in this proof is summarized in the flowchart in Figure 6. 2

FIGURE 6. The algorithm in the proof of Theorem B.
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